
 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

ISSN: 2349-6363  15 

 

A Survey on Factorization Methods in MapReduce 

Environment 

M. Rajathi 

Department of Computer Applications 

    Madurai Kamaraj University                                                                                                                                                                 

Madurai, India 

 

 

M. Ramaswami  

Department of Computer Applications 

Madurai Kamaraj University 

Madurai, India

Abstract - Big data is a term encompassing complex types of large datasets that is hard to process with the 

traditional data processing systems. Innumerable challenges are encountered with big data like storage, 

transition, visualization, searching, analysis, security and privacy violations and sharing. Parallelism is a 

computational mechanism used to process such a large amount of data in an inexpensive and more 

efficient way. Hadoop is the core platform for handling massive data and it runs applications using the 

Map Reduce algorithm, where the data is processed in parallel on different CPU nodes. MapReduce is a 

software framework for   applications which process vast amount of data (multi-terabyte data-sets) in-

parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant 

manner. Due to the increasing availability of massive data sets in the form of matrices, researchers are 

facing the problem because the matrices which are to be factorized are having dimensions in the orders of 

millions. Recent research has shown that it is possible to factorize such large matrices within tens of hours 

using the MapReduce distributed programming platform. In this paper, we discuss two different matrix 

decomposition implementations using MapReduce; QR factorization and the SVD are two fundamental 

matrix factorization methods with applications around scientific computing and data analysis. The QR 

method decompose the matrix into partitions and by applying multiple processes to compute the QR 

decomposition in parallel provides decomposition process much faster than computing the QR 

decomposition on the original matrix. In the same way, Singular value decomposition (SVD) shows strong 

vitality in the area of information analysis and has significant application value in many scientific big 

data fields. For a large-scale matrix, applying SVD computation directly is both time consuming and 

memory demanding. To speed up the computation of SVD, a MapReduce model has many advantages 

over a message passing interface model, such as fault tolerance, load balancing and simplicity. This 

survey paper discusses different QR and SVD factorization methods and how they are implemented in 

MapReduce environment. 

Keywords: Big Data, Hadoop, MapReduce, Factorization 

1. INTRODUCTION 

The term “Big Data” refers to very large and complex data sets made up of a variety of structured and 

unstructured data which are too big, fast, and hard to be managed by conventional techniques. Big Data is 

characterized by the 4Vs(Dr.R.Gunavathi & P.Sudha, September 2016) volume, velocity, variety, and veracity. 

Volume refers to the quantity of data, variety refers to the diversity of data types, velocity refers both how fast 

data are generated and processed, and veracity is the ability to trust the data to be accurate and reliable when 

making crucial decisions. 

Big Data is data with diversity and complexity requires new architecture, analytics, techniques and algorithms to 

manage and extract value, hidden knowledge from it. Traditional databases analytics says what is happened and 

however gives the predictive analysis of what is likely to happen in future. Infrastructure requirements of big 

data are data acquisition, data organization and data analysis. Hadoop is the open source software founded by 

Apache (A.P.S.Aslin & D.Usha, April 2014) for processing large datasets. Hadoop architecture includes a 

fault‐tolerant storage system called Hadoop Distributed File System or HDFS. HDFS is capable of storing huge 

amounts of information, scale up gradually and survive the failure of significant parts of the storage 

infrastructure without losing data. Hadoop creates inexpensive machine clusters and coordinates to work among 

them. Hadoop continues to operate the cluster without losing data or interrupting work, by shifting work to the 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

16 
 

remaining clusters even if one fails. HDFS manages storage on the cluster by breaking incoming files into 

pieces called “blocks” and storing each of the blocks redundantly across the pool of servers. In general, HDFS 

stores three complete copies of each file by copying each piece to three different servers(Gadekar & P S 

Bhosale, October 2014). 

