

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April

ISSN: 2349 - 6363

Quick and Efficient Approach for

Chellammal Surianarayanan and Gopinath Ganapathy

chelsrsd@rediffmail.com

Abstract-A two-step indexing based method which indexes services by their ontologies is proposed for
efficient and quick semantic service discovery. In first step, for a given service request, a set of candidate
services are chosen from the index by matching the ontologies of the request with the keys of index. In
the second step, the request is semantically matched with candidate
services ranked by their similarity score. The indexing of services helps in eliminating the irrelevant
services of a request. Semantic matching will be performed only to candidate services rather than all
available services. From experimentation, it is found that the proposed method quickens service
discovery by an average elimination of irrelevancy of 9
measures such as ‘service loading time’ and ‘service
and service matching time of the proposed method are significantly reduced to 1
seconds when compared to sequential m
matching time of 577.7 seconds and 353
which indexes services by outputs, the proposed work exhibits excellent recall and precision

Keywords- indexing based service discovery, indexing by ontologies, service discovery

In Service Oriented Computing (SOC), complex business transactions are
composition where atomic services are
In real time applications, manual discovery is complex due to the existence of huge number of
Web. So, services should be automatically discovered and combined. Service description languages such as
Service Description Language (WSDL)
automate service discovery, services are described using
and discovery bring in maximum automation in
its accuracy, semantic discovery consumes huge time
semantic relations such as equivalent, subsumes, plug
Ontology reasoner such as Pellet is used to find the semantic relations between concepts
framework, there are two major components namely,
matching algorithm discovers matched se
transaction involves multiple services to be composed in complex chain
become critical needs in service composition based applications
introduced either in semantic reasoner or in
architecture of a reasoner, the second method is extensively used. Predominantly used techniques for
optimization at matcher include clustering [

In this work, a two-step inverted indexing based
proposed for efficient and quick semantic
candidate services which have ontologies same as that of
services are indexed by their ontologies
considered as irrelevant to the request
semantically matched with candidate services to
are ranked by their similarity score.

In the existing indexing based service discovery
used as keys of index and each key is linked to a list of services that contain that key. This is shown in Fig 1. For

Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

Quick and Efficient Approach for Semantic Service Discovery
Ontology based Indexing

Chellammal Surianarayanan and Gopinath Ganapathy
School of Computer Science and Engineering

Bharathidasan University
Tiruchirappalli, TN, 620 024, India

chelsrsd@rediffmail.com, gganapathy@gmail.com

step indexing based method which indexes services by their ontologies is proposed for
service discovery. In first step, for a given service request, a set of candidate

services are chosen from the index by matching the ontologies of the request with the keys of index. In
the second step, the request is semantically matched with candidate services to find
services ranked by their similarity score. The indexing of services helps in eliminating the irrelevant
services of a request. Semantic matching will be performed only to candidate services rather than all

rvices. From experimentation, it is found that the proposed method quickens service
discovery by an average elimination of irrelevancy of 92%. The time characteristics are analyzed

loading time’ and ‘service matching time’. The average service loading time
time of the proposed method are significantly reduced to 18

seconds when compared to sequential method which has average service loading time and service
seconds and 353.4 milli seconds respectively. When compared to the method

which indexes services by outputs, the proposed work exhibits excellent recall and precision

indexing based service discovery, indexing by ontologies, service discovery, semantic similarity

I. INTRODUCTION
In Service Oriented Computing (SOC), complex business transactions are implemented using

composition where atomic services are discovered and combined in a specific pattern to achieve the given need.
manual discovery is complex due to the existence of huge number of

automatically discovered and combined. Service description languages such as
Service Description Language (WSDL) cannot be used for automatic service discovery as it is syntactic

, services are described using semantic languages such as [3-4]
automation into semantic discovery with sufficient accuracy [

its accuracy, semantic discovery consumes huge time due to reasoning process[6-8] which is performed to find
equivalent, subsumes, plug-in and fail that exist among various concepts of services

