oY
7

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

%[5'—7}%

Adaptive Optimization for Continuous Multi-Way Joins
Using ACO System

G. Sakthivel
PG Department of Computer Science,
Arignar Anna College (Arts & Science),
Krishnagiri, India

P. Madhubala
PG & Research
Department of Computer Science,
Don Bosco College, Dharmapuri, India

Abstract- The join operator is a core component of an ACO System. Query optimization, the process to
generate an optimal execution plan for the posed query, is more challenging in such systems due to the
huge search space of alternative plans incurred by distribution. . Due to the constantly updating
nature of continuous queries, the query optimizer has to frequently change the optimal execution plan
for a query. However, optimizing the join executing plan for every execution step might be
prohibitively expensive; hence, dynamic optimization of continuous join operations is still a
challenging problem so far. Therefore, this paper proposes the first adaptive optimization approach
towards this problem in the ACO system. The approach comes with two dynamic cost-based
optimization algorithms which use a light-weight process to search for the best execution plan for
every execution step. The experimental results show that the proposed algorithm saves up to about
100% of optimization time with no significant difference in the quality of generated plans compared
with the best existing genetic-based algorithm.

Keywords - Ant Colony Optimization, Adaptive Optimization, Query Optimization, Continuous Multi-way
joins, Join queries, Cost model.

1. INTRODUCTION

The query optimization might be applied at the logical level by rewriting the plan to improve efficiency, called
algebraic optimization. The common rewriting rules such as reordering selection before joins and evaluating
inexpensive predicates before complex ones were used in the Particularly for continuous queries, (Arvind Arasu,
2006) proposed rules on window-based operators such as commutative rules on time-based and count-based
windows. Optimization by rescheduling physical query plans are similar to those used in relational databases,
e.g., re-ordering a sequence of binary joins in order to minimize a particular cost metric. There has been work in
join ordering for ACO System model (Shivnath Babu K. M., 2005), (Lukasz Golab, 2008). Furthermore,
adaptive re-ordering of pipelined stream filters is studied in (Shivnath Babu R. M., 2004) and adaptive
materialization of intermediate join results are considered in (Shivnath Babu R. M., 2004). Query optimization
in different environment from single processor relational database systems to grid systems is discussed (H A.
M., 2010) Hemeurlain 2009. Queries can be categorized according to (i) the type of operations which includes
retrieve and update queries (ii)the number tuples retrieved ,which includes range and singleton queries (iii) the
type of operator used which includes sets, aggregate and join queries (iv) the application type , which includes
Online Transaction Processing (OLTP) and Decision Support System (DSS) queries.

The multi query optimization which tries to find same patterns in submitted queries and obtain a global plan for
their optimization (Y.E, 1996)loannidis and rule based optimization which optimizes queries on set of rules
ranked in the order of efficiency (C.E, 2005). The problem of optimizing multiple join queries has been proved
to be computationally intractable with a large number of relations (T, 1984) ibaraki etal. 1984. In this Paper, an
ant colony optimization (ACO) algorithm is introduced for the first time to tackle the problem of distributed join
query optimization in a search space where relations are replicated and not fragmented. Ant algorithm had been
previously applied for designing distributed database system (S.M.T, 2011), karimi adl et al.2009. Furthermore,
Ant and bee colony algorithms have been applied for join query optimization in centralized database System
which has led to better results compared to genetic algorithm (ALAA ALJANABY, 2005), (Luasz, 2008). Two
cost models are introduced one based on the total time and the other on the response time. Our cost models
consider both communication as well as local processing costs. We have compared our algorithm to two other
genetic algorithms previously proposed in Rho et al.1997; sevinc et al.2010, the results of which show that our
proposed algorithm could find reasonable QEPs with more Optimization problem.

The remainder of this paper is outlined as follows. First Section 2 covers related previous work. Section 3
explain more general concept of ACO Algorithm. The search strategy of our proposed ACO algorithm for
distributed join query optimization for Section 4. The Section 5 will follow up with two adaptive optimization
algorithms. The experiments of such algorithms are reported in the following Section 6. Finally, we conclude
the paper in Section 7.

