

PERIYAR UNIVERSITY

Salem – 636 011, Tamil Nadu, India

NAAC A⁺⁺ Grade State University – NIRF Rank 56 -State Public University Rank 25

DEPARTMENT OF BIOTECHNOLOGY

M.Sc BIOTECHNOLOGY

SYLLABUS

(Choice-Based Credit System)

FROM THE ACADEMIC YEAR

2025-2026

Programme	M.Sc. BIOTECHNOLOGY
Programme Code	
Duration	PG – 2 YEARS
	PO1: Problem Solving Skill
	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based
	decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based
	perspectives to all organizational activities.
Programme	PO4: Communication Skill
Outcomes (POs)	Ability to develop communication, managerial and interpersonal skill
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational
	goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability
	skills in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.

	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
	PSO1 – Placement
	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur
Programme	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
Specific	PSO3 – Research and Development
Outcomes (PSOs)	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
	PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

M.Sc. Biotechnology Programme structure, course work contact hours, credits and maximum internal and external marks for the students admitted in 2025 – 2026 onwards

Course	a a -		Inst. Hrs/	Cre	Exam Hrs	Marks		Total
Components	Course Code	Title of Course work	Wk	dits	1115	Int	Ext	Marks
		SEMESTER - I						
Core paper- 1	25UPBIT1C01	Biochemistry & Enzymology	7	5	3	25	75	100
Core paper - 2	25UPBIT1C02	Genetics and Molecular Biology	7	5	3	25	75	100
Practical I	25UPBIT1L01	Practical – I: Biochemistry & enzymology, Genetics and Molecular Biology	6	4	6	40	60	100
Elective Paper -1 Discipline Centric	25UPBIT1E01	Bioinstrumentation	5	3	3	25	75	100
Elective Paper -2 Generic	25UPBIT1E02	Cell Biology	5	3	3	25	75	100
	Tota	al	30	20				500
		SEMESTER - II						_
Core Paper-3	25UPBIT1C03	Microbiology	5	5	3	25	75	100
Core Paper-4		Plant and Animal Biotechnology	5	5	3	25	75	100
Practical II	25UPBIT1L02	Practical – II Microbiology, Plant and Animal Biotechnology	6	4	6	40	60	100
Elective Paper -3/	25UPBIT1E03/	Regulatory Affairs and Industrial Standards /	3	3	3	25	75	100
Elective Paper -4 Discipline Centric	25UPBIT1E04	Pharmaceutical Biotechnology						
Elective Paper -5 Generic Elective	25UPBIT1E05	Environmental Biotechnology	3	3	3	25	75	100
NME-I	25UPBIT1N01	MOOC	4	2	3	25	75	100
Skill Enhancement Course -I	25UPBIT1S01	Team Project	4	2	6	40	60	100
Compulsory Paper	23UPPGC1H01	Human Rights	-	1	3	25	75	100
	Tota	al	30	25				800

	SEMESTER – III							
Core Paper-5	25UPBIT1C05	Bioinformatics	5	5	3	25	75	100
Core Paper-6	25UPBIT1C06	Immunology	5	5	3	25	75	100
Core Paper -7	25UPBIT1C07	Bioprocess Technology	5	5	3	25	75	100
Practical III	25UPBIT1L03	Practical – III Bioinformatics, Immunology and Bioprocess Technology	6	4	6	40	60	100
Elective Paper -6/ Elective Paper -7 Discipline Centric	25UPBIT1E07	Nano Biotechnology / Molecular Developmental Biology	3	3	3	25	75	100
Internship/ Industrial Activity	25UPBIT1I01	Internship in Industries to Biotechnology Field (food / clinical trial/ dairy/ aqua sciences, pharmaceutical) CSIR/DBT/ DST research laboratories	-	2	3	-	100	100
NME - II	25UPBIT1N02	Applied Biotechnology	4	2	3	25	75	100
Skill Enhancement Course -II	25UPBIT1S02	Mini Project	2	2	6	40	60	100
	Tota	al	30	28				800

		SEMESTER – IV						
Core Paper-8	25UPBIT1C08	Research Methodology	6	5	3	25	75	100
Project - 1	25UPBIT1P01	Dissertation/ Project with Viva-voce	18	8	6	60	240 (40-work book, 150 Dissertat ion +50- Viva)	300
Elective Paper-8/	25UPBIT1E08/	Stem Cell Biology/	4	3	3	25	75	100
Elective Paper-9	25UPBIT1E09	Bioethics, Biosafety, Clinical Trials, IPR & Entrepreneurship						
Skill Enhancement Course -III	25UPBIT1S03	Bio-Entrepreneurship in Biotechnology	2	2	6	-	100	100
Extension Activity	25UPBIT1X01		-	1	-	-		
	Tota	al	30	19				600
	Final 7	Cotal		92				2700

PATTERN OF QUESTION PAPER

Question paper pattern for M.Sc Biotechnology degree course for each semester will be given as follows. For Theory Paper subjects

Part A (20 x 1 = 20 marks)

20 Objective questions covering all units of the syllabus

Part B (3 x 5 = 15 marks)

3 Paragraph questions of 5 marks to be answered choosing any three out of five. Open choice pattern.

Part C (5 x 8 = 40 marks)

5 Paragraph questions of 8 marks to be answered choosing one each from each unit following either/or pattern

Best two internal assessments out of 3	10 marks
Attendance	5 marks
Seminar	5 marks
Assignment	5 marks
Total	25 marks

Internal: 25 Marks

The following procedure is followed for Internal Marks: Theory Papers & Practical

Internal: 40 Marks

Total	40 marks
Viva-voce	5 marks
Record	5 marks
Attendance	5 marks
Practical Observation Note	5 marks
Practical Tests 2 out of 3	20 marks

