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Abstract— Cooperative Positioning (CP) in VANET is mainly for road safety applications such as 
cooperative collision warning system etc. CP is an approach for location determination within wireless 
adhoc sensor networks. The goal of CP is to allow neighbor nodes to work together to collectively improve 
the accuracy of their positions. Although this technique is well known, the efficiency of CP under real 
world scenario is not considerable. So in our paper, we propose a technique to increase the efficiency of 
CP. This technique includes the formation of range vector, extended range matrix and also calculates the 
accurate position of a vehicle using the trilateration method. Our results demonstrate that, even under 
dense traffic conditions, these protocol improvements achieve a twofold reduction in packet loss rates and 
increase the positioning accuracy of CP by 10-15%.  

Keywords- Cooperative Positioning (Cp), Positioning Accuracy Improvement, Range Vector, Extended Range 
Matrix. 

I. INTRODUCTION 

Nowadays we are facing more road accidents due to lack of predicting near-by vehicles range. The industry 
is developing its idea on advanced crash warning system for drivers to give alert messages. This system 
exchanges the speed, location and other kinematic informations periodically for predicting potential crashes. 
Accurate positioning is the key element in these systems because inaccuracy will cause either false alarms or 
failure to warn a driver during an emergency. 

Radio-ranging-based Cooperative Positioning (CP) has been considered as one of the promising approaches 
for improving GPS positioning accuracy. Such CP is attractive for vehicular networks, because the required 
ranging (or the intervehicle distance) information can readily be measured from the periodic exchange of 
location information that is used for the crash warning system. If a group (cluster) of vehicles can share with 
each other their intervehicle distance measurements through the Dedicated Short-Range Communications 
(DSRC) links, they can then use existing CP algorithms based on multilateration or trilateration principles to 
further improve their current position estimates. The objective of this paper is to improve the positioning 
accuracy. The key contribution is as follows, It is demonstrated that the framework that is used by existing 
distributed CP algorithms are limited, because they cannot make use of all range information that is received by 
a vehicle due to the strict clustering rule. An extension to the existing CP framework is proposed to make more 
efficient use of all exchanged range information, therefore improving the performance of CP. 

II. RELATED WORK 

In our scheme, a vehicle requiring more accurate position has to broadcast its own position to all its 
neighbours. Then each vehicle calculates the intervehicle distance to its one-hop neighbours. Using this 
information each vehicle forms a range vector and broadcast it. Then each vehicle has to identify the cluster to 
which it belongs. Further an extended range matrix is build and a vehicle’s accurate position is calculated by 
using the trilateration method. In a fast-moving VANET environment, the instant acquisition of positions of 
neighbor vehicles is particularly important for safety applications, e.g., Cooperative Collision Warning (CCW). 
For example, when an impending hazard ahead is reported, CCW needs the surrounding vehicles’ positions and 
kinematics information to make the decision to warn the driver to change lane or apply brakes. In wireless 
sensor and ad hoc networks, there are several works that address the problem of simultaneously localizing a 
group of nodes that form a cluster [10]. The cluster-based CP methodology has been extended to VANET 
localization. The cluster-based CP approach is also based on intervehicle distance measurements. Each vehicle 
constantly measures the distances to their neighbors using radio-ranging techniques. Then, vehicles exchange 
their own states, i.e., vehicle kinematics, GPS measurements, and intervehicle range estimates, in the 
neighborhood. Based on this information, each vehicle executes CP algorithms to estimate the positions for the 
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entire cluster of vehicles using popular data fusion techniques such as Least Mean Square Error (LMSE), 
Kalman filter, extended Kalman filter, and particle filter. 

III. COOPERATIVE POSITIONING IN VEHICULAR ADHOC NETWORKS 

The CP process relies on the following two pieces of information: 1) the unknown or rough estimated 
positions (e.g., from the GPS) and 2) the kinematics information of the neighbour vehicles and inter vehicle 
distance measurements among these vehicles. The CP framework in vehicular networks is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. CP framework 

 
CP in VANETs is a three-step distributed process, including range and kinematics information 

measurements, information exchange, and the final localization.  

Range vector of x: RVx= {Db,x , Dc,x , Dd,x ,De,x} 

 
(a) 

 

            Db,b  Dc,b  Dd,b  Dx,b 

                                                Range Matrix Dx=    Db,c  Dc,c  Dd,c  Dx,c 

            Db,d  Dc,d  Dd,d  Dx,d 

           Db,e  Dc,e  Dd,e  Dx,e 

 

 
(b) 

Figure 2. Measurement and exchange of range information. (a) Maintaining the range vector. (b) Creating the range  matrix after the RV 
exchange. 

A.  Measurement Phase 

The primary task in the measurement phase is for each vehicle to collect the following data: 1) its kinematics 
information and 2) distance measurements to its one-hop neighbors. A vehicle can readily measure its 
kinematics information, such as position estimates, heading, velocity, and acceleration, from the GPS or 
onboard kinematics sensors. For distance measurements upon receiving a packet from a neighbor, vehicles can 
estimate the distance to the neighbor using these ranging techniques. For example , vehicle x in Fig. 2 (a) 
estimates the distances between itself and neighbors b, c, d, and e after receiving the packets from them. The 
outcome of the measurement phase is the Range Vector (RV), which consists of the collection of the range 
information to all neighbors. 
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B. Exchange Phase 

In this phase, each vehicle broadcasts its own RV and kinematics information to its one-hop neighbours. To 
share range information in the neighborhood, each vehicle periodically broadcasts RV. The received RVs and 
kinematics information form the inputs to the localization process. 

C. Localization Phase 

In the localization phase, a distributed CP algorithm is employed to generate more accurate position 
estimates of neighbor vehicles within a cluster. A cluster is a set of vehicles in which all intervehicle distance 
measurements are known. Each vehicle learns its own cluster from the received RVs. Fig. 2(b) shows a typical 
example of the clustering. Assume that vehicles b, c, d, and x are within each other’s transmission range. During 
the measurement phase, each vehicle learns the distance between itself and other vehicles. Thus, after the 
exchange phase is done, x receives all RVs from each of the neighbors. Because all range measurements 
between b, c, d, and x are known to x, it identifies the cluster of four vehicles. Similarly, b, c, and d can identify 
the same four-vehicle cluster. Note that, in this example, although x can receive the RV from the extra vehicle e, 
e is not in x’s cluster, because e is outside the transmission ranges of vehicles b and c. For e, the cluster that is 
detected only consists of the following three vehicles: 1) e; 2) d; and x. After the cluster has been determined, 
the range measurements within the cluster form the extended  range matrix D as shown in Fig. 3. 

 

                                Db,b  Dc,b  Dd,b  Dx,b  n/a 

                  Db,c    Dc,c  Dd,c  Dx,c   n/a 

                                                                            Db,d  Dc,d  Dd,d  Dx,d  De,d 

                 Db,x  De,x  Dd,x  Dx,x  Dd,x 

                  n/a    n/a   Dd,e   Dx,e  De,e 

 
                     Figure 3. Extended   range   matrix. 

 
The extended range matrix and the reported vehicles’ kinematics are then fed as inputs into the CP 

algorithm. The idea is to improve the position estimates of each vehicle using these inputs based on 
multilateration or trilateration principles.  