ISSN: 2349 — 6363

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

2. RELATED WORK

Algorithm used in the first distributed database system such as R*, SDD-1 and distributed ingress are widely
studied and compared in (ozsu ,2011). Semi joins (Bernstein ,1981) are applied to reduce one of the relations
involved in join through sending join attributes of one of the relations to the site of the other so as to extract
matching tuples. Two way semi - joins (2SJ) Roussopoulous et al 1991 are the extension of semi joins to reduce
both relations involved in a join. In 1997, Ribero and his colleagues proposed an algorithm with the following
characteristics (Ribeiro, 1997). Its search space contains both bushy and linear execution plans. Unlike other
algorithms that usually avoid unnecessary Cartesian products. Ribero et al. argue that Cartesian products may be
worth doing in distributed environments, in case the relations are located at the same site. Their proposed
algorithm does not benefit from semi joins and does the not benefit from semi joins and does the optimization in
an environment where no relations are replicated. The cost model is based on the response time in terms of
pipelining of join operations. The relevant original ideas came from cost models which are used for parallel
database lanzelotte et al 1994, though may not be appropriate to be applied in distributed databases. The search
strategy is based on tabu search metaheuristic algorithm and it uses a hashing based data structure for tabu
search memory. Therefore, they are not comparable with our algorithm which its optimization model integrates
all these decisions. In contrast to algorithms, we use two cost models- one based on the response time.

3. GENERAL CONCEPTS OF ACO ALGORITHM

ACO algorithms are a Series of ant algorithms inspired by foraging behavior of ant colonies. To solve a problem
with ACO algorithms, first the problem should be abstracted as a graph. For example the travelling salesman
problem (TSP) can be represented by agraph G= (N,E) where a fixed set of vertices N represents the cities and a
fixed set of edges E Shows the connection between the cities the objectives is to find hamiltonian path for G
which gives the minimal length Dorigo et al. 2004. Ants build their solutions by moving on the problem graph
and laying pheromone so as to guide other ants. Pheromone trails, which provides a positive feedback
mechanism, permit ants to cooperate and exploit each others experiences. A negative feedback mechanism.
The first ACO algorithm, Ant System (AS), was developed by Professor Dorigo in 1992 (Dewitt,1985) (Dorigo,
1992). This algorithm was introduced using the TSP as an example application. AS achieved encouraging initial
results, but was found to be inferior to state-of-the-art algorithms for the TSP. The importance of AS therefore
mainly lies in the inspiration it provided for a number of extensions that significantly improved performance and
are currently among the most successful ACO algorithms. In fact most of these extensions are direct extensions
of AS in the sense that they keep the same solution construction procedure as well as the same pheromone
evaporation procedure. These extensions include elitist AS, rank-based AS, and MAX — MIN AS. The main
differences between AS and these extensions are the way the pheromone update is performed, as well as some
additional details in the management of the pheromone trails. A few other ACO algorithms that more
substantially modify the features of AS were also developed; those algorithms are the Ant Colony System
(ACS), the Approximate Nondeterministic Tree Search and the Hyper-Cube Framework for ACO. Only the
ACS will be briefly presented; for the others, we invite the reader to consult the reference Dorigo, M., Stutzle *
T. (2004). ACO algorithms are a Series of ant algorithms inspired by foraging behavior of ant colonies. To solve
a problem with ACO algorithms, first the problem should be abstracted as a graph. For example the travelling
salesman problem (TSP) can be represented by a graph G= (N,E) where a fixed set of vertices N represents the
cities and a fixed set of edges E Shows the connection between the cities the objectives is to find hamiltonian
path for G which gives the minimal length (Dorigo et al. 2004). Ants build their solutions by moving on the
problem graph and laying pheromone so as to guide other ants. Pheromone trails, which provides a positive
feedback mechanism, permit ants to cooperate and exploit each other™s experiences. A negative feedback
mechanism is also necessary to avoid stagnation (i.e premature convergence) which is implemented through
pheromone evaporation. This indirect communication mediated by the environment is called stigmergy .
Pheromone deposition and evaporation are two phases of Pheromone update that happen in the ACO. After all
ants have completed the tour construction, the pheromone trails are updated. This is done first by lowering the
pheromone trails by a constant factor (evaporation) and then by allowing the ants to deposit pheromone on the
arcs they have visited. In particular, the update follows this rule.