Break-up Details for Attendance

Category	Marks
91% to100%	5 marks
76% to 90%	4 marks
60% to 75%	3 marks
Below 60%	No marks

Paper – 1							
Title of the paper	Subject code	: 25UPBITC01					
Category of the course	Year	IOLOGY Semester	Credits	Hours			
Core Paper	Ι	Ι	5	7			

Core Paper-1 BIOCHEMISTRY & ENZYMOLOGY

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Biochemical concepts, Metabolic reactions and its regulation. The student will get to understand the core concepts of metabolism and physiological processes of the body in both healthy and disease state. Additionally, the study of enzymology offers insights into enzyme structure, kinetics and functions, equipping students with essential knowledge of enzyme mechanisms and their clinical and industrial applications.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the basics of pH and related principles and carbohydrate metabolism.
CO-2	To provide basic knowledge about lipid metabolism and related significance.
CO-3	To update the knowledge on Amino acids and Protein & To assess and appraise the role of
	Nucleic acids.
CO-4	Explain the basics of enzyme nomenclature and properties & Examine the equations of
	steady state kinetics
CO-5	To study the downstream processing of enzymes and compile the Industrial and Clinical
	applications of enzymes

SYLLABUS | Core Paper-1 | BIOCHEMISTRY & ENZYMOLOGY

	SILLADUS COLETAPEL-I DIOCHEMISIKI & ENZIMOLOGI							
Unit	Content	Hours	COs	Cognitive level				
Ι	pH, pK. Acid, base. Buffers- Henderson- Haselbach equation, buffer systems of blood. Carbohydrates: Classification – structure, physical and chemical properties and functions of biologically important monosaccharides, disaccharides, and polysaccharides. Carbohydrate metabolism: Glycolysis, oxidative decarboxylation, citric acid cycle, glycogenesis, glycogenolysis and gluconeogenesis.	10	CO1	K1&K2				
П	Lipids: Classification - structure, physical and chemical properties of simple lipids - triglycerides, complex lipids - phospholipids and glycolipids and derived lipids - fatty acids and sterol. Lipid metabolism: Biosynthesis of fatty acids, triglycerols, phospholipids, glycol lipids. Cholesterol biosynthesis. Oxidation of fatty acids - alpha and β-oxidation.	10	CO2	K1, K2& K3				

ш	Amino acids: Classification - structure, physical and chemical properties of amino acids. Proteins: Classification - Orders of protein structure: Primary, secondary (α -helix, β -pleated sheet), tertiary, and quaternary structures. Nucleic acids: Structure and functions of DNA and RNA. Metabolism: Biosynthesis and catabolism of purine and pyrimidine.	10	CO3	K1, K2 & K3
IV	Enzymes: Introduction to enzymes, Classification and nomenclature. Enzyme catalysis: enzyme specificity and the concept of active site, determination of active site, factors affecting enzyme activity: substrate, pH, temperature, co-factors and coenzymes. Kinetics of catalysed reaction: Single substrate reactions, bisubstrate reactions, concept of Michaelis-Menten equation and line weaver burk plot. Inhibition of enzyme activity.	10	CO4	K1, K2 & K3
V	Theories on mechanism of catalysis: Mechanism of action of lysozyme, chymotrypsin, carboxypeptidase and DNA polymerase. Multienzymes system: Pyruvate dehydrogenase. Iso-enzyme action, co-enzymes. Enzyme regulation - modes for action of allosteric enzymes. Immobilized enzymes. Clinical and industrial applications of enzymes.	10	CO5	K1, K2 & K3

Reference books:

- Philip Kuchel, Simon Easterbrook-Smith, Vanessa Gysbers, Jacqui M. Matthews, 2011. Schaum.s Outline of Biochemistry, Third Edition (Schaum.s Outline Series), McGraw-Hill.
- Sathyanarayana.U and U.Chakrapani., 2011. Biochemistry. Books and Allied private limited, Kolkata. Jeremy M. Berg, John L. Tymoczko, LubertStryer, 2010. Biochemistry, Seventh Edition, W.H. Freeman.
- Albert Lehninger, David L. NelsonVoet Donald, Judith G.Voet and Charlotte W.Pratt., 2008. Principles of Biochemistry. John Wiley and sons, Inc., New Jersey.
- Michael M. Cox, 2008. Lehninger Principles of Biochemistry, Fifth Edition, W. H. Freeman publishers.
- Nicholas C.Price and Lewis Stevens., 2010. Fundamentals of Enzymology. Oxford University Press, New Delhi
- Lehninger, Nelson and Cox, 2005, Principles of Biochemistry 4th edition, WH Freeman and Company, New York, USA
- Principles of Biochemistry with human focus Garrett and Grisham, 2002, Harcourt College Publishers, Orlando, Florida, USA.
- Geoffrey L, Zubay, Biochemistry -, 1998, 4th edition. 23
- Donald Voet, Judith Voet and Pratt, 1995, Fundamentals of Biochemistry, 2nd edition.
- Harper.s Biochemistry Murray et al, 2000, 25th edition, Appleton and Lange Publishers.
- Enzymes Trevor Palmer 2002.