Ontology reasoner such as Pellet is used to find the semantic relations between concepts
components namely, service matcher and ontology reasoner. The matcher

discovers matched services of a query with the help of reasoner. Further,
transaction involves multiple services to be composed in complex chain. So, ‘performance’ and ‘scalability’
become critical needs in service composition based applications. To meet the critical needs, o
introduced either in semantic reasoner or in service matcher or in hybrid. As the first one is dependent on the

reasoner, the second method is extensively used. Predominantly used techniques for
clustering [9-16] caching [17] and indexing.

step inverted indexing based approach which indexes services by their ontologies is
and quick semantic service discovery. In first step, for a given service request, a set of

candidate services which have ontologies same as that of request are chosen from a service
services are indexed by their ontologies . Here, services which have ontologies different from that of

to the request and such services are eliminated. In the second step, the service request is
semantically matched with candidate services to obtain matched services of the request.

II. MOTIVATION
In the existing indexing based service discovery approaches [18-20], the output parameters of services are

used as keys of index and each key is linked to a list of services that contain that key. This is shown in Fig 1. For

June 2012

51

Semantic Service Discovery using

step indexing based method which indexes services by their ontologies is proposed for
service discovery. In first step, for a given service request, a set of candidate

services are chosen from the index by matching the ontologies of the request with the keys of index. In
find a list of matched

services ranked by their similarity score. The indexing of services helps in eliminating the irrelevant
services of a request. Semantic matching will be performed only to candidate services rather than all

rvices. From experimentation, it is found that the proposed method quickens service
%. The time characteristics are analyzed using

. The average service loading time
8.91 seconds 38.7 milli

ethod which has average service loading time and service
milli seconds respectively. When compared to the method

which indexes services by outputs, the proposed work exhibits excellent recall and precision.

semantic similarity.

implemented using service
combined in a specific pattern to achieve the given need.

manual discovery is complex due to the existence of huge number of services in the
automatically discovered and combined. Service description languages such as Web

as it is syntactic [1-2]. To
]. Semantic description

cient accuracy [5]. Regardless of
which is performed to find

various concepts of services.
Ontology reasoner such as Pellet is used to find the semantic relations between concepts. In any discovery

service matcher and ontology reasoner. The matcher is a
with the help of reasoner. Further, any business

‘performance’ and ‘scalability’ have
the critical needs, optimization is

one is dependent on the
reasoner, the second method is extensively used. Predominantly used techniques for

which indexes services by their ontologies is
r a given service request, a set of

are chosen from a service index in which
. Here, services which have ontologies different from that of request are

. In the second step, the service request is
 The matched services

, the output parameters of services are
used as keys of index and each key is linked to a list of services that contain that key. This is shown in Fig 1. For

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

52

example, the key, ‘http://127.0.0.1/ontology/concept.owl#_price’ is linked to a list of three services namely, s2, s5
and s8. These three services contain ‘http://127.0.0.1/ontology/concept.owl#_price’ as one of their outputs.

Figure 1. Indexing of services by their output parameters.

When a request (or query) is submitted, for every output parameter of the request if it exists as a key of index,
the method retrieves the services linked by that key. Here, the method performs a key-word based matching to
check any of output parameter of the request exists as key of the index. As the method uses key-word based
(syntactic) method for matching, it cannot detect matched services for a request if the matched service contains
subclass or super class of a key as its output parameter(rather than the output parameter itself). The following
example illustrates how the method fails to detect potential matches when the request contains super class or sub
class of an output parameter instead of the parameter itself. Consider an advertised service, A which has an
output parameter, ‘http://127.0.0.1/ontology/concept.owl#_price’. Let a service request, R search for a service
which offers an output parameter, ‘http://127.0.0.1/ontology/concept.owl#_amount’, defined as the super class of
‘http://127.0.0.1/ontology/concept.owl#_price’. Now, as the matching method performs a key-word based
matching, it fails to detect A as a matched service for R. Though the index contains
‘http://127.0.0.1/ontology/concept.owl#_price’ which is a sub class of ‘http://127.0.0.1/ontology/concept.owl
#_amount’, the matching method cannot detect the service linked by
‘http://127.0.0.1/ontology/concept.owl#_price’ as the method does not consider the semantic relations between
the concepts of services. With same argument, it can be understood that when a service request contains super
class of a key, the method will fail to detect matched services. Hence, in the proposed work, all the available
advertised services are indexed by their ontologies. Ontologies of services are used as keys as in Fig. 2.