Map Reduce(Dean & Ghemawat, 2004),(HuangLan, Xiao-wei, ZhaiYan-dong, & Bin, September 24 - 26, 2009) 

is a simplified programming model and is a major component of Hadoop for parallel processing of large amount 

of data. It helps the programmers free from the parallelization issues while allowing them to concentrate on 

application development. The Hadoop architecture has shown in Figure 1. Two important data processing 

functions contained in MapReduce programming are Map and Reduce. The input data will be given into the 

Map phase which performs processing as per the program coded by the programmers to generate intermediate 

results. Parallel Map tasks will run at a time. First, the input data is divided into fixed sized blocks on which 

Map tasks run in parallel. The output of this stage is a collection of <key, value> pairs which is still an 

intermediate output. These <key,value> pairs undergo a shuffling phase across reduce tasks. Only one key is 

accepted by each reduce task and based on this key the processing will be done. The output will be again in the 

form of <key, value>pairs. 

The Hadoop MapReduce framework consists of one master node and many worker nodes called as Job Tracker 

and Task Trackers. The submitted user jobs are given as input to the Job Tracker which transforms them into as 

many Map and Reduce tasks. These tasks are then assigned to the Task Trackers. The TaskTrackers in turn 

scrutinizes the execution of these tasks and the user is notified about job completion, when all tasks are 

accomplished. HDFS provides for fault tolerance and reliability by storing and replicating the inputs and outputs 

of a Hadoop job. 

 

  

2. FACTORIZATION METHODS 

Factorization (Decomposition) techniques used for many purposes, including solving a linear system more 

efficiently. Factorization methods decompose given matrix into two pieces that are easy to find the solution in 

efficient manner than inverting the matrix. More over this strategy improve the speed and/or accuracy of 

algorithms and also provides additional insights into the properties of the matrix in it. The QR factorization and 

the SVD are two fundamental matrix decompositions with applications throughout scientific computing and data 

analytics. The implementation of factorization method in MapReduce environment further enhance speed of 

decomposition process by partitions the matrix and compute the decomposition in parallel. 

2.1. QR Factorization 

The QR method factorizing given matrix A into product of two sub matrices Q and R, A = QR where Q is 

orthogonal matrix (or semi-orthogonal, if A is not square) and R is upper triangular matrix. The matrix Q is 

orthogonal if     , where I is the identity matrix(Benson, Gleich, & Demmel, 2013) and the matrix R is 

Figure 1. Hadoop Architecture 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

17 
 

upper triangular, i.e., all entries below the main diagonal are 0. The implementation details of major QR 

factorization methods under MapReduce environment are discussed below: 

2.1.1. Cholesky-QR Factorization 

The Cholesky factorization method decompose a symmetric, positive and definite real-valued matrix A into 

product of two sub matrices L and LT, where L is an n × n lower triangular matrix. The Cholesky factor L for 

the matrix ATA is exactly same as the matrix R in the QR factorization. Since R is upper triangular matrix and 

L is unique, RTR =LLT. The method of computing R via the Cholesky decomposition of AT A matrix is called 

Cholesky-QR. Thus, the problem of finding R becomes the computing of ATA. This task is straightforward in 

MapReduce paradigm as shown in Figure 2. In the map stage, each task collects rows in the form of <key, 

value>pairs – to forma local matrix   and then computes    
   . Thesematrices are small, n × n, and are output 

by row. In fact,   
   is symmetric, and there are ways to reducethe computation by utilizing this symmetry. In 

the reduce stage, each individual reduce function takes in multiple instances of each row of ATA from the 

mapper. These rows are summed to produce a row of ATA. Formally, this method computes:    

   
            

     where Ai is the input to each map-task. Extending the ATA computation to Cholesky-QR 

simply consists of gathering all rows of ATA on one processor and serially computing the Cholesky 

factorization ATA = LLT .The serial Cholesky factorization is fast since ATA is small, n×n matrix. 