Useful web sites:

- mcdb-webarchive.mcdb.ucsb.edu/.../biochemistry/.../website-tourf.htm
- <u>www.biochemweb.org/</u>
- <u>http://golgi.harvard.edu/biopages.html</u>
- webarchive.mcdb.ucsb.edu/sears/biochemistry/info/website
- webarchive.mcdb.ucsb.edu/sears/biochemistry/info/website-
- <u>www.lsbu.ac.uk/biology/enztech/</u>
- www.lsbu.ac.uk/biology/enzyme/
- <u>http://www.aetlted.com/tech/applications.html</u>

Core Paper-2 GENETICS AND MOLECULAR BIOLOGY

Paper – 1					
Title of the paper	GENETICS AND	Subject code: 2	5UPBIT1C02		
	BIOL	OGY			
Category of the	Year	Semester	Credits	Hours	
course					
Core Paper	Ι	Ι	5	7	

Learning outcome:

On completing the course, the student will learn the basic concept of Mendalian and non-Mendelian inheritance patterns in plants and animals; Relate modern techniques to the understanding of genetics, Microbial genetic process like generation of mutants for genetic analysis as well as to get an in-depth understanding about the molecular genetics. Apprise the principles of gene expression and regulation in prokaryotic and eukaryotic cells. Apprise the importance of epigenetic and methylation systems in gene regulation. Understand the importance of DNA binding motifs in gene regulation.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	Understanding the basic concept of Mendalian and non-Mendelian inheritance patterns in
	plants and animals
CO-2	Relate modern techniques to the understanding of genetics; Microbial genetic process like
	generation of mutants for genetic analysis as well as to get an in-depth understanding about
	molecular genetics.
CO-3	Appreciate the principles of gene expression and regulation in prokaryotic and eukaryotic
	cells.
CO-4	Apprise the importance of epigenetic and methylation systems in gene regulation.
CO-5	Understand the importance of DNA binding motifs in gene regulation.

SYLLABUS | Core Paper-2 | GENETICS AND MOLECULAR BIOLOGY

Unit	Content	Hours	COs	Cognitive level
I	Mendelian principles: Dominance, Segregation and independent assortment. Mendelian Crosses and Punnett square. Incomplete dominance, Epistasis, Linkage and crossing over. Genetics of Eukaryotic Linkage and Linkage Mapping. Population genetics: Hardy-Weinberg equilibrium, genetic drift and speciation.	10	CO1	K1,K2& K3
п	Recombination: Plasmids-origin of replication, incompatibility. Mutations and genetic analysis – auxotrophic, conditional lethal, resistant mutants. Isolation, selection and replica plating of mutants – complementation and recombination test. Transformation, Transduction. Conjugation: F-factor and Mating types	10	CO2	K1,K2&K3

	DNA as Genetic Material; DNA: Types and structure.			
	DNA replication in prokaryotes and eukaryotes. DNA			
	Repair Mechanisms: SOS, thymine dimerization,			
	mismatch repair.			
	Transposons: Early experiments of McClintock in maize.			
	Insertion sequences in prokaryotes. Complex transposons			
TTT	(ex. Tn3, Tn5, Tn9 and Tn10). Mechanisms, control	10	CO3	
III	consequences and application of transposition by simple	10		K1,K2&K3
	and complex elements			
IV	RNA: Types of RNA, RNA polymerase, and Promoters:	10	CO4	K1 &K2
	classes and consensus sequences, Transcription factors.			
	Transcription in prokaryotes and eukaryotes. Genetic Code.			
	Translation: Steps; protein folding and Intracellular protein			
	trafficking and targeting			
V	Regulation of gene expression in prokaryotes: Lactose and			
•	tryptophan; epigenetic regulation of gene expression in			
	eukaryotes. DNA methylation – histone modification –			
	acetylation and deacetylation, DNA binding motifs –Zinc	10	CO5	K1,K2& K3
	finger, Leucine Zipper, HLH, and HTH	10	005	1X1,1X2& K3
Dé	inger, Leaeme Lipper, indri, und ittit			

References:

• Principles of Genetics- 8th Edition, Gardner, Simmons and Snustad, 2002.

• Robert Brooker.2011. Genetics- Analysis and Principles. 4th edition. McGraw Hill.

- Leland Hartwell,Leroy Hood, Michael Goldberg, Ann Reynolds, Lee Silver,2010.Genetics: From Genes to Genomes, 4th Edition, McGraw Hill.
- Rastogi Smita and Neelam Pathak.,2010. Genetic Engineering, Oxford University Press, New Delhi. (Rack 3, Central Library)
- Watson, Hopkins, Roberts, Steitz, Weiner, 2004. Molecular Biology of Genes, 4th Edition.
- Genetics of Population Hedrick P.W. Jones & Bartlett 4th Edition
- Daniel L. Hartl and Andrew G. Clark. Sinauer and Associates, Sunderland, MA, 2007. xv + 652 pp, ISBN-10: 0-87893-308-5.
- Benjamin Lewin. Genes XI.2013. Benjamin-Cummings Pub Co.
- Twyman, R.M. 2000. Advanced Molecular Biology: A Concise Reference. Garland/bios Scientific Publishers
- Larry Snyder, Wendy Champness.2002.Molecular Genetics of Bacteria. 2 nd Edn. Amer Society for Microbiology.
- The Cell- A Molecular Approach. 3rd Edition. Geoffrey M. Cooper, Robert E. Hausman, 2003.