Tyt +1) = pTy® + Y ATE®) (1)
k=1

Where the parameter p (with 0<p<1)) is the trail persistence (thus, 1-p models the evaporation) and Ti’j (t) is the
amount of pheromone ant k puts on the arcs it has used in its tour. The evaporation mechanism helps to avoid

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

unlimited accumulation of the pheromone trails. While an arc is not chosen by the ants, its associated
pheromone trail decreases exponentially; this enables the algorithm to “forget” bad choices over time. Research
on ACO has shown that improved performance may be obtained by a stronger exploitation of the best solutions
found during the search and the search space analysis in the previous section gives an explanation of this fact.
Yet, using a greedier search potentially aggravates the problem of premature stagnation of the search. Therefore,
the key to achieve best performance of ACO algorithms is to combine an improved exploitation of the best
solutions found during the search with an effective mechanism for avoiding early search stagnation. MAX —
MIN Ant System, which has been specifically developed to meet these requirements, differs in three key aspects
from AS. To exploit the best solutions found during iteration or during the run of the algorithm, after each
iteration only one single ant adds pheromone. (i) This ant may be the one which found the best solution in the
current iteration (iteration-best ant) or the one which found the best solution from the beginning of the trial
(global-best ant). (ii) To avoid stagnation of the search the range of possible pheromone trails on each solution
component is limited to an interval [Tmin ; Tmax]. (iii) Additionally, we deliberately initialize the pheromone
trails to max, achieving in this way a higher exploration of solutions at the start of the algorithm. In the next
sections we discuss the differences between MMAS and AS in more detail and report computational results
which demonstrate the effectiveness of the introduced modifications in improving the performance of the
algorithm.

4. QUERY OPTIMIZATION

Query optimization is used for accessing the database in an efficient manner. It is an art of obtaining desired
information in a predictable, reliable and timely manner. Formally defines query optimization as a process of
transforming a query into an equivalent form which can be evaluated more efficiently. The essence of query
optimization is to find an execution plan that minimizes time needed to evaluate a query. To achieve this
optimization goal, we need to accomplish two main tasks. First one is to find out the best plan and the second
one is to reduce the time involved in executing the query plan.
Kunal Jamsutkar et al. 2013 states a query passes through three different phases during the query processing in
DBMS which are as follows:

e Parsing and translation

e Optimization

e Evaluation
Usually, user queries are submitted to DBMS as SQL queries. During the parsing and translation phase, the
given query is translated into its internal form. In generating the internal form of the query, the parser checks the
syntax of the user's query, verifies that the relation names appearing in the query are names of the relations in
the database and so on. The system constructs a parse tree representation of the query, which it then translates
into a relational algebra expression. For example let us consider the following SQL query:-

Select Sno from Student where Sno="101"

This query is then translated into either of the following relational algebra expressions as follows:-
oSno ='101"' (Sno (Student))

7iSno (6Sno='101" (Student))

After parsing and translation into relational algebra expression, the query is then transformed into a form which
is usually query tree or graph that can be handled by the optimization engine. For the above example, the
relational algebra expression can be represented as either query tree or query graph which is shown in Figure 1.

6Sno='101' | aSno

niSno 6 Sno="'101"

Student Student

a) Query tree b) Query graph

Figure 1. Query representation

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

During the optimization phase, the optimization engine performs various analyses on the query data. It applies
various rules to the internal data structures of the query to transform these structures into equivalent and
efficient representation. It then generates valid evaluation plans based upon the rules applied. From the
generated evaluation plans, the best evaluation plan to be executed is determined and passed onto the query
execution engine.The final phase in processing a query is the evaluation phase. During the evaluation phase, the
best evaluation plan generated by the optimization engine is selected and then executed. Avi Silbershatz et al.
2002 describes the steps involved in query processing are shown in Figure 2.

Query I Parserand | Relational Algebra
[Translator —

|

Statistics about o Optimizer

Query I .

.
Evaluation < | Execution Plan

_ =

Figure 2. Steps in query processing

Deepak Sukheja and Umesh Kumar Singh 2011 states query processing and optimization process work together
to execute any kind of queries. Query processing is concerned with execution of a query or refers to the
activities involved in extracting data from a data warehouse. On the other hand, query optimization process
deals with the efficiency of the query. It defines the execution plans, the strategy of execution of the query and
chooses the best execution plan.

(Kosmann, 2000) states the query optimization is the process of identifying an efficient way in which the query
could be executed with less time complexity to produce better results. In this process, when a query in a high
level language is first submitted, it is first scanned and parsed to determine if the query consists of appropriate
syntax. If the query passes the parsing checks for correct syntax, then it is converted into query tree or query
graph. Here we determine different ways of representing a query which are then passed on to the query
optimizer. The way by which a given query is optimized plays a vital role in the enhancement of query
performance.