 

 

 

2.1.2. Tall and Skinny-QR 

The Tall and Skinny QR (TS-QR)(Constantine & David, June 8, 2011) factorization algorithm produces the 

factorization A = QR of a matrix A that is designed for the case where A is a tall and skinny matrix. A 

matrix       is said to be tall and skinny if m n. Such matrices have many applications, one of which is 

solving a least squares problem of                   . This matrix would be very tall and skinny as the 

number of observations (m) often exceeds several thousand whereas the number of variables in the model (n) is 

usually less than very small in comparison and it is often less than 10 in many cases. There are two types of TS-

QR factorization methods are available.  

2.1.3. Indirect TSQR 

We will now briefly review the Indirect TS-QR algorithm and its implementation to facilitate the explanation of 

the more intricate direct version. Let A be a matrix with m rows and n columns, which is partitioned across four 

map tasks as shown in equation 1: 

Figure 1. Map Reduce of Cholesky QR 

 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

18 
 





















4

3

2

1

A

A

A

A

A
             (1) 

Each map task computes a local QR factorization as shown in equation 2 







































4

3

2

1

4

3

2

1

*

R

R

R

R

Q

Q

Q

Q

A

            (2) 

The matrix of stacked upper triangular matrices on the right is then passed to a reduce task and factored into     . 

At this point, we have the QR factorization of A in product form 

RQ

Q

Q

Q

Q

A
~~

4

3

2

1





















 

The Indirect TS-QR method ignores the intermediate Q factors and simply outputs the n × n factors Ri in the 

intermediate stage and      in the final stage. Figure 3 illustrates each map and reduces output. Given the matrix 

R, the simplest method for computing Q is computing the inverse of R and multiplying by A, i.e. computing 

AR−1. Since R is n×n, upper-triangular matrix and computation of its inverse is straightforward. Figure 3 

illustrates how the matrix multiplication and iterative refinement step translate to MapReduce. This “indirect” 

method of the inverse computation is not backwards stable. Thus, a step of iterative refinement may be used to 

get Q within desired accuracy. 

 

 

2.1.4. Direct TS-QR 

In direct TS-QR method, the direct computation of QR decomposition of matrix A in three steps using two map 

functions and one reduce function, as illustrated in Fig. 4. Consider a matrix A with m rows and n columns as 

defined in equation 1, which is partitioned across four map tasks for the first step as in Figure 4. The first step 

uses only map tasks. Each task collects data as a local matrix, computes a single QR decomposition, and emits 

Q and R to separate files. The factorization of A then looks as equation 2, with        the computed factorization 

on the j
th

 task. The second step is a single reduce task. The input is the set of R factors from the first step. The R 

factors are collected as a matrix and a single QR decomposition is performed. The sections of Q corresponding 

to each R factor are emitted as values.   is the final upper triangular factor in our QR decomposition of A: 

Figure 3. MapReduce of Indirect QR 

 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

19 
 

R

Q

Q

Q

Q

R

R

R

R

~

2
4

2
3

2
2

2
1

4

3

2

1




































 

The third step also uses only map tasks. The input is the set of Q factors from the first step. The Q factors from 

the second step are small enough that we distribute the data in a file to all map tasks. The corresponding Q 

factors are multiplied together to emit the final Q: 





























































2
44

2
33

2
22

2
11

2
4

2
3

2
2

2
1

4

3

2

1

QQ

QQ

QQ

QQ

Q

Q

Q

Q

Q

Q

Q

Q

Q
 

RQA
~

  

In the first step, the key-value pairs emitted use a unique map task identifier as the key and the Q or R factor as 

the value. The reduce task in the second step maintains an ordered list of the keys read. The kth key in the list 

corresponds to rows                   of the locally computed Q factor. The map tasks in the third step 

parse a data file containing the Q factors from the second step, and this redundant parsing allows us to skip the 

shuffle and reduce. 

2.1.5. Householder QR 

This algorithm is not as friendly to MapReduce environment as either Cholesky QR or Indirect TS-QR methods. 