IV. SIMULATION SCENARIO 

Our simulations are run using the ns-2 simulator. To simulate realistic wireless communications, we have 
used the latest version (v2.34) of ns-2. We simulated a triangular shaped loop road with three lanes consist of 30 
nodes. At the beginning of the simulation each node will be at a particular position and starts to move towards 
the destination at 0.5s. We assume that vehicles will not change their lanes and directions during the 
simulations. The simulation time for each run is 240s. In Fig. 4 Each node broadcast its own range range vector 
to its one-hop neighbour. After receiving the RV packets from other neighbor vehicles, each vehicle constructs 
its range matrix to run the CP algorithm. For this approach, a vehicle first needs to identify to which cluster it 
belongs. Recall that a cluster is a group of vehicles in which all pairwise intervehicle distance measurements are 
known. Note that a vehicle may simultaneously belong to multiple clusters, as shown in Fig. 5. Depending on 
the number of vehicles and the relative positions of the vehicles within a cluster, the positioning accuracies 
provided by different clusters are different. Hence, to select the cluster that achieves the best positioning 
performance, all candidate clusters need to be identified and compared as shown in the Fig. 5. 

 

  D x   = 



 

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 2, July – September 2014 

 

4 

 

 

 

 
Figure 4. Broadcasting range vector 

 
The pseudo code of a simple algorithm to identify the clusters used in our simulations is listed in Algorithm 

1. After identifying all available clusters, the positioning accuracy that is achieved by each cluster is evaluated 
(as discussed in Section III-E) and compared. The best positioning accuracy is recorded for the vehicle.  

 

Algorithm 1: Pseudo code for identifying clusters of vehicle x. 

 

1: Input: The neighbour set NSx and the set of received ranging 

    Vectors RVi, i ∈ NSx. 

2: Output: The set of identified clusters C. 

3: Initialization: 

4: C = NULL; 

5: n = #of neighbor vehicles detected by x; 

6: The index n + 1 is used to represent x itself; 

7: /*Finding the neighbour vector for each vehicle.*/ 

8: for i ∈ {1, 2, . . . , n + 1} do 

9: Vi = NULL; 

10: for j ∈ {i + 1, . . . , n + 1} do 

11: if Di,j ∈ RVj or Dj,i ∈ RVi then 

12: Add j to Vi; 

13: Add i to Vj ; 

14: end if 

15: end for 

16: end for 

17: /*for each neighbours, find the largest cluster to which it belongs.*/ 

18: for i ∈ {1, 2, . . . , n} do 

19: initSet = Vi ∩ Vn+1; 

20: Clustertemp = initSet; 

21: for each vehicle k in initSet do 

22: if k ∈ Clustertemp then 

23: Clustertemp = Vk ∩ Clustertemp; 

24: end if 

25: end for 

26: if Clustertemp =∈ C then 

27: Add Clustertemp to C; 

28: end if 

29: end for 
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Figure 5. Cluster identification 

 

V. SIMULATION RESULTS 

Fig. 6 shows the Packet Delivery Ratio (PDR) when each node broadcast its own range vector. PDR is the 
ratio of sent and received packets. The PDR of each broadcast packet is calculated as the ratio between the 
number of neighbor vehicles that receive the packet and the total number of neighbours that exist in a vehicle’s 
transmission range. 

 

 

Vehicles Density 

 
Figure 6.  PDR during RV exchange 

 

Normally, the Performance Accuracy Gain (PAG) reaches peak at the ideal conditions. (loss-less 
communication) . Our aim is to achieve that gain level. 

Fig. 7 shows that, because of the efficient utilization of all received range information the extended cluster 
constantly achieves a 10%–15% improvement in positioning accuracy compared with the cluster. The graph 
shows the Performance Accuracy Gain (PAG) under Extended-cluster-ideal, Extended-cluster-realistic and 
cluster realistic.  
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Vehicle Density 

 

Figure 7.  Performance of Extended-cluster-realistic 

VI. CONCLUSION 

We have examined the issue of CP in vehicular wireless network. As mentioned, we have increased the 
efficiency of CP by 10% - 15%. We have found that, unless we find efficient ways of exchanging large amounts 
of range information over the congested vehicular communication channel, CP may not provide a viable option 
to increase positioning accuracy. So to overcome the issues of communication overhead simple protocol 
improvements like piggyback, compression and network coding can be done as the further enhancement.  
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