Useful website

- <u>https://teach.genetics.utah.edu/</u>
- https://www.biologyonline.com/

PRACTICAL-I

Practical-I						
Title of the paper	Title of the paper PRACTICAL-I					
	Biochemistry & Enzymology, Genetics and Molecular Biology					
Category of the	Year	Semester	Credits	Hours		
course						
Practical	Ι	Ι	4	6		

Biochemistry & Enzymology, Genetics and Molecular Biology

Learning Outcome: The practical will establish a basic study skills on the subject will provide and improve the practical course knowledge in students about the laboratory experimental knowledge of genetics, molecular biology, Biochemistry and enzymology

Course outcomes:

On successful completion of the course the students will be able to

CO 1	Study the methods of estimation of biomolecules
CO 2	Separation and estimation of proteins & Optimization of enzymes
CO 3	Isolate and analyze DNA, RNA & protein
CO 4	Critically analyze the isolated biomolecules
CO 5	Evaluate the quality and purity of DNA, RNA & Protein

	SYLLABUS PRACTICALS PRACTICAL-I				
Unit	Content	Hours	COs	Cognitive level	
	A) Biochemistry & Enzymology				
	1. Extraction of proteins (enzyme-catalase, amylase)				
	from biological materials				
	2. Protein separation methods:-Ammonium sulphate				
	Precipitation				
	3. SDS-PAGE for separation of proteins				
	4. Estimation of Proteins by Lowry's method				
	5. Estimation of RNA by orcinol method	15	CO1	K3 & K4	
	6. Estimation of DNA by diphenylamine method		CO2		
	7. Estimation of Carbohydrate by Anthrone method		CO3		
	8. Separation of sugars by Paper Chromatography		CO4		
	9. Separation of amino acids by Thin layer		CO5		
	chromatography				
	10. Effect of pH, Temperature, Substrate concentration and				
	enzyme concentration on catalase / amylase				
	(B) Genetics & Molecular Biology				
	1. Agarose gel electrophoresis of DNA				
	2. Restriction digestion of DNA				
	3. Giant chromosome studies in Chironomous larvae				
	4. Cell counting and cell viability;				
	5. Meiotic study in flower bud, sand cockroach or				
	grasshopper.				

6. Subcellular fractionation and marker enzyme		
detection (mitochondria).		
7. Preparation of single cell suspension from spleen		
and thymus.		
8. Isolation of DNA from bacteria.		
9. Isolation of DNA from plants.		
10.Plasmid DNA isolation.		
11.Radiation induced genetic damage assessment.		
12. Chemical induced genetic damage assessment.		
13. Preparation of metaphase chromosomes form blood.		
14. Histochemical staining to localize proteins		
15. Histochemical staining to localize carbohydrates		
16. Histochemical staining to localize lipids.		

Elective Paper-1

BIOINSTRUMENTATION

Elective Paper – 1						
Title of the paperBIOINSTRUMENTATIONSubject code: 25UPBIT1E01						
Category of the course	Year	Semester	Credits Hour			
Elective Paper	Ι	Ι	3	5		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the instrumentation concepts, in biology. The student will get to understand the core concepts of biological instruments and their principles.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	Understanding of various types of Microscopic techniques
CO-2	Impart understanding on centrifugation instruments and techniques
CO-3	Separation of Biomolecules using electrophoretic techniques
CO-4	Analytical methods on Spectroscopic Analysis
CO-5	Understand the principle and applications and Radioisotope techniques

	SYLLABUS Elective Paper-1 BIOINSTRUMENTATION				
Unit	Content	Hours	COs	Cognitive level	
I	Microscopic Techniques: Principles and Applications: Compound, Light, Stereo, Phase Contrast, Fluorescent Microscopy, Scanning and Transmission Electron Microscopy, Atomic Force Microscopy, Confocal Microscopy, FRET and Flow Cytometry.	7	CO1	K1 & K2	
II	pH meter. Centrifugation: Principle and applications of various types of centrifugation, RCF, Density Gradient Centrifugation. Chromatography Techniques: Principle and Application of Paper Chromatography, TLC, Gel Filtration Chromatography, Ion Exchange Chromatography, Affinity Chromatography, GC & HPLC.	7	CO2	K1, K2,K3	

ш	Electrophoretic Techniques: Principle and Application of Agarose Gel Electrophoresis, 2D-gel Electrophoresis, PAGE- NATIVE & SDS PAGE, Iso- electric Focusing, High resolution Electrophoresis, Immuno Electrophoresis (Immunofixation EP), Southern, Northern and Western Blotting. Electro	7	CO3	K1, K2 & K3
	blotting, PCR and RT-PCR, Microarray (DNA, Proteins)			
IV	Spectroscopic Techniques: Theory and Application of UV and Visible Spectroscopy, Fluorescence Spectroscopy, Mass Spectroscopy, IR Spectroscopy NMR, Atomic Absorption Spectroscopy, X- ray Spectroscopy, Laser Spectroscopy, FT-IR spectroscopy.	7	CO4	K1,K2& K3
v	Radio-isotopicTechniques:IntroductiontoRadioisotopes, Uses and their Biological Applications,RadioactiveDecay—TypesandMeasurement,Principles and Applications of GM Counter, Solid andLiquidScintillationCounter,Autoradiography,RadiationDosimetry,Health effects of Radiations.	7	CO5	K1,K2& K3

Reference books

- M.H. Fulekar and Bhawana Pandey Bioinstrumentation, Wiley
- Keith Wilson, John Walker, 2010. Principles and Techniques of Biochemistry and Molecular Biology (7th Edition), Cambridge University Press •
- David L. Nelson, Michael M. Cox. Menninger (2008). Principles of Biochemistry, Fifth edition W. H. Freeman, New York. •
- Experiments in Biochemistry: A Hands-On Approach by Shawn O. Farrell, Ryan T. Ranallo, Paperback: 324 pages, Publisher: Brooks Cole. 20
- Metzler D.E. 2001, the chemical reactions of living cells –Academic Press. 2nd edition.
- Stryer L,1999, Biochemistry-W.H. Freeman & Company, New York. 1. 4th edition
- L.Veerakumari (2006) Bioinstrumentation MJP Publisher Kindle edition
- Jefrey. M., Backer el al., 1996. Biotechnology- A Laboratory Course. Academic Press, New York.
- Holcapek, M., Byrdwell, Wm. C. 2017. Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Elsevier

CELL BIOLOGY

Elective Paper – 2							
Title of the paperCELL BIOLOGYSubject code: 25UPBIT1E02							
Category of the course	Year	Semester	Credits Hou				
Elective Paper	Ι	Ι	3	5			