(Sunitha Mahajan and Vaishali Jadhav 2012) states that the goal of the query optimizer is to find a reasonably
efficient strategy for executing the query. It considers the possible query plans for a given input query and
determines the most efficient query plan. Once the query optimizer has determined the execution plan, the code
generator writes out the actual access routines to be executed. With an interactive session, the query code is
interpreted and passed directly to the runtime database processor for execution. During this section, we estimate
the various cost factors for executing each of the execution plans. The execution plan which results in least cost
estimate is chosen as best optimal execution plans.

(Alaa Aljanaby, 2005) in the query optimization process, user given query is first scanned, parsed and validated.
The scanner identifies the language tokens such as SQL keywords, attribute names and relation names in the
text of the query, whereas the parser checks the query syntax to determine whether it is formulated according to
the syntax rules of the query language. An internal representation of the query is then created. A query
expressed in relational algebra is usually called initial algebraic query and can be represented as a tree data
structure called query tree. It presents the input relations of the query as leaf nodes of the tree and represents the
relational algebra operations as internal nodes.

The next step is an optimization step that transforms the initial algebraic query using relational algebra
transformation into other algebraic queries until the best one is found. A query execution plan is then founded

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

which represented as a query tree includes information about the access method available for each relation as
well as the algorithms used in computing the relational operations in the tree. The next step is called code
generator, where we generate code for the selected query execution plan. This code is then executed by the run
time database processor to produce the query result. The run time database processor has the task of running the
query code, whether in compiled or interpreted mode, to produce the query result. If a run time error results, an
error message is generated by the run time database processor. Figure 3 shows the different steps of query
processing.
Querv in a high level language

|

Scanner, Parser and
Semantic Analvsis

Intermediate form of query

‘ Query Optimizer

l Execution plan

Query Code Generator

l Code to execute the query

Bun Time Database
Processor

Result of the query

Figure 3. Different steps of query processing.
Query optimization process becomes a complex task as query complexity increases with new applications.
Significant research work has been done in developing efficient query optimization techniques for processing
complex queries in a cost effective manner.

Input: Let the input be Dependency Rule Set DRS
Output: Let the output be Final resultant SEquence selected SEq.
Stepl: Initialize Query Completion Probability Set QCPS.
Step2: For each rule Ri from DRS
Compute Query completion probability Qcp
Qcp = N «108(Ri (N))+(R; (N1))+ log(R;(NDTR))
QCPS = Y QCPS(i)+Qcp
End.
Step3: Choose the most probable Rule.
Step4: Return selected Dependency Rule Set DRS(i).
Step5: Stop.

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

4.1. Optimization of Multi-Way Join
Intra-join algorithm can be achieved by assigning more than one processor to a join operation as in all
proposed parallel join algorithms DeWi85, KitsgO, Schn89, Vald84,Lu90, wolfYO.

Original Binary Flan

/s AN

pa

) S e N
R

S T U
Merge right child Merge left child Mevge both childrer
SN YA SN N
N - R S N RS T U
AN
SN 4
R s T u

Figure 4. Building a Multi-Way Join via Merging
B R

[
- I
N

F

Figure 5. (a)Linear QEPs (b)Synchronized Bushy QEP

Inter-join parallelism among multi-way join queries can be realized by generating query execution plans with
bushy structure. The difference between such bushy structured QEPs and the linear structured QEPS is shown in
Figure 4. In a linear QEP Figure 5(a). Joins in a multi-way join query are performed one by one. The result
relation from the first join of two relations, say R1 and R2, is joined with the third relation, R3 the result of
which is then joined with the fourth relation, R4 and so on. In a bushy structured QEP, a number of pairs of
relations may be joined in parallel. In Figure 5 (b), two pairs of relations, (R1t, R 2) and (R 3, R4), are joined in

parallel. The result of R3 M R4 is then joined with R5, the result of which is again joined with the result of

R 1 X R2 When the bushy structured QEPs are included in the search space of a query optimizer, the number of
feasible QEPs increases dramatically. To limit the increase of QEPs in the search space of our multiprocessor
query optimizer, we divide QEPs into two groups, synchronized and asynchronized. By a synchronized QEP, we
mean that the whole multi-way join process is divided into synchronized steps. For each step, a number of joins
are executed concurrently. The joins to be performed at the following step will not start to execute until all joins
in the previous step have been completed. In this section, we are going to propose a greedy multi-way join
optimization algorithm which explores inter-join parallelism by considering such synchronized QEPs during
optimization. By limiting QEPs to synchronized ones, the cost estimation of a QEP is easier. However, there are
two possible side effects: (1) the possible pipeline among steps is not taken into account. Instead, the costs of
storing and retrieving the intermediate results are added to the plan cost, and (2) some processors that complete