The main rationale behind for this phenomenon is the iterative nature of the algorithm. At each step of the 

algorithm, the matrix A is completely updated. In MapReduce, this has to be achieved by means of constantly 

rewrite the matrix on disk. Conceptually, each step of the Householder QR method corresponds to three 

MapReduce calls. 

 

 

As illustrated in Figure 5, the first step of the algorithm computes the norm of a column of A to help form the 

Householder reflector. The second and third steps of this algorithm update the matrix with      

            , where V is the Householder reflector. However, in the actual implementation, the first and third 

steps are combined because we can compute the norm for the next step immediately after updating the matrix in 

the third step. Thus, the MapReduce Householder QR algorithm uses 2n passes over the data for the matrix A 

with n columns. Every other pass requires rewriting the matrix on disk. As n grows, the performance of this 

algorithm becomes significantly worse than other algorithms. This MapReduce implementation of Householder 

QR is a BLAS 2 algorithm, whereas standard Sca/LAPACK uses a BLAS 3 algorithm. The central reason for 

this is the row-wise layout of the matrix in the HDFS. For tall-and-skinny matrices, the canonical key-value pair 

Figure 4. MapReduce Direct QR – First, Second and Third Step 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

20 
 

stored in HDFS uses a row as the matrix as the value and a unique row identifier for the key. Thus, reading the 

leading columns of the matrix has the same cost as reading the entire matrix. The stock BLAS 3 algorithm for 

LAPACK is a much better choice for their column-wise matrix layout. 

 

 

2.2 Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) shows strong vitality in the area of information analysis and has 

significant application value in most of the scientific big data fields. However, with the rapid development of 

internet, the information online reveals fast growing trend. For a large-scale matrix, applying SVD computation 

directly is both time consuming and memory demanding. There are many mechanisms are available to speed up 

the computation of SVD based on the message passing interface model. However, to deal with largescale data 

processing, a MapReduce model has many advantages over a message passing interface model, such as fault 

tolerance, load balancing and simplicity. Suppose M is an m × n matrix whose entries come from the field K, 

which is either the field of real numbers or the field of complex numbers. Then there exists a factorization, 

called a singular value decomposition of M, of the form        {\displaystyle \mathbf {M} =\mathbf 

{U} {\boldsymbol {\Sigma }}\mathbf {V} ^{*}}  where U is a  m × m unitary matrix, Σ is a diagonal m × n 

matrix with non-negative real numbers on the diagonal, and V  is a n × n, unitary matrix over K. (If K = R, 

unitary matrices are orthogonal matrices.) V  is the conjugate transpose of the n × n unitary matrix, V. Some of 

the methods in SVD are discussed below 

2.2.1. Divide and Conquer SVD: 

Divide-and-conquer approach is efficient way for solving full rank SVD problem (Zhao, et al., 28 November 

2014). The key point of this algorithm is to split the original problem into many sub-problems using a division 

strategy and merge the result of the sub-problems to produce the final result. Therefore, this algorithm 

inherently has satisfactory parallelization and scalability when applied into distributed systems. The main 

components of this algorithm are blocked matrix multiplication and solving the secular equation. Both of them 

can be further divided and solved using multiple smaller sub-problems. Also, the recursive fashion of this 

algorithm demonstrates that it is optimal in terms of number of iterations among different types of full rank 

SVD algorithms. Generally, the SVD of a general matrix                       is computed in two 

phases:  

• I: Orthogonally reduce A to a bi-diagonal matrix B:           
 
 
     

• II: Compute the SVD of B:          

The SVD of A is then computed as    TWVUQUA 


 







021  

Phase II consumes the majority of the computation time. It can be implemented using several algorithms. The 

basic idea of this algorithm is to merge the SVD results of two similar sub-matrices from a larger matrix. Given 

Figure 5. Map Reduce Householder QR 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

21 
 

the (N + 1)   N lower bi-diagonal matrix B, divide-and-conquer recursively divides B into two                        

sub-matrices as











210

01

Bek

kekB
B





 

where B1 and B2 are k   (k − 1) and (N − k + 1)   (N − k) lower bi-diagonal matrices, respectively, and ej is the 

j
th

 unit vector of appropriate dimension.  