Learning Outcome:

This course will provide understanding about the cell structure and function of Prokaryotic and eukaryotic cells. Topics such as Cell transport, signaling and communication, cell division, cell cycle regulation, and cell mobility will empower the student in understanding the functioning of the cell with various applications such as cancer biology, immunology and nanotechnology

Course outcomes:

CO-1	Understand the Cellular Organization of Prokaryotes and Eukaryotes
CO-2	Understand the cellular transport of nutrients and other molecules
CO-3	Comprehensive view of components of cell communication and functioning
CO-4	Understand the mechanism of cell mobility
CO-5	Understand cell cycle and application in cancer

	SYLLABUS Elective Paper-2 CELL BIOLOGY				
Unit	Content	Hours	COs	Cognitive level	
I	Molecular organization of prokaryotes and eukaryotes, Structure and function of peroxisomes and Nucleus. Structure and function of cell organelles:		601		
	Mitochondria, chloroplast, golgi apparatus, lysosomes, endoplasmic reticulum and ribosomes	7	CO1	K1 & K2	
п	Fluid Mosaic model. Gap junction, Tight junction and Desmosomes. Membrane transport: passive and facilitated diffusion, active transport, symport, antiport, ATPase, ABC transporters, ion channels and aquaporins. Intercellular communication	7	CO2	K3 & K5	
ш	Concept, ligands and receptors. Endocrine, paracrine and autocrine signaling. G protein coupled receptors, receptor kinases. Signal transduction: Cytoplasmic and nuclear receptors. Secondary Messengers: cAMP, Ca+, cGMP and Nitrous oxide	7	CO3	K3, K4 & K5	
IV	Microtubules, Microfilaments, Intermediate filaments, Amyleoid fibers. Cell mobility: Endocytosis and Exocytosis. Proton pump		CO4	K3, K4 & K5	
v	Mitosis, Meiosis, Cell Cycle: phases. Cell cycle regulation, checkpoints. Cell death: Apoptosis and necrosis		CO5	K1, K2, K3 & K4	

- Bruce Alberts , Alexander Johnson , Julian Lewis, Martin Raff , Keith Roberts, Peter Walter. 2014. Molecular Biology of the Cell, 6th Edn . Academic Press. NewYork.
- E. D. P. De Robertis, E. M. F. De Robertis Jr. Cell and Molecular Biology 8th Ed., South Asian Edition. Lippincott, Williams and Wilkins.
- Gerald Karp. 2013. Cell and Molecular Biology: Concepts and Experiments, 7th Edn. Wiley.
- Geoffrey Cooper. 2013. The Cell: A molecular approach. 6th Edn. Sinauer AssociatesInc.
- Lodish, Baltimore et al. 2007. Molecular Cell Biology. 6th Edn. W.H. Freeman &Co.

Useful Websites

- https://library.stanford.edu
- <u>http://www.cellbiol.com</u>

Semester I Ends

II SEMESTER

Course	~ ~ .		Inst.	Cre	Exam	Marks		Total
Components			Hrs	Int	Ext	Marks		
	SEMESTER -							
Core Paper-3	25UPBIT1C03	Microbiology	5	5	3	25	75	100
Core Paper-4	25UPBIT1C04	Plant and Animal Biotechnology	5	5	3	25	75	100
Practical II	25UPBIT1L02	Practical – II Microbiology, Plant and Animal Biotechnology	6	4	6	40	60	100
Elective Paper -3/ Elective Paper -4 Discipline Centric	25UPBIT1E04	Regulatory Affairs and Industrial Standards / Pharmaceutical Biotechnology	3	3	3	25	75	100
Elective Paper -5 Generic Elective	25UPBIT1E05	Environmental Biotechnology	3	3	3	25	75	100
NME-I	25UPBIT1N01	MOOC	4	2	3	25	75	100
Skill Enhancement Course –I	25UPBIT1S01	Team Project	4	2	3	40	60	100
Compulsory Paper	23UPPGC1H01	Human Rights	-	1	3	25	75	100
	Tot	al	30	25				800

MICROBIOLOGY

Paper – 3						
Title of the paperMICROBIOLOGYSubject code: 25UPBIT1C03						
Category of the	Year	Semester	Credits Hou			
course	course					
Core Paper	Ι	II	II 5 5			

Learning Outcome:

To provide a comprehensive knowledge on taxonomy and microbial diversity, growth, their harmful effects and beneficial role of microorganisms in agriculture and environment

Course outcomes:

CO-1	To understand the major discoveries of microbiology and describe microbial diversity,
	Microbial growth and metabolism.
CO-2	To provide basic knowledge about microbial culture, identification of microbes, principle
	and working of microscopes and sterilization techniques
CO-3	To enlighten the students on host microbe interaction and Epidemiology of microbial
	disease
CO-4	To update the knowledge on epidemic and pandemic diseases.
CO-5	To assess and appraise the role of novel microbes in environment and integrate them in
	specific innovative approaches.