Figure 2. Indexing of services by their ontologies.

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

53

For any service request, the method compared the ontologies of service request with the keys of the index for
any match. If the method finds a matched key, then it retrieves all the services linked by the key. Consider a
request R which searches for a service offer with an output, ‘http://127.0.0.1/ontology/concept.owl#_amount’,
defined as a super class of ‘http://127.0.0.1/ontology/concept.owl#_price’. The matching method checks whether
the ontology ‘http://127.0.0.1/ontology/concept.owl’ does exist as key of the index using key-word based
matching. From Fig.2 it is found that for the request R, the proposed method of indexing retrieves s2, s5, s8, and
s19 as a list of services linked by the key. This list of services is referred to as candidate services and only these
services are chosen for employing semantic matching of Input-Output (IO) capabilities with the request.

III. RELATED WORK
Indexing based service discovery has been handled by approaches such as [18-20]. These methods use

inverted indexing to rapidly remove irrelevant services and locate the suitable services quickly. But the above
methods use output parameters of services as ‘key’ of the index. When a service request is submitted, the
matching method can rapidly locate the services with required outputs from the index by comparing the outputs
of request with key of index. This method retrieves the services having outputs which are exactly same as the
outputs of the request. The existing methods fail to detect services when services contain ‘sub-type’ or ‘super
type’ of the required outputs instead of the outputs itself.

An alternate indexing approach is proposed for quick and efficient service discovery which differs from
existing approaches in three aspects. Firstly, it indexes the services by their ontologies and not by their output
parameters. This indexing helps in retrieving a set of candidate services which have the same ontology as that of
service request, ignoring all other advertised services as irrelevant. Secondly, the proposed method handles
various patterns of service request which may be simply a set of inputs or a set of outputs or combinations of
both. Thirdly, for a given service request, the proposed method produces a list of matched services ranked by
their semantic similarity score.

IV. PROPOSED APPROACH
A two-step indexing based approach which indexes the services by their ontologies is proposed for quick and

efficient service discovery. The method includes two steps, namely ‘finding candidate services’ and ‘finding
matched services’. In the first step, a set of candidate services having ontologies same as that of the given query
is identified. In the second step, each candidate service is matched with the query semantically to find a list of
matched services. The rest of this section describes the definitions used in the proposed approach and its two
steps elaborately.

A. Definitions

It is assumed that web services are described using Web Ontology Languages for Services (OWL-S),
published and available as advertised services. An advertised service is denoted by A . Let A contain k input

parameters denoted by (1)a
ji j k≤ ≤ , l output parameters denoted by (1)a

jo j l≤ ≤ . Let onta refer to all

ontologies of A. A service request is denoted by R. Let R contain n input parameters denoted by (1)r
ii i n≤ ≤ and

m output parameters denoted by (1)r
io i m≤ ≤ . Let ontr refer to all ontologies of R. A candidate service, C

represents an advertised service which has same ontologies as that of a given request and it is a candidate chosen
for matching service capabilities semantically with the request. Let C contain u input parameters denoted by
(1)c

ii i u≤ ≤ and v output parameters denoted by (1)c
io i v≤ ≤ . Let ontc refer to all ontologies of C and ont outc r=

for a given R.

B. Finding Candidate Services

In any semantic service discovery mechanism, one of the basic criteria to be fulfilled is that the ontologies
used in a service request should match with the ontologies used in an advertised service. This means that if a
service request expresses its inputs and outputs using ontology, say
“http://www.amazon.com/ontology/books.owl”, then semantic matching can be performed to such advertised
services which also express their semantics using the same ontology,
“http://www.amazon.com/ontology/books.owl”. Hence, while matching, the first check to be done is to find
whether the ontologies in a service request and an advertised service are same. If they are not same, then the
advertised service becomes an irrelevant service to the service request. The services which satisfy the ontology
check are candidate services.