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

one join earlier than others have to wait and the CPU utilization will decrease. As a result, some better plans
may be excluded from the search space. However, the second effect could be minimized by carefully allocating
processors to the joins to be concurrently executed according to their workload. Furthermore, since linear QEPs
are still in the search space, the new optimization algorithm should be at least as good as those that do not
consider bushy QEPs.

4.2. Algorithm GP: a greedy multi-way join query optimization algorithm

The Greedy Parallel multi-way join optimization algorithm, GP is an iterative algorithm that generates one step
in a synchronized QEP during each iteration. It is a greedy algorithm since it always tries to join as many pairs
of relations as possible in parallel for the current step. At the beginning, all relations to be joined are included in
the working set T. A set of relation pairs, R, is selected for the first step by calling function Select_ Rel_Pairs.
For subsequent steps i, the same procedure is applied to the reduced working set that consists of the intermediate
relations from the last step, step i - 1, and the relations that have not been joined so far. Graphically, this reduced
working set is represented by a reduced join RTU@I that is obtained by replacing the relations joined in step i -
1 by their result relations and merging the edges accordingly. When the working set contains less than four
relations, function Two_way_seq is called to determine the sequence of sequentially joining those relations.

4.3. Selecting pairs of relations

Function Select_rel_pairs in Algorithm GP select k pairs of relations from the working set to be joined in
parallel for the current step. Select_rel_pairs determines concurrently executed relation pairs with given working
set (or join graph). The algorithm uses an iterative approach starting with k = 1. During each iteration, it
computes the costs of QEPs which concurrently join k pairs of relation at the first step and find the minimum
cost by calling function Minimum_cost. It terminates when either Kk is equal to the number pairs in the join graph
or such k is found that the minimum cost of QEPs concurrently joining ktl pairs first is greater than the
minimum cost of QEPs having k joins evaluated concurrently first.

Algorithm GP

Input :.A join graph G = (T, E) relations and edge set E represents the join conditions.
Output : S, the join sequence consisting of relation pairs S <--- g;

while Size(T) > 3 do

Rt Select_rel_pairs (G); S<--- R;
S<---Su R

G <---G with each pair of relations in R replaced by their join results;

}

R <---Two_way_seq (G); S<---Su R
Algorithm for Multi-way join optimization algorithm GP
Algorithm Select-rel_pairs
Input : G, ajoin graph
Output : R, a set of relation pairs to be joined concurrently begin k <---0
repeat
k<---k+I;
CK<--- t Minimum-cost (G, k, RK);
if (R, does not contain all relations in G) then Ck+1 t Minimum-cost (G, k+1, RK+1);
until Ck+1>CK or RK+1, contains all pairs in G if Ck+1>CK then
return Rk else
return RK+1, end;
Function Minimum-cost is the core part of the algorithm. It takes the reduced join graph G, and the number of
relation pairs to be joined concurrently first, k , as input and returns the minimum cost of those plans that joins k
pairs first. At the same time, it determines those k pairs of relations and join methods for each pair of relations.
The computation complexity of this function comes from the large number of feasible QEPs that join k pairs in
parallel during the first step; and (2) a large number of combinations of join methods supported and possible
processor allocation strategies for a chosen QEP. To simplify the cost evaluation of QEPs and hence to reduce
the optimization overhead, we propose two heuristic cost functions that lead to two versions of Algorithm GP:
GP+, an optimization algorithm based on total Cost and GP 5, an optimization algorithm based on partial COSL
As the name implies, algorithm GPr, estimates the total cost of a QEP, Cpyan, €ach step i (1< I <m), the m-step
QEP. On the other I. which is the sum of the cost of hand, Algorithm GP, uses only the cost of the first step
(may plus one more join as explained later) Cost i as the approximation of Cost. We discuss the details of these
two algorithms in the next two subsections.

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

5. PERFORMANCE STUDY

To evaluate the algorithms described in the above section, an experimental study is conducted with the
following purposes: (1) to compare the four criteria for selection of pairs of relations (used in the algorithm of
pairing relations) md (2) to evaluate and compare the effectiveness of algorithm GP with both heuristics, GP,
and GPP in generating optimal plans. The optimization algorithm, algorithm GP, is implemented in our study.
However, the input queries are randomly generated according to chosen parameters and execution costs of
generated QEPs are calculated according to the developed cost models. Therefore, the results presented here are
basically simulation results since no multiprocessor database system is available in our organization yet. We
hope that these results can give us some insight into our algorithm and provide us with some experience to
implement it in real systems. Though recent work [Kris86, Swam88, Swam891 have emphasized on large
number of joins, we believe that for most traditional applications in a well-designed relational database system,
most of the queries will require only a small number of joins. Therefore, we study the proposed algorithm on a
small number of joins (S 10). We vary the join selectivity, the sizes of the relations, the number of processors
and the number of tuples per page. However, our algorithm is also applicable for large number of joins (> 10).
We define the following measure to study the performance of our algorithm: cost,, Cost-Multiplier (Al, A2) =
lost A; where Cost,,,, (i = 1,2), represents the cost of executing the QEP generated by algorithm Al. Cost-
Multiplier (AL, A3) is thus a measure of the relative performance of algorithm Al over algorithm A2. For the
experiments with small number of joins, we are able to compute the optimal solution by enumerating all
possible combinations. We therefore use the optimal solution generated by exhaustively trying all possibilities
as our basis for comparison. Hence, we have Cost-Multiplier (GP, OPT) = costfip =costGP/OPT where
CostOPT and CostGp are the costs of plans generated by the exhaustive search and the algorithm GP used
respectively. It is clear that Cost-Multiplier (GP, OPT) and a lower bound value of one implies that algorithm

GP generates the optimal answer.

6. EXPERIMENT

Criteria for selecting the joining pairs In this experiment, we conducted several tests to study the criteria used
for selection of joining pairs (see Section 3.3). The main parameters of the queries used in the experiment are
shown in Table 1.

Table 1. Queries used in the experiment

Relation size (in pages)
Parameters 750 - 850 600 — 1000
0.0008 — 0.002 Test1 Test 3
Join Sel 0.0007 - 0.004 Test 2 Test 4

For example, in test 1, the join selectivity is varied from 0.0008 to 0.002 while the relations sizes are in the
range of 750 to 850 pages. These are varied according to the uniform distribution such that the final relation size
is also in the range of 750 to 850 pages. The other tests are similar except for the parameter settings. The
numbers of processors are varied from 5 to 32 for the tests. For each test, more than 2500 multi-way join queries
with different number of joins, relation sizes, join selectivity and numbers of processors are generated. A query
generator is used to generate queries. The QEPs of these queries are generated by applying algorithm GP with
all the four criteria. The average costs by using different criteria were compared with that of criterion 1 and
Table 2 summarize the results. Those numbers greater than one means that the criterion protons worse than the
first criterion.
Table 2. Comparison of criteria (A) Performance for GPT

GP+
Experiment Set C1 C2 C3 C4
Test 1 1.0000 1.0078 0.9912 0.9899
Test 2 1.0000 1.0000 0.9872 0.9872
Test 3 1.0000 1.0037 1.0023 0.9958
Test 4 1.0000 0.9993 0.9782 0.9734

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

Table 3. Comparison of criteria (B) Performance for GPp

Experiment Set GPy
Cl C2 C3 C4
Test 1 1.0000 1.0004 0.9976 1.0003

Test 2 1.0000 1.0003 0.9963 0.9963

Test 3 1.0000 1.0024 1.0005 0.9943

Test 4 1.0000 1.0012 0.9919 0.9922

1.02

1.01

mGPT C1
0.99

mGPT C2
0.98 W GPT C3

0.97 mGPT C4

0.96

0.95

Test1 Test 2 Test 2 Test 4

Figure 6. Representations of criteria (A) Performance for GPT

1.004

1.002

0.998
mGPT C1
0.996

mGPT C2

0.994 WmGPT C3

0.992 = GPT C4

0.99

0.988

0.986

Test1 Test 2 Test3 Test 4

Figure 7. Representations of criteria (B) Performance for GPp

Increase the number of joins From experiments 2 to 4, we see the effectiveness of the proposed algorithm GP.
The purpose of this experiment is to see the relative performance of GP, and GPp for large number of joins.
Since an exhaustive enumeration of the join orderings is computationally expensive, we compare them with one
another. We vary the join selectivity’s and the sizes of the relations. Tables 2 and 3 show the relative
performance of heuristic CPT over GP,, with parameter settings from experiments 2 and 3 respectively. Figure

5 and 6 shows the representations of criteria (A) Performance for GPT and criteria (B) Performance for GP5.

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

Table 4. Cost Multiplier (GPT, GPP)

COST MULTIPLIER (%)
Query type
0.5-0.7 0.7-0.8 0.8-0.9 0.9-1.0
10-R 1.4.6 21.8 70.8 1.6
20-R 7.65 25.75 63.25 1.15
30-R 4.5 25.0 66.0 14
40-R 3.0 37.25 55.5 1.15
50-R 1.75 32.5 62.0 0.50
Table 5. Cost Multiplier (GPT, GPP)
COST MULTIPLIER (%)
Query type
yp 0.5-0.7 0.7-0.8 0.8-0.9 0.9-1.0
10-R 4.6 16.2 74.4 0.8
20 -R 3.75 27.75 64.00 0.5
30-R 4.5 29.5 61.75 0.25
40-R 2.0 29.00 64.75 0.25
50-R 3.75 36.25 56.25 0.50
80
70
60 MW COST MULTIPLIER (%) D.5-
0.7
50 I
m COST MULTIPLIER (%) 0.7-
40 0.8
30 E%ST MULTIPLIER (%) 0.8-
20 m COST MULTIPLIER (%) 0.9-
1.0
10 —
0 —
10—R 20 —R 30—-R 40-R

Figure 8(a). Representations of Cost Multiplier (GPT, GPP)

10

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

80

70

60 [W COST MULTIPLIER (2%6) 0.5-
0.7

50 ——

m COST MULTIPLIER (%26) 0.7-
40 - 0.8

30 COST MULTIPLIER (26) 0.8-

0.9
20 — m COST MULTIPLIER (26) 0.9-
1.0
10 —
0 T T T 1
10—R 20—-R 30—R 40-

R

Figure 8(b). Cost Multiplier (GPT, GPP)

Tables 4 and 5 discusses the GPT outperforms GPP most of the time (> 98%). For more than 50% of the time,
GP, produces results that are close to GP,. Up to 90% of the results generated by GP, are 80%-near-GPT. Figure
8(a), 8(b) shows the representations of Cost Multiplier (GPT, GPP).

7. CONCLUSIONS

The paper presents our effort on addressing a very challenging problem of dynamic optimization of join
operation in continuous query ACO system which we believe is a very central performance problem of RSP
engines. We modeled the join operations on ACO a continuous multi- way join which help us to introduce a
general recursive cost model. Via this cost model, we propose two approximation versions which help us to
introduce two light-weight adaptive optimization algorithms. While traditional optimizers (which do not
generate parallel plans) deal with choosing an appropriate join method and the best join ordering, our optimizer
that generates parallel plans, must also select the pairs of relations to be joined in parallel and allocate
processors to the join operations. We proposed an algorithm, algorithm GP, which employs the greedy paradigm
to generate parallel QEPs for multi-way join queries. The plan generated exploits parallelism at two levels:
intra-join parallelism where several processors may be assigned to a join operation and inter-join parallelism
where several joins may be performed concurrently. Our experimental results on simulated data show very
encourage performance gain in controlled settings. This opens up interesting and potential options for
implementing dynamic query optimizers for ACO System.

REFERENCES
A, D. M. (1996). System optimization by a colony of cooperating agents systems,Man, and cybernetics . IEEE
Transactions, (pp. 29-41).

A, H. (2009). evolution of query optimization methods from centralized database system to data grid systems.
Proceedings of the 20th International Conference on Database and expert system Applications Linz,.

Alaa Aljanaby, E. A. (2005). A Survey of Distributed Query Optimization. International Arab Journal of
Information Technology, 2(1), 48-57.

Arvind Arasu, S. B. (2006). The CQL continuous query language: semantic foundations and query execution.
The VLDB Journal , 121- 142.

Auvi Silbershatz, H. K. (2002). Database System Concepts. McGraw-Hill.

C.E, C. T. (2005). Database Systems. A practical Approach to design Implementation and Management.
Addison — Wesley.

Dewitt, D. J. (1985). Multiprocessor Hashed-Based Join Algorithms,. Proc. VLDB 85, 151- 164.
H, A. M. (2010). Multi join query optimization using Bees Algorithm.

H, R. N. (1991). A pipeline N-way join algorithm based on the 2 way semi-join program. Knowledge and data
Engineering IEEE Transaction, (pp. 486-495).

11

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

Kitsuregawa, M. A. (1990). Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash Join Method for
Data Skew in the Super Database Computer (SDC). Proc. VLDB 90, 210- 221.

Kosmann, D. (2000). The State of art in Distributed Query Processing. ACM Computing Surveys, 422-469.

Kunal Jamsutkar, V. P. (2013). Query Processing Strategies in Distributed Database. Journal of Engineering,
Computers and Applied Sciences, 71-77.

Lu, H. J. (1990). Hash-based Join Algorithms for Multiprocessor Computers with Shared Memory. Proc. VLDB
90.

Lukasz Golab, T. J. (2008). Prefilter: predicate pushdown at streaming speeds. In Proceedings of the 2nd
international workshop on Scalable stream processing system (SSPS "08), (pp. 29-37).

M, L. R. (1994). Industrial —strength parallel query optimization: issues and lessons. information system, (pp.
311-330).

MW, B. P. (1981). using joins to solve relational Queries. JJACM, (pp. 25 -40).
R.S.G, R. C. (1997). query optimization in distributed relational database. Journal of heuristics, (pp. 5-23).

S.M.T, G. M. (2011). A new vertical fragmentation algorithm based on ant collective behavior in distributed
database systems. Knowledge and information systems,.

S.T, R. S. (1997). optimizing distributed queries : A genetic algorithm approach Annals of operations Research.,
(pp. 199-228).

Schneider, D. A. (n.d.). A Performance Evaluation of Four Parallel Join Algorithms in a Shared-Nothing
Multiprocessor Environment. Proc. SIGMOD 89.

Shivnath Babu, K. M. (2005). Adaptive Caching for Continuous Queries. In Proceedings of the 21st
International Conference on Data Engineering (ICDE “05), (pp. 118— 129).

Shivnath Babu, R. M. (2004). Adaptive ordering of pipelined stream filters. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data (SIGMOD "04).

Shivnath Babu, U. S. (2004). Exploiting k-constraints to reduce memory overhead in continuous queries over
data streams. ACM Trans. Database Syst, 545-580.

Singh, D. S. (2011). A Novel approach of Query Optimization for Distributed Database Systems. International
Journal of Computer Science,, 8(1), 307-312.

Sunita Mahajan, M. &. (2012). General Framework for Optimization of Distributed Queries. International
Journal of Database Management System, 4(3), 35-47.

T, I. T. (1984). On the optimal nesting order for computing N- Relational joins. ACM Trans. Database Syst, (pp.
482-502).

Valduriez, P. A. (1984). Join and Semijoin Algorithms for a Multiprocessor Database Machine. ACM Trans.
Dafabase Syslems, 9(1), 133- 161.

Valduriez.P, O. M. (2011). Principles of distributed database system 3rd ed.,springer.

Wolf, J. L. (1990). An Effective Algorithm for Parallelizing Sort Merge Joins in the Presence of Data Skew.
Proc. 2nd Intl. Symp. Databases in Parallel and Distributed Systems, 103-115.

Y.E, I. (1996). Query Optimization . ACM Comput.Sur28, (pp. 121-123).

12

International Journal of Computational Intelligence and Informatics, VVol. 9: No. 3, December 2019

Authors Profile

Dr. P. Madhubala pursued Ph.D. in Computer Science from Mother Teresa Womens
University, kodaikanal in the year 2017. She is currently working as Head & Assistant
Professor in PG & Research Department of Computer Science, Don Bosco College, Periyar
University, Salem since 2007. She has published more than 15 research papers in reputed
international journals and participated in conferences including IEEE and it“s also available
online. Her main research work focuses on Cloud Security and Privacy, Cryptography
Algorithms, Network Security, and Big Data Analytics. She has 17 years of teaching
experience and 5 years of Research Experience.

G.Sakthivel pursued Bachelor of Science from Sacred Heart College, Madras
University, Master of Computer Science from Thiruvalluvar University and M.phil of
computer science in the year 2009. He is currently pursuing Ph.D. and working as Assistant
Professor in PG Department of Computer Science, Arignar Anna College (Arts & Science)
since 2010. He has published more than 5 research papers in reputed international journals and
presented papers in National and International conferences. His main research work focuses
on Set containment Joins, Cryptography Algorithms, Big Data Analytics and Data Mining. He
has 10 years of teaching experience & 2 years of Research Experience.

13