	SYLLABUS Core Paper-3 MICROBIOLOGY					
Unit	Content		Cos	Cognitive level		
I	History of microbiology: Major discoveries related to the field of microbiology: Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch and Edward Jenner. Microbial taxonomy: Bacteria, viruses, fungi, algae and protozoa, Microbial diversity: Biovars, and Serovars. Microbial metabolism-Methanogenesis, acetogenesis and auxotrophs	10	CO1	K1, K2 & K3		
II	Microbial culture, identification, and control: Nutritional requirements for growth - Growth media and types, Pure culture techniques: Serial dilution and plating methods, Identification of bacteria: Staining methods - simple and differential, Biochemical - IMViC and 16s rRNA sequencing. Microbial growth: Growth curve and factors affecting growth– Heat, Filtration, Low Temperatures, High Pressure, Desiccation, Osmotic Pressure, Radiation; Chemical methods.	10	CO2	K2, K3, K5		

III	Host microbe interaction. Symbiotic relationship of			
	microbes: Symbiosis, Mutualism, Parasitism,	10	CO3	K1, K2, K3
	Commensalism and endophyte. Human microbiome;			
	Skin, Gastrointestinal tract, Oral cavity, Lung.			
	Microbial Diseases: General characteristics,			
	pathogenesis, laboratory diagnosis and control			
	measures of Pandemic and Epidemic diseases.			
	Epidemiology of microbes: causes, types and	10	CO4	K4 &K5
IV	transmission of epidemic - Cholera, Typhoid, Yellow			
	Fever, Dengue; endemic - Tuberculosis, Leprosy and			
	Malaria and pandemic - COVID-19, AIDS, Smallpox			
	diseases: Tuberculosis, Leprosy, Cholera, Typhoid,			
	COVID-19, Yellow Fever, Flu, AIDS, Ebola, Zika			
	Virus, Smallpox, Dengue, Chikungunya, Malaria,			
	filariasis, Candidiasis, superficial mycosis			
	Agricultural and Environmental Microbiology:			
	Biological nitrogen fixation, free living, symbiotic			
	nitrogen fixation, mechanism of Nitrogen fixation,	10	CO5	K4 & K5
	Biofertilizers- types and applications; Rhizosphere	10	000	Κ4 α Κ
V	effect. Biogeochemical cycles-Carbon, Nitrogen,			
	Sulphur and Phosphorous; Methanogenic bacteria			
	Extremophiles- Thermophiles, Acidophiles,			
	Halophiles and alkaliphiles; Biotechnological			
	application of extremophiles			

References

- Joanne Willey, Linda Sherwood, Christopher J. Woolverton, (2017). Prescott's Microbiology, (10th edition), McGraw-Hill Education, ISBN: 978-1259281594.
- Maheshwari D K, Dubey R C 2013. A Textbook of Microbiology.4th Edn S Chand Publishing India.
- Ananthanarayan and Paniker's (2017) Textbook of Microbiology, (10th edition), The Orient Blackswan, ISBN: 978-9386235251.
- Benson HJ. (1999). Microbiological Applications: A Laboratory manual in General Microbiology, 7th Edition, McGraw Hill. 5
- Managing epidemics- Key facts about major deadly diseases, World Health Organization (WHO) 2018. 9. O'Flaherty, Vincent & Collins, Gavin & Mahony, Thérèse. (2010). Environmental Microbiology, Second Edition. 10.1002/9780470495117.ch11.
- Agriculture Microbiology, 2016. E-Course Developed By TNAU (ICAR)

Web Sources

- https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf ISBN 978- 92-4-156553-0.
- <u>https://doi.org/10.3389/fmicb.2020.631736</u>
- https://www.agrimoon.com/wp-content/uploads/AGRICULTURAL-Microbiology.pdf.

Core Paper-4

Paper –4						
Title of the paper	PLANT AND ANIMAL Subject code: 25UPBIT1					
	BIOTECHN	IOLOGY				
Category of the	Year	Semester	Credits	Hours		
course						
Core Paper	Ι	II	5 5			

PLANT AND ANIMAL BIOTECHNOLOGY

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological applications on plants and animals. The student will get to understand the core concepts of biotechnology.

Course outcomes:

CO-1	To impart theoretical knowledge on various techniques of plant biotechnology like
	tissue culture, plant genetic transformation and their application in industries.
CO-2	Importance of secondary metabolites and production in plants.
CO-3	To develop concepts, principles and processes in animal biotechnology.
CO-4	Concept and different types in Animal Cell Culture and animal cell lines.
CO-5	Use of molecular biology techniques genetically engineer the plants and animals to
	improve sustainability, productivity and suitability for agriculture, pharmaceutical
	and industrial applications.

SYLLABUS | Core Paper-4 | PLANT AND ANIMAL BIOTECHNOLOGY

Unit	Content	Hours	COs	Cognitive level
I	Introduction of plant tissue culture, composition of media, Micropropagation, organogenesis, somatic embryogenesis, haploid and triploid production, protoplast isolation and fusion, hybrid and cybrid, synthetic seed production. Secondary metabolites of plants using plant cell cultures: Glycosides, Flavonoids, Anthocyanins, Coumarins - Lignans, Terpenes, Volatile oils and Saponins; Carotenoids and Alkaloids. Role of Precursors and Elicitors in plant secondary metabolites.	10	CO1	K1, K2 & K3
П	Plant Transformation Direct transformation by electroporation and particle gun bombardment. Agrobacterium, Ti plasmid vector. Theory and techniques for the development of new genetic traits, conferring resistance to biotic and abiotic. Plant engineering towards the development of enriched food products, Molecular Marker aided breeding: RFLP maps, Linkage analysis, RAPD markers, STS Mirco satellite, SCAR, QTL, Map based cloning and Molecular marker assisted selection.	10	CO2	K1, K2 & K5

III	Nutrient requirements of mammalian cells. Media for culturing cells. Growth supplements. Primary cultures. Established cell lines. Stationary and Suspension culture techniques. Characterization and maintenance of cells, cryopreservation and revival. Detection of contaminants in cell cultures. Cell viability and cytotoxicity.	10	CO3	K4 & K5
IV	Stem cells: Types - embryonic and adult, isolation, identification, expansion, differentiation and uses. Manipulation of reproduction in animals: Artificial insemination, in vitro fertilization and embryo transfer.		CO4	K2, K3, K4 & K5
V	Development of Herbicide, insecticide and disease resistant plants. Gene silencing and Seed terminator technology. Plant breeders and Farmers Right. Production of industrial and pharmaceutical products in plants and animals. Production of regulatory proteins, blood products, hormones and other therapeutic proteins in transgenic animals. Transgenic animals knockouts.	10	CO5	K3, K4 & K6