C. Finding Matched Services

In this step, the given service request is matched with each candidate service to find whether a candidate
service is similar to the request. The similarity between a request, R and a candidate service C denoted by

(,)Sim R C is computed as the sum of normalized input and output similarities between R and C. Let (,)InSim R C

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

54

denote the normalized input similarity between R and C. Let (,)OutSim R C denote the normalized output
similarity between R and C. Now, the value of (,)Sim R C is computed using (1).

 (,) (,) (,)Sim R C InSim R C OutSim R C= + (1)

To illustrate the computation of (,)OutSim R C , consider R with two output parameters and C with three output
parameters. The output parameters of R are denoted by 1

ro and 2
ro . The output parameters of C are denoted by1

co ,

2
co and 3

co . While computing output similarity, each output parameter of R is matched with every output

parameter of C. For example, the possible pairs of matches for1
ro are 1 1(,)r co o , 1 2(,)r co o and 1 3(,)r co o . Let

1 1(,)r cDoM o o , 1 2(,)r cDoM o o and 1 3(,)r cDoM o o denote the DoM of 1
ro with various parameters of 1

co . The degree of

match of 1
ro with all output parameters of C is given as 1 1 1 2 1 3{ (,), (,), (,)}r c r c r cMax DoM o o DoM o o DoM o o . Similarly, the

possible pairs of matches for 2
ro are 2 1(,)r co o , 2 2(,)r co o and 2 3(,)r co o and the degree of match of 2

ro with all the output

parameters of C is given as 2 1 2 2 2 3{ (,), (,), (,)}r c r c r cMax DoM o o DoM o o DoM o o . The normalized output similarity between
R and C is obtained by adding the individual maximum values and dividing the sum by the number of output
parameters of R. That is, the value of (,)OutSim R C is computed using (2).

 1 1 1 2 1 3 2 1 2 2 2 3

1
(,) ({ (,), (,), (,)} { (,), (,), (,)})

2
r c r c r c r c r c r cOutSim R C Max DoM o o DoM o o DoM o o Max DoM o o DoM o o DoM o o= × + (2)

In (2), (,)r c
i jDoM o o denotes the Degree of Match between ith output parameter of R and jth output parameter of

C. The value of (,)r c
i jDoM o o is computed based on the semantic relations between the parameters. Various

semantic relations and DoM s are defined below. Based on theDoM , a score value to represent the level of
similarity is assigned.

Exact: If the type of r
io is equivalent to the type of cjo , then the match is exact and a score of 1 is assigned.

Plug-in: If the type of r
io is the subtype ofc

jo , then the match is plug-in and a score of 0.75 is assigned.

Subsumes: If the type of c
jo is a subtype ofr

io , then the match is subsumes and a score of 0.5 is assigned.

Fail: if the type of r
io is different from that of c

jo , then the match is fail and a score of 0.0 is assigned.

Further, the computation of (,)InSim R C is similar to the computation of (,)OutSim R C . After computing the
similarity score between R and each C, a list of candidate services for which the similarity with R is greater than a
minimum value (decided by application) are returned as matched services. Further, the matched services are
returned as a sorted list ranked by their similarity score.

V. EXPERIMENTATION
The proposed approach is implemented with the experimental setup shown in Fig. 3.

Figure 3. Experimental Setup.

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

55

There are two objectives of experimentation. The first objective is to find computation time of the proposed
approach and to compare it with existing approaches. The second objective is to find the accuracy of the results
obtained using the proposed approach and to compare it with that of existing approaches. To carry out the
experiments, typical test data of 100 OWL-S web services has been constructed using services from publicly
available OWL-TC version-3 test collection. The services and their ontologies are deployed in Xampp server.
An index of services is created with ontologies of services as keys in Excel. Ten service requests covering the
various patterns of service request are chosen as ‘test queries’. The test queries and their ontologies are given in
Table I.