   2.2.2. Divide-And-Conquer SVD Algorithm Using MapReduce: 

In MapReduce implementation, each merge task of SVD algorithm can be treated as a node in a binary tree and 

carry out a two-stage task scheduling strategy which dynamically parallelize the computation of merging 

process. Further, the input matrix spilt into leaf problems according to the division strategy of the algorithm 

using MapReduce. Third, matrix multiplication of the whole divide-and-conquer SVD algorithm carried out by 

organizing as a binary tree. In the binary tree, leaf nodes denote minimal sub-problems, and non-leaf nodes 

denote merge tasks to merge SVD result of two smaller sub-problems. Divide the original problem recursively 

until to reach one leaf problem and solve the leaf problem using QR iteration-based SVD approach and then 

merge the SVD results of two sibling nodes to form the result of their parent node according to the recursion 

branches generated by the program.  

In order to keep the global information of the whole binary tree, for a given fixed size of matrix, first split the 

given original matrix into a set of leaf sub-problems using a specific division algorithm and then solve all the 

leaf nodes and subsequently execute the merge tasks level by level. In Hadoop runtime environment, a simple 

way of parallelization is to let one MapReduce job execute one level of merge tasks. When the merging stage of 

SVD moves toward upper level of the binary tree, the number of map or reduce tasks will doubly reduce level 

by level. As a result, at the root level, there will be only one task to execute the merging task, while the amount 

of computation for each task will doubly increase as the size of matrix for each task increase level by level. This 

trend will lead to a considerable load imbalance problem. 

To address these problems, another way of parallelization is to let one or more MapReduce jobs execute one 

merge task of the whole tree. In this way, Hadoop framework will dynamically distribute the computation work 

to all nodes in distributed systems.  

 

  

However, there are still limitations in this approach. Consider one situation, where we define a very small size 

of matrix as the minimal sub-problem for a very big size of original problem, which will generate many small 

size leaf-problems. Therefore, there will be too many Map Reduce jobs to be launched for the bottom level of 

Figure 6. Two-Stage Map Reduce Strategy 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

22 
 

the tree, while the size of input data for these jobs is very small. For a matrix whose size is small, using the 

memory of a single node to deal with the computation is quite enough. If we parallelize small size matrix in a 

distributed manner, additional cost of I/O and network transfer during the algorithm execution will be a 

significant bottleneck. Weighing the merits and demerits of each approach, a two-stage task scheduling 

algorithm is suggested. Namely, at the bottom level of the tree, if the size of matrix is less than a specific 

threshold s1 apply the first way of parallelization call it as first stage. As the program moves to a specific level 

when the size of matrix is equal or larger than s1, then use the second way of parallelization named as second 

stage. Thus, by taking advantage of both approaches to significantly improve the performance of the algorithm 

running in distributed environment. The architecture is shown in Figure 6. 

During the process of the second stage, each merge task of one level in the tree is composed of several steps and 

each step will be assigned to one MapReduce job. Different steps of one same merge task should be executed 

one by one serially according to the algorithm logic. Meanwhile, different merge tasks belonging to the same or 

different levels can be executed independently in pipelined manner. Figure7 shows the procedure of pipelined 

task scheduling strategy.  Assuming at time t1, there are four threads scheduling task 1000, 1001, 1010, and 

1011. And then at time t2, both merge tasks 1000 and 1001 are finished, the thread for task 100 will start 

immediately without the necessity to wait for task 1010 and 1011 to complete. Therefore, by adopting the 

pipelined task scheduling strategy, at any time, full use of the computation resources in distributed environment 

can be achieved. In a distributed runtime environment, for a large-scale lower bi-diagonal matrix, even if only 

store its non-zero elements, it is impossible for a single node to store all its elements in memory. Therefore, 

traditional recursive division approach is no longer applicable. As a result, the first problem that the divide-and-

conquer SVD algorithm should deal with to efficiently extract all leaf problems from the original matrix, which 

exists in distributed file system.  

 

 

2.2.3. Jacobi SVD 

The Jacobi method is a stationary iterative algorithm for determining a solution of a linear system (Barret, et al., 

1994). This method makes two assumptions: first, the system      has a unique solution. And second, the 

coefficient matrix A has no zeros on its main diagonal. The Jacobi method is initialized to values of an 

approximate solution. Then the method is performed iteratively to improve the approximated values to a more 

accurate solution. This method stops when the desired accuracy is reached. The method is guaranteed to 

converge if the matrix A is strictly diagonally dominant(Kacamarga, Pardamean, & Baurley, 2014).  

In Map Reduce implementation of the Jacobi method, each iteration is one MapReduce job. Each job consists of 

a map function and a reduce function. In this application, the Map function is used to parse input data and 

perform a Jacobi calculation to find the solution x. After that, each result is aggregated by the reduce function 

and exported into output. The job is described in Table 1. At the end of reduce function, the job increments the 

iteration variable by one and check whether the value is equal the number of iterations k specified by the user. If 

the iteration variable is less than the variable k, another job is launched. Figure 8 shows the flowchart of Jacobi 

method implemented in map reduce environment. 

 

Figure 7. Pipelined Task Scheduling 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

23 
 

 

Job name  Job description Map function Reduce function 

Calculation 

x values 

Calculate the next 

approximated solution x 

Calculate x 

values 

Aggregate all result values, export into output 

and increment the number of iterations by one 

 

 

 

 

 

 

 

 

  

 

2.2.4. Stochastic SVD (SSVD) 

Stochastic SVD is a stochastic technique for computing large dimensional approximate low rank SVDs with 

rank reaching potentially into hundreds of singular values with just very few passes over data. The main use of 

SSVD is its accuracy in terms of precision and recall, but reduced computational cost. The SSVD algorithm is 

more suitable in the distributed computing environment because its computation can be parallelized easily (Yu, 

Kao, & Lee, 2016). SSVD uses at most 3 MR sequential steps (map-only + map-reduce + 2 optional 

parallel map-reduce jobs) to produce reduced rank approximation of U, V and S matrices. 

Additionally, two more map-reduce steps are added for each power iteration step if requested(Lee & 

Chang, 2013). 

 

 

The Mahout library  (Lyubimov, 2010)has the MapReduce implementation of the stochastic SVD. It contains 

five MapReduce jobs, as explained below.  

1. Q-Job: a map-only job that computes Y=AG and performs the QR decomposition of the block sub matrices of 

Y. 

2. Bt-Job: a job that merges the Q-factor in the QR decomposition, and produces the matrix BT. 

3. ABt-Job: simply computes matrix BBT. 

4. U-Job: generates U matrix upon requests. 

5. V-Job: generates V matrix upon requests. 

No 

Figure 8. Jacobi Method Implemented in Map reduce 

Figure 9. Working of SSVD 

yes 

End 

Stop? 

      Start        Job 

      Map      Reduce 
Calculate X 

values 
Shuffle 

Table 1: MapReduce Jacobi method 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

24 
 

 

The working of the SSVD implementation is explained in Figure 9. First, the Q-Job computes the QR 

decomposition and the Bt-Job generates the matrix BT. The generated Q factor and R-factor are stored in the 

QR Gram Schmidt object. Next, the AB t-Job computes the symmetric matrix BBT and stores it to an Upper 

Triangular object. Then the sequential code of eigen-decomposition of the small matrix BBT is performed, 

whose results are put in the Eigen Wrapper object. If the U-factor or and V-factor are needed, the U-Job and the 

V-Job will be invoked to compute them from the data stored in Upper Triangular and Eigen Wrapper. The idea 

of SSVD is to reduce problem dimensions by using random projection while keeping major driving factors of 

the dataset more or less intact. As a result, the problem may be reduced in size quite a bit. In terms of 

MapReduce implementation, we'd run problem projection & pre-processing using Map Reduce (bulk number 

crunching) and then solve small problem in a jiffy inside the front-end process. The trade-off is a rather heavy 

loss in precision compared to other methods. Bottom line, as such, Stochastic SVD method is unlikely suitable 

to crunch numbers for a rocket booster design but quite likely is what bulk computational linguistics needs. 

3.CONCLUSION 

To store and process large volume of data with complex datatypes, Hadoop technology help us to handle in 

efficient manner and process those data with best computational power with minimum time. Factorization is a 

mathematical concept to decompose the given matrix into two sub matrices and find the solution in an effective 

manner. In this paper we have studied elaborately about two predominant factorization techniques QR and SVD 

methods and its implementation details on Hadoop distributed file system with MapReduce technology.   

REFERENCES 

A.P.S.Aslin, J., & D.Usha (2014). A Survey of Big Data Processing in Perspective of Hadoop and MapReduce. 

International Journal of Current Engineering and Technology, 4(2). 

Barret, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., et al. (1994). Templates for the Solution 

of Linear Systems. Building Blocks for Iterative Methods . Philadelphia. 

Benson, A. R., Gleich, D. F., & Demmel, J. (2013). Direct QR Factorizations for tall-and-skinny matrices in 

MapReduce architectures. IEEE International Conference on Big Data. 

Constantine, P., & David, F. G. (2011). Tall and Skinny QR Factorizations in Map reduce architectures. 

MapReduce’11. San Jose, California, USA. 

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. In Proceedings of 

the 6th Symposium on Operating Systems Design and Implementation (OSDI2004), 137–150. 

Dr.R.Gunavathi, & P.Sudha. (2016). A Survey Paper on Map Reduce in Big Data. International Journal of 

Science and Research (IJSR). 

Gadekar, H., & P S Bhosale, p. D. (2014). A Review Paper on Big Data and Hadoop. International Journal of 

Scientific and Research Publications, 4(10). 

HuangLan, Xiao-wei, W., ZhaiYan-dong, & Bin, Y. (2009). Extraction of User Profile Based on the Hadoop 

Framework. WiCOM'09 Proceedings of the 5th International Conference on Wireless communications. 

Beijing, China . 

Kacamarga, M. F., Pardamean, B., & Baurley, J. (2014). Comparison of Conjugate Gradient Method and Jacobi 

Method Algorithm on MapReduce Framework. Applied Mathematical Sciences, 8(17), 837 – 849. 

Lee, C. R., & Chang, Y. F. (2013). Enhancing Accuracy and Performance of Collaborative Filtering Algorithm 

by Stochastic SVD and Its MapReduce Implementation. IEEE 27th International Symposium on Parallel 

&Distributed Processing Workshops. 

Lyubimov, D. (2010). MapReduce QR decomposition MapReduce SSVD Working Notes . 



 

International Journal of Computational Intelligence and Informatics, Vol. 7: No. 4, March 2018 

 

25 
 

Yu, S. C., Kao, Q.-L., & Lee, C.-R. (2016). Performance Optimization of the SSVD Collaborative Filtering 

Algorithm on MapReduce Architectures. IEEE 14th Intl Conf on Dependable, Autonomic and Secure 

Computing. 

Zhao, S., Li, R., Tian, W., Xiao, W., Dong, X., Liao, D., et al. (2014). Divide-and-conquer approach for solving 

singular value decomposition based on MapReduce. Concurrency and Computation: Practice And 

Experience. 

 

 

 

 

 

 

 

 