Reference Books

- Razdan. M. K., 2011. Plant tissue culture. Oxford and IBH publishing Company Pvt. Ltd, New Delhi.
- Chawla. H. S., 2010. Introduction to plant biotechnology. Oxford and IBH publishing company pvt. Ltd, New delhi.
- Ian Freshney, 2010. Culture of animal cells. 6th edition, Wiley-Blackwell publishers.
- Slater, 2008. Plant Biotechnology: The Genetic Manipulation of plants, Second Edition, Oxford University Press, USA.
- J.D.Watson, Gillman, J.Witkowski and M.Zoller, 2006. Recombinant DNA. 3rd ed.
- W.H.Freeman. 26 K. Dass. 2005, Textbook of Biotechnology, Second Edition, Wiley Dreamtech, India (P) Ltd.
- H.Kreuzer & A. Massey. 2001. Recombinant DNA and Biotechnology: A guide for teachers Second Edition. ASM press, Washington.
- M.Sudhir. 2000. Applied Biotechnology & Plant Genetics. Dominant publishers & Distributors.
- Genetic Engineering of Animals by (Ed) A.Puhler, VCH Publishers, Weinheim, FRG, 1993.
- Animal Cell culture Practical approach. Ed. John R.W.Masters, Oxford.2004.
- Concepts in Biotechnology D. Balasubramaniam, Bryce, Dharmalingam, Green, Jayaraman Univ. Press, 1996
- Carl Pinkert, 2014. Transgenic animal technology A laboratory handbook, 3rd edition, Elsevier Inc.

PRACTICAL-II

Microbiology, Plant and Animal Biotechnology

PRACTICAL-II					
	Subject code: 2	25BIT1L02			
Title of the paper	and Animal Biotechnology				
Category of the	Year	Semester	Credits	Hours	
course					
Practical	Ι	II	4	6	

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to have hands-on experience on the above core subjects.

Course outcomes:

CO-1	Isolate and identify microbes from various sources.
CO-2	Characterize microbes.
CO-3	Examine Plant and Animal cells and their functions
CO-4	Assess extracted DNA, RNA and protein for rDNA technology
CO-5	To study cloning tools

	SYLLABUS PRACTICALS PRACTICAL-II				
Unit	Content	Hours	COs	Cognitive level	
	Microbiology-Practical				
	1. Sterilization and media preparation				
	2. Streak plate method				
	3. Pour plate method			K1, K2, K3, K4, K5	
	4. Spread plate method		CO1 CO2 CO3 CO4 CO5		
	5. Enumeration of total count of the bacteria				
	6. Isolation of microbes from soil				
	7. Isolation of microbes from water				
	8. Isolation of microbes from air	1.7			
Α	9. Isolation of microbes from plant surface	15			
	10. Isolation of pure culture of <i>E.coli</i>			& K6	
	11. Isolation of pure culture of Aspergillus niger				
	12. Gram staining and morphological characterization				
	of microbes.				
	13. Negative staining of bacteria				
	14. Determination of growth curve of bacteria $- E.coli$				
	15. IMViC test of enteric bacteria				
	Plant and Animal Biotechnology – Practical				
	1. Plant tissue culture - media preparation and				
	sterilization				

2. Generation of Callus from leaf/ root/bud
3. Maintenance of callus culture
4. Anther culture
5. Pollen culture
6. Embryo culture
7. Isolation of plant protoplast
8. Agrobacterium culture maintenance and isolation of
plasmid DNA
9. Animal cell culture - media preparation and
sterilization
10. Preparation of sera for animal cell culture
11. Preparation of single cell suspension from chicken
liver/spleen
12. Trypsinization of cell culture
13. Cell counting and viability - staining of cells
Vital Staining -Trypan blue, Erythrosin B,
Giemsa staining

Elective Paper-3

	Ele	ctive Paper – 3		
Title of the paper	Subject code: 25UPBIT1E03			
	INDUSTRIAL STANDARDS			
Category of the	Year	Semester	Credits	Hours
course				
Elective Paper	Ι	II	3	3

REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

Learning Outcome:

The subject imparts knowledge on the fundamentals of regulatory requirement in industries. The student will be provided with a basic knowledge and understanding about the regulatory affairs based on biotechnological industry requirements.

Course outcomes:

CO-1	Elucidate the basic requirements of establish laboratory for testing samples as per the
	regulatory body's requirements
CO-2	Describe the Scientific, technical knowledge about various food preservation techniques
CO-3	Describe the basic concepts of packing of food materials, various parameters observed
	during packaging
CO-4	Describe the testing of food materials and identifying of microbial food contaminant
CO-5	Explain the basic of food safety management system, good manufacturing practice and good hygienic practices

SYLLABUS | Elective Paper-3 | REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS Unit Content Hours COs Cognitive level Planning, Organization and setting of Food testing Ideoratory and laboratory safety Ideoratory setup Ideoratory setup Ideoratory Ideo

	aboratory and laboratory safety				
	Laboratory setup requirements for defensible				
	analytical data. Laboratory design, layout and air				
	handling microbiological testing environment etc.,				
	Introduction to accreditation, Overview of	7	CO1	K2, K3, K4	
т	accreditation bodies (NABL, APLAC, ILAC),		COI	, ,	
	ISO/IEC 17025:2017 standards, documentation, pre-				
	requisites. Laboratory safety: Personnel hygiene,				
	emergency planning, hazards management, safety				
	equipment, storage of chemicals, handling and				
	biological spills and waste disposal.				

r				
II	Principles of Food Preservation Technology-Heat: Principles of Heat transfer, Blanching, Pasteurization, sterilization, cooking. Water Removal: Forms of Water, Sorption, drying and evaporation technology. Temperature reduction: chilling and freezing. Radiation: Ionizing Radiation and Microwave. Use of chemicals: Class-I & Class-II preservatives, smoke additives. New non-thermal methods: High hydrostatic pressure, modified atmosphere, pulsed electric, magnetic fields, hurdle technology, pulsed light, ultrasonic and ohmic heating etc.	7	CO2	K2 & K3
III	Principles of Food Packaging Technology- Effect of environment on food stability: light, oxygen, water, temperature, mechanical and biological factors. Different packaging materials food packaging: Glass, metals, paper, plastics, biodegradable and edible films and aseptic combinations. Packaging material and design for various food commodities tailored for fresh produce, cereal, pulses, oil, meat, fish, poultry, water and processed foods, Evaluation of quality and safety of packaging materials- different testing procedures, Function of packaging: Protective packaging and active packaging smart and intelligent packaging. Packaging technologies- CAP/MAP, aseptic, irradiated, retort pouch and microwaveable packaging.	7	CO3	K2, K3 & K4
IV	Food Microbiology and testing: Introduction of Food microbiology: Classification, morphology of yeast, and molds, bacteria and viruses. Important genera of Gram- positive, Gram-negative, facultative aerobic, anaerobic, endospore-forming and non-sporulating bacteria. Microbial groups: lactic acid, acetic acid, butyric acid, thermophilic, proteolytic, saccharomyces etc, coliforms, enteric pathogens and emerging microbes. Sources of microorganisms: raw materials, water, air, equipment and microbiological quality. Microbial growth in foods: intrinsic (pH, Moisture content, antimicrobial constituents) and extrinsic parameters (temperature, humidity, gases). Thermal destruction of microorganisms: D Value, Z- Value, F-Value, thermal death time curve and 12 D Concept. Microbial food spoilage: food-borne diseases and food pathogens. Microbiological examination of foods: Sampling, isolation, culturing and pure culture maintenance. Observation of indicator organisms: Direct, enumeration (plate count, MPN), Rapid methods-detection of	7	CO4	K2, K3, K4

	specific microorganisms.			
	HACCP and Food safety management systems - ISO			
	22000 and HACCP -Importance, application, principles			
	and limitations. Food safety objectives (FSO). Food			
V	safety audits: Management review, audit certification	7	CO5	K2, K3 & K6
v	and importance. Good manufacturing practices (GMP),	7	005	K2, K5 & K0
	Good hygienic practices (GHP), Food safety plan,			
	traceability food product recalls and sanitation.			

Reference

Food safety standards authority regulation 2011.

Elective Paper-4 PHARMACEUTICAL BIOTECHNOLOGY

Elective Paper-4					
Title of the paper PHARMACEUTICAL Subject code: 25UPBIT1E					
	BIOTECH	BIOTECHNOLOGY			
Category of the	Year	Semester	Credits	Hours	
course					
Elective Paper	Ι	II	3	3	

Learning Outcome

The subject imparts knowledge on the fundamentals of pharmaceutical biotechnology. The student will be provided with a basic knowledge and understanding about the pharmaceutical products produced based on biotechnological methods and its biomedical applications.

Course outcomes

	·····
CO-1	Explain the basic components of pharmaceutical and biotechnology industry and
	methods and applications of biosensor
CO-2	Describe the Scientific, technical and economic aspects of vaccine & rDNA
	technology
CO-3	Describe the basic concepts of protein Engineering, therapeutic proteins and enzyme
	immobilization techniques
CO-4	Describe the concepts of hybridoma technology, microbial biotransformation and
	microbial bio-transformed products
CO-5	Explain the basic components of somatic gene therapy, Xeno-transplantation and
	fermenter and bio safety methods

Content cology and Ethnopharmacology: Scope and nce. Pharmaceutical biotechnology: ction, technologies in pharmaceutical	Hours	COs	Cognitive level
nce. Pharmaceutical biotechnology:			
nology and industrial applications. Biosensors-	7	CO1	K1
g principle and applications of biosensors in ceutical Industries.			
ic, technical and economic aspects of vaccine a and development: Preparation of bacterial s, toxoids, viral vaccine and antitoxins. conditions and stability of vaccines. binant DNA technology: Introduction and ion of rDNA technology in the production of on, Vaccine - hepatitis- B and Hormone -	7	CO2	K3 & K4
oii ic or	nant DNA technology: Introduction and on of rDNA technology in the production of n, Vaccine - hepatitis- B and Hormone - Protein Engineering: Introduction and	hant DNA technology: Introduction and on of rDNA technology in the production of a, Vaccine - hepatitis- B and Hormone - Protein Engineering: Introduction and	hant DNA technology: Introduction and on of rDNA technology in the production of h, Vaccine - hepatitis- B and Hormone -

	Amylase, Catalase, Peroxidase, Lipase, Protease and			
	Penicillinase.			
	Methods of enzyme immobilization and applications.			
	Hybridoma technology - Production, Purification and			
	Applications. Formulation of biotech products -			
	Rituximab. Introduction to Microbial			
	biotransformation and applications. Study of the			
	production of penicillins, citric acid, Vitamin B12 and			
III	Glutamic acid. Somatic gene therapy.	7	CO3	K2
	Xenotransplantation in pharmaceutical biotechnology.			
	Bio safety in pharmaceutical industry			
	Pharmacological activity of Plant derived drugs: Role			
	of plant chemicals in modern pