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Abstract- Generally, Neural Networks (NN) are considered as a hierarchical models that can be used to learn 

patterns or knowledge from data with complicated nature or distribution.  These NNs are also used as 

universal function approximators. Therefore, NNs can be applied to solve the mathematical problems, as 

numerical analysis tool.  This paper discusses applications of neural networks in modelling and finding 

solution of various differential equations. 
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1. INTRODUCTION 

Over the last few decades Neural Networks has showed considerable significance and attention due to their 

application in various disciplines such as electro-chemistry, visco elasticity, optics, star cluster etc. Since Neural 

networks are best at identifying patterns or trends in data, they are well apt for predicting needs including sales 

forecasting, data validation, risk management, target marketing, under sea mine detection, texture analysis, 3-

dimensional objects recognition. Mathematical modelling in Neural network has been based on neurons that are 

different from real biological neurons and from the functioning of simple electronic circuit. The neuron model is 

made up of four basic components- an input vector, a set of synaptic weights, summing function with an activation 

and an output. The input of each neuron comes from two sources- external input    and inputs from other neurons. 

The total input to neuron i is the input to i =    =    +       where     are external input and      are synaptic 

interconnection strength from neuron j to neuron i. This paper discusses applications of neural networks in modeling 

and finding solution of various differential equations. 

2. SOLUTION FOR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 

An ODE, a system of ODE and PDE’s with initial and boundary value problems are solved using artificial Neural 

networks. A trial solution of the differential equation is comprised of two parts. The first part is so obtained as not to 

affect the initial or boundary conditions, while the other part contains feed forward Neural networks containing 

adjustable weights (Haydar Akca M. S.), (Ravi Agarwal, 2018).Consider a system of K first order ODEs in general 

subject to certain initial conditions is shown in equation (1). 
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With   ( )      (           ), we consider one neural network for each trial solution     
 which is written in 

equation (2) 
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Where   (     ) is the output of a feedforward neural network with one input unit for   and weights    S.The error 

quantity to be minimized is given in equation (3) 
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Since 
    

( )

  
     (     )+  

 

  
  (     ), it is straight forward to compute the gradient of the error with respect to 

the parameters     

3. NEURAL NETWORK FOR SOLVING PARTIAL DIFFERENTIAL EQUATION 

The neural network is trained in an unsupervised manner using error function that is derived from the differential 

equation itself and the boundary conditions. Figure 1 represents the schematic diagram of Neural Network. The 

neural network solutions are more accurate as compared to solution obtained with numerical methods. (Karami, 

2007), (Haydar Akca M. S.) To use an unsupervised feed forward neural network to solve Burger’s equation this is 

the one-dimensional quasilinear parabolic partial differential equation. Consider the equation of the form 

                                                                                                 (4) 

 (   )   ( )                                                                                                                                                 (5) 

 (   )    ( )     and      (   )    ( ) ,where     is the coefficient of the Kinematics Viscosity of the fluid. 

This equation intended as an approach to study turbulence, shock waves and the Gas dynamics. Let (   )  

             . This feed forward neural consists of two inputs      and         hidden layers and one output 

 .  The sigmoid function is used for hidden layers and the linear function is used for output neuron. The energy 

function is assumed as   

     ∑   
 
                                                                                                                                                                                    (6) 

Where      |  (   )| ,      |  (   )   ( )| ,     |  (   )    ( )|
  and      |  (   )    ( )|

 . We 

get an accurate solution, if the energy function or error function reduces close to 0. This is possible iff each term in 

the right hand side should be identically equal to 0. If    = 0, it ensures that  (   ) satisfies the equation whereas 

reducing                to 0 implies that  (   ) is unique. 

The given PDE is reformulated as follows 
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Figure 1. Schematic Diagram of Neural Network with (n+1) input nodes with ‘h’ hidden nodes and 1 output 

node(N) 
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Where    is the sigmoid function and  (   ) is the weight between j
th

 neuron of a layer and i
th

 neuron of next 

layer.The trained network creates solutions including points those are not considered during state of time. The 

accuracy can be efficiently controlled by changing the number of hidden layer neurons. 

4. HOPFIELD’S NEURAL NETWORK MODELLED BY CAPUTO FRACTIONAL 

DIFFERENTIAL EQUATIONS 
Among the most popular models in the literature of Artificial Neural network is Hopfield neural network. This 

model is described by a set of differential equations with delays, namely, Functional differential Equations. The 

attractive problems in the dynamic behavior of Hopfield neural network are those of existence, uniqueness and 

global asymptotic stability of the equilibrium point. 

1. Consider the general Hopfield’s neural networks with impulses and bounded delays and distributed delays 

(Ravi Agarwal, 2018). 
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For   (       -, k=0,1,2………….,(,   ( )-)    
      (  (    )), k=1,2,3…………… ( )     

 (    )     

I =1,2,…….n. Where n represents the number neutrons in the network,    ( ) represents the pseudostate state 

variable ,q (   )   ( )     is the self regulating parameter of i-th neuron ,    ( )   ( )  correspond to the 

synaptic connection strength  of the i-th neuron to the jth neuron at the time   and 

    ( )   ( )   ( )       ( ) are activation functions,    is an external bias vector ,   ( ) is the transmission 

delay along the axis of the j-th unit and satisfies  0   ( )                          are the impulsive functions 

giving the impulsive perturbation of the ith neuron on the point   .      (    ) and    (    )  are the state of 

the i-th neuron  before and after the impulsive perturbation at time           ( )  is the delay kernal with  

    ∫    ( )
  

– 
    ,   

   (,    -  )              

2. Consider the system of integro-differential equations as a model of Hopfield neural network with 

continuously distributed delays over a certain period of time (Haydar Akca R. A., 2004), (Kang, 1990). 

      ̇        ( )  ∑    ( )
 
       ∑    ( )
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   ( )                                      (12) 

        ( )    ( )                                                                             (13) 

The impulsive conditions are     ( )    (  ( ))              The nonlinear neural activation function 

        , are chosen to be continuous and differentiable. It satisfies  the following conditiona,   ( ) is bounded 

above by +1 and bounded below by -1,   ( )    at a unique point          
 ( )  has a global maximum value 

of 1 at a unique point    .Here,    ( ) are the impulses at the moment    and    is a strictly increasing 

sequence such it tends to   as     ,   ( ) corresponds to the membrane potential of the unit i to the unit 

j,     denotes the synaptic connection weight of the unit j to the unit I,    corresponds to the external bias, the 

coefficient    is the rate with which unit self regulates or resets its potential when isolate from other units and 

inputs,    is continuous for        is the delay kernal  and are bounded and continuous with ∫    ( )
 

 
    . 

5. ESTMATING THE SOLUTION OF FUZZY DIFFERENTIAL EQUATION USING 

BERNSTEIN NEURAL NETWORKS. 

The uncertain nonlinear systems can be modelled with fuzzy equations or fuzzy differential equation by 

incorporating the fuzzy set theory. The solutions of them are applied to analyze many engineering problems. The 
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solutions of FDEs are approximated by Bernstein neural network. Initially the FDE is transformed into four ordinary 

differential equations. Then neural networks are constructed with the structure of ODEs. With the back-propagation 

method for Z-number variables, the neural networks are trained. The theory of analysis and simulation results show 

that Bernstein neural networks are effective in approximating the solution of FDEs based on the Z-numbers 

(Raheleh Jafari, 2017).Consider the uncertain nonlinear system of FDE 

  

  
  (   )                                                                                   (14) 

Where      is the Z-number variable,  (   ) is a Z-number vector function, 
  

  
 is the derivative associated to the 

Z-number variable.The Bernstein neural network uses the following Bernstein polynomial, 

 (     )  ∑ ∑ ( 
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Where     is the Z-number coefficient.This polynomial is considered as a neural network consists of two inputs 

             and one output    The four ODEs equivalent to the given  fuzzy differential equation are the following 
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The Bernstein neural network is used to approximate the solutions of four ODEs given above. 

 

                                            Uncertain Nonlinear – differential Equation 

 

 

 

 

 

 
 

Figure 2. Nonlinear model with Fuzzy Differential Equation. 

If    and     in the Bernstein polynomial are defined as,     is time interval   and      is the α -level , then the 

solution of FDE in the form of the Bernstein neural network is 
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         Fuzzy Differential    Equation 

   Bernstein    Neural      Networks 
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Where    (     ) is the initial condition of the solution based on the Z-numer. 

EXAMPLE 

5.1. Problem on Ordinary Differential Equation 

In this model problem, we have multilayered perceptron having one hidden layer with 10 hidden units and one linear 

output unit (Haydar Akca M. S.). The sigmoid activation of each hidden unit is  ( )  
 

         Consider the 

following equation 

  

     
 

 

 

  
     

 

 
  

 

                                                                                                                                               (21) 

The boundary conditions are  ( )         ( )     ( )   
 

   with   ,   -.The exact solution of this equation 

is  ( )    
 

       and the trial solution is of the form 

   ( )      ( )   
 

   (   ) (   )                                                                                                         (22) 

 We used a grid of 10 equidistant points and the plots of the deviation from the exact solution for the boundary value 

problem. 

5.2. Problem on Partial Differential Equation 

 Consider the Elliptic Laplace’s equation:    ( )          . The boundary conditions are chosen as  ( )     

  *(     )                  +       ( )              *(     )          +   the analytic solution is 

  ( )   
 

              ( 
              )                                                                                                                              (23) 

By using the BC’s , the trial solution was constructed as 

  (     )                  (   –   )      (   –   ) (     )                                                                                 (24) 

When K=16 and H=6 ,the numerical solution and the corresponding  analytic solution are in good agreement 

,obtaining maximum error of about 2.     (Kiene) 

5.3. Matlab ToolBox for Solving Differential Equations 

The table 1 shows matlab code for solving differential equations using Symbolic Math Toolbox™. The first column 

represents the sample differential equations and their corresponding matlab code given second column. 

 

Differential Equation MATLAB
®
 Commands 

  

  
   ( )      

 ( )    

syms y(t) 

DE = diff(y)+4*y == exp(-t); 

cond = y(0) == 1; 

ysolution(t) = dsolve(DE,cond), ysolution(t) =exp(-t)/3 + (2*exp(-4*t))/3 

   
   

   
   

  

  
     

syms y(x) 

DE = 2*x^2*diff(y,x,2)+3*x*diff(y,x)-y == 0; 

ysolution (x) = dsolve(DE)ysolution (x) =C2/(3*x) + C3*x^(1/2) 

   

   
   ( ) 

syms y(x) 

DE = diff(y,x,2) == x*y; 

ysolution(x) = dsolve(DE)ysolution(x) =C1*airy(0,x) + C2*airy(2,x) 
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Traditional methods such as finite elements, finite volume, and finite differences solve the differential equations 

over this discretization weakly. Generally, these methods are adequate and effective in many scientific and 

engineering applications. The one limitation of using this is that the obtained solutions are discrete or sometimes it 

have limited differentiability. To address this issue, when numerically solving differential equations, one can 

implement a different method which relies on neural networks. The purpose of this study is to outline the MATLAB 

oriented method for solving it. 

6. CONCLUSION 

In this paper, general features of neural algorithm for solving differential equations are discussed. The artificial 

neural network solutions are more accurate as compared to the solutions obtained with numerical methods. It helps 

us achieve solutions faster without wasting memory space and computational time. A comparison to the exact 

solution reveals that it reduces the complexity of the problems due to the parallel structure of the network. 
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