TABLE I. TEST QURIES AND THEIR ONTOLOGIES

Test Query Ontologies used by the test queries Description

Q1 r
mo =(#_Author) http://127.0.0.1/ontology/books.owl Query with one

output

Q2 r
mo =(#_Comedyfilm, #_Actionfilm) http://127.0.0.1/ontology/my_ontology.owl Query with two

outputs
Q3 r

mo =(#_Report, #_Coffee, #_Tea) http://127.0.0.1/ontology/Mid-level-ontology.owl Query with three
outputs

Q4 r
ni =(#_Title) http://127.0.0.1/ontology/books.owl Query with one

input
Q5 r

ni =(#_Geopolitical-entity,

#_Geopolitical-entity1)

http://127.0.0.1/ontology/portal.owl Query with two
inputs

Q6 r
mo =(#_Amount)

r
ni =(#_ThreeWheeledCar)

http://127.0.0.1/ontology/concept.owl
http://127.0.0.1/ontology/my_ontology.owl

Query with one
output and one
input

Q7 r
mo =#_Funding

r
ni =(#_Weapon, #_Missile,

#_Government)

http://127.0.0.1/ontology/SUMO.owl
http://127.0.0.1/ontology/Mid-level-ontology.owl

Query with three
inputs and one
output

Q8 r
mo =(#_SkilledOccupation,

#_TimeDuration)
r
ni =(#_Country)

http://127.0.0.1/ontology/Mid-level-ontology.owl
http://127.0.0.1/ontology/SUMO.owl
http://127.0.0.1/ontology/portal.owl

Query with two
outputs and one
input

Q9 r
mo =(#_Price, #_TaxedPrice,

#_StockMarket)
r
ni =(#_PreparedFood)

http://127.0.0.1/ontology/concept.owl
http://127.0.0.1/ontology/Mid-level-ontology.owl

Query with three
outputs and one
input

Q10 r
mo =(#_Sandwich)

r
ni =(#_GroceryStore, #_Quantity)

http://127.0.0.1/ontology/Mid-level-ontology.owl
http://127.0.0.1/ontology/support.owl

Query with one
output and two
inputs

The computation time of the proposed approach is analyzed using three evaluation measures namely, number

of services to be loaded, service loading time and service matching time. Experiments are performed on a
Laptop with Intel Pentium(R) Dual-Core, 2.20GHz CPU, 3.0 GB memory and Windows 7 Ultimate Operating
System. The implementation is performed using J2EE environment.

Three experiments are conducted using three different methods, namely sequential method (without
indexing), proposed approach (which uses indexing of service by their ontologies) and method which uses
indexing of services by their outputs. The first experiment is conducted using sequential approach. Let Ns denote
the number of services to be loaded in sequential method, l

st denote time required to load the services and their

ontologies into the reasoner (known as service loading time) in sequential mode, mst denote the time required to

match the service request with the available services (known as service matching time) and u
st denote time

required to unload the services from reasoner(known as service unloading time). The second experiment is
conducted using the proposed approach. Let Np denote the number of services to be loaded in the proposed
approach, lpt denote the service loading time of the proposed approach, m

pt denote the service matching time of

the proposed approach and u
pt denote the service unloading time of the proposed approach. The third experiment

is conducted using a standard indexing approach which indexes services by their output parameters. For
simplicity, the third method is referred to as output based indexing method. Let No denote the number of services
to be loaded in the output based indexing method. Let l

ot denote the service loading time of the output based

indexing method. Let mot denote the service matching time of the output based indexing method and uot denote

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

56

the service unloading time of the output based indexing method. The values of Ns, l
st , m

st , u
st , Np,

l
pt , m

pt , u
pt ,

No, l
ot , m

ot and u
ot are computed for different test queries and given in Table II.

TABLE II. TIME CHARACTERISTICS OF SEQUENTIAL, PROPOSED AND OUTPUT BASED INDEXING METHODS

Ns Np No
l
st (sec) l

pt (sec)
l
ot

(sec)

m
st

(milli
sec)

m
pt

(milli sec)

m
ot

(milli
sec)

u
st

(milli
sec)

u
pt

(milli
sec)

u
ot

(milli
sec)

Q1 100 8 2 547 5.3 1.4 223 32 31 16 0 0

Q2 100 5 2 583 5.0 2.9 312 47 30 0 0 0

Q3 100 7 5 589 27.5 22.5 390 48 32 16 0 0
Q4 100 8 0 529 6.9 0 265 32 0 0 0 0
Q5 100 10 0 541 15.9 0 285 46 0 0 0 0

Q6 100 12 0 622 20 0 390 32 0 15 0 0

Q7 100 1 1 599 4.1 4.1 484 16 16 16 0 0

Q8 100 1 1 590 6.4 6.4 374 16 16 16 0 0

Q9 100 24 18 593 86 70 468 84 79 16 0 0

Q10 100 4 0 584 12 0 343 32 0 0 0 0

From Table II, it is found that in sequential method, to find matched services of any service request, all the

available advertised services are loaded and matching process has to be carried out for all the services. Hence in
experiment-1, all the hundred services of the test collection are loaded. From experiment-2, it is found that
ontology based indexing achieves a reduction in number of services to be loaded by 92% and from experiment-3,
it is observed that the output based indexing method achieves a reduction in number of services to be loaded by
97.1%. In experiment-2, the services which use the ontologies of the given request will be loaded. The number
of services loaded in experiment-2, i.e. Np is always equal to or greater than No . Hence, the output based
indexing method achieves greater reduction in number of services to be loaded for a request.

Regarding service loading time, sequential method needs an average service loading time of 577.7 seconds

whereas the proposed method needs an average service loading time of 18.91 seconds and output based indexing
method takes an average service loading time of 10.73 seconds. As all test services are loaded for matching,
sequential method takes the highest time for loading when compared to the proposed method and output based
indexing method. Further, as Np is always equal to or greater than No, the service loading time of the proposed
method is higher than that of output based indexing method.

It is found that the average matching time of sequential method, proposed method and output based indexing

method is 353.4 milli seconds, 38.7 milli seconds and 20.4 milli seconds respectively. From the above
experiments, it is very clear that loading services into reasoner consumes huge time. The time taken by the
sequential method is more (few hundred of milli seconds) when compared to other two methods (few tens of milli
seconds). Further, though the service loading time is slightly more for the proposed method when compared
matching time, the service matching time of the proposed method and output based indexing method are of the
order of few tens of milli seconds. It is also observed that the service unloading time is negligible.

Another analysis has been carried out using two evaluation measures recall and precision to find how accurate

the proposed method is in finding the matched services for test queries. For analysis purpose, an advertised
service is considered as relevant or similar to a service request if its normalized similarity score with the request is
equal to or more than 0.5. This is chosen because any dynamic web service composition process involves a huge
collection of services and it demands only highly compatible matches for a given service request. For each test
query, the values of various parameters, namely, Actual Number of Relevant services present in the test data
(ANR), number of services retrieved using sequential method (NRs), number of relevant services retrieved using
sequential method (NRRs), number of services retrieved using proposed method (NRp), number of relevant
services retrieved using proposed method (NRRp), number of services retrieved using output based indexing
method (NRo), number of relevant services retrieved using output based indexing method (NRRo), recall of
sequential method (Rs), recall of proposed method (Rp), recall of output based indexing method (Ro), precision of
sequential method (Ps), precision of proposed method (Pp) and precision of output based indexing method (Po)
are calculated and given in Table III.

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

57

TABLE III. RECALL AND PRECISION VALUES OF SEQUENTIAL, PROPOSED AND OUTPUT BASED INDEXING METHODS

ANR NRs NRRs NRp NRRp NRo NRRo
Rs

(%)
Rp

(%) Ro(%) Ps
(%)

Pp
(%)

Po
(%)

Q1 2 2 2 2 2 2 2 100 100 100 100 100 100

Q2 4 4 4 4 4 4 4 100 100 100 100 100 100

Q3 1 4 1 4 1 1 1 100 100 100 25 25 25

Q4 3 3 3 3 3 0 0 100 100 0 100 100 0

Q5 1 1 1 1 1 0 0 100 100 0 100 100 0

Q6 4 8 4 8 4 0 0 100 100 0 50 50 0

Q7 1 1 1 1 1 1 1 100 100 100 100 100 100

Q8 1 1 1 1 1 1 1 100 100 100 100 100 100

Q9 2 6 2 6 2 2 2 100 100 100 33 33 33

Q10 2 2 2 2 2 0 0 100 100 0 100 100 0

From Table III, it is found that the average recall of sequential method, proposed method and output based

indexing method are 100%, 100% and 60 % respectively. The average precision of sequential method, proposed
method and output based indexing method are found to be 80.8%, 80.8% and 45.8 % respectively.

The recall and precision graphs of the three methods are given in Fig. 4 and Fig. 5 respectively.

Figure 4. Recall of proposed, sequential and output based indexing methods.

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

58

Figure 5. Precision of proposed, sequential and output based indexing methods.

From Table III, it is found that the output based indexing method has precision and recall as 0 for queries Q4,
Q5, Q6 and Q10. When it is analyzed with service description files, the queries Q4 and Q5 did not contain any
output parameters and the output based indexing method is failed to detect Q4 and Q5. Further, the method failed
to detect Q6 and Q10 because those queries did not contain the outputs but the subtypes of outputs. But all the
above queries are handled efficiently by the proposed method. The average precision of sequential method and
the proposed method is found to be the same (80.8%). The reduction is precision is due to the reason that the
proposed similarity computation considers plug-in matches also into account.

VI. CONCLUSION
An inverted indexing based approach is proposed as an optimization solution to semantic service discovery.

The method is unique in using ontologies of services as keys of index. The method has been implemented and
evaluated for its performance using different measures. By experimenting with a typical test data, it is found that
the method outperforms both sequential matching method and output based indexing method. It achieves a
significant reduction in number of services to be loaded which leads to an appreciable reduction in service
loading time and service matching time. Though the proposed approach achieves greater time reduction using
indexing when compared with sequential method, still it performs semantic matching of functional capabilities to
candidate services during querying. It is planned to avoid the task of performing semantic matching to candidate
services (during querying) by using an enhanced method of indexing. In the enhanced indexing, two indices, one
with output parameters of services as keys and other with input parameters of services as keys are created and
maintained. Also, key should be linked to all services having parameters which are semantically related to the
key through equivalent, subsumes, plug-in matches.

REFERENCES
[1] Kaarthik Sivashanmugam, John A Miller, Amit P. Sheth, Kunnal Verma, “Framework for Semantic Web Process Composition”,

International Journal of Electronic Commerce, M.E. Sharpe Inc publishers, 2005, Vol 9. Issue 2 (Number 2/Winter 2004-5), pp. 71-
106.

[2] Tanveer Syeda-Mahmood, Gauri Shah, Rama Akkiraju, Anca-Andrea Ivan, Richard Goodwin, “Searching Service Repositories by
Combining Semantic and Ontological Matching”, IEEE International Conference on Web Services (ICWS’05), Orlando, Florida, July
2005, pp. 13-20.

[3] Jacek Kopecky, Tomas Vitvar, Carine Bournez, Joel Farrell, “SAWSDL: Semantic Annotations for WSDL and XML Schema”, IEEE
Internet Computing, IEEE Computer Society, 2007, Vol. 11, No. 6, pp. 60-67.

[4] Ruiqiang Guo, Jiajin Le, XiaoLing Xia, “Capability matching of Web services based on OWL-S”, Proceedings of 16th International
Workshop on Database and Expert Systems Applications, 22-26 August 2005, pp. 653-657.

[5] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, “Automated discovery, interaction and composition of
Semantic Web Services”, Journal of Web Semantics, Elsevier, December 2003, Vol. 1, No.1, pp. 27-46.

[6] Sonia Ben Mokhtar, Anupam Kaul Nikolaos Georgantas and Valerie Issarny, “Towards Efficient Matching of Semantic Web Service
Capabilities”, International Workshop on Web Services Modeling and Testing (WS-MaTe 2006).

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 1, April - June 2012

59

[7] Sonia Ben Mokhtar, Anupam Kaul Nikolaos Georgantas and Valerie Issarny, “Efficient Semantic Service Discovery in Pervasive
Computing Environments”, M. Van Steen and M. Henning (Eds): Middleware 2006, LNCS Vol. 4290, pp. 240-259.

[8] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valerie Issarny, Yolande Berbers, “EASY”, Efficient semantic Service
discovery in pervasive computing environments with QoS and context support”, The Journal of Systems and Software, 2008, Vol. 81,
pp. 785-808.

[9] Dong Shou, Chi-Hung Chi, “A Clustering-based Approach for Assisting Semantic Web Service Retrieval”, IEEE International
Conference on Web Services, 2008, pp. 838-839.

[10] Dong Shou, Chi-Hung Chi, “Effective Web Service Retrieval Based on Clustering”, Fourth International Conference on Semantics,
Knowledge and Grid, IEEE Computer Society, 2008, pp. 469-472.

[11] Huiying Goa, Wolffried Stucky, Lei Liu, “Web Services Classification Based on Intelligent Clustering Techniques”, International
Forum on Information Technology and Applications, 2009, Vol. 3, pp. 242-245.

[12] Jingyu Zhang, Xueli Yu, Peng Liu and Zhen Wang, “Research on improving Performance of Semantic Search in UDDI”, Proceedings
of the WRI Global Congress on Intelligent Systems, IEEE Computer Society, 2009, Vol. 4, pp. 572-576.

[13] Li Ying, “Algorithm for Semantic Web Services Clustering and Discovery”, International Conference on Communications and Mobile
Computing, IEEE Computer Society pp. 532-536, 2010.

[14] Peng Liu, Jingyu Zhang, Xueli Yu, “Clustering-Based Web Service Matchmaking with Automated Knowledge Acquisition”, W. Liu
et. al (Eds), Springer-Verlag Berlin Heidelberg, LNCS, Vol, 5854, pp. 261-270, 2009.

[15] Richi Nayak, Bryan Lee, “Web Service Discovery with additional Semantics and Clustering” Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence, IEEE Computer Society, 2007 pp. 555-558.

[16] Shun Hon, Haiyang Wang, Lizhen Cui, “A User Experience-Oriented Service Discovery Method with Clustering Technology”,
Second International Symposium on Computational Intelligence and Design, IEEE Computer Society, 2009, Vol. 2, pp. 64-67.

[17] Michael Stollberg, Martin Hepp and Jorg Hoffmann, “A Caching Mechanism for Semantic Web Service Discovery”, Springer-Verlag
Berlin Heidelberg, LNCS, 2007, Vol. 4825, pp. 480-493.

[18] Gao Ting, Wang Hiayang, Zheng Naihui, Li Fei, “An Improved Way to Facilitate Composition Oriented Semantic Service
Discovery”, International Conference On Computer Engineering and Technology, 2009, pp. 156-160.

[19] Bo Zhou, Tinglei Huang, Jie Liu, MeizhouShen, “Using Inverted Indexing to Semantic WEB Service Discovery Search Model,
Proceedings of 5th International Conference on Wireless communications, networking and mobile computing, IEEE Press, 2009, pp.
4872-4875.

[20] Li Kuang, Ying Li, Jian Wu, Shuiguang Deng, Zhaohui Wu, “Inverted Indexing for Composition-Oriented Service Discovery”, IEEE
International Conference on Web Services, 2007, pp. 257-264.

Chellammal Surianarayanan obtained her M.Tech in 2008 and presently working as Assistant Professor with
Department of Computer Science, Bharathidasan University Constituent College, Orathanadu. She has 10 years of
Research & Development experience in Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. Also, she
is pursuing Ph.D in computer science in Bharathidasan University, Tiruchrappalli, India. Her research interests
include semantic web services and data mining.

Prof. Gopinath Ganapathy obtained his Masters in 1988 and Ph.D in 1996. Presently he is the Director of
Technology Park and Head of School of Computer Science and Engineering, Bharathidasan University,
Tiruchirappalli, India. He published around 30 research papers in International Journals and Conferences. He has 23
years of academic, industry, research and consultancy services. He has around 8.5 years of International experience in
U.S and U.K. He is a profession member of IEEE and ACM. His research interests include semantic web, auto
programming, Natural Language Processing and text mining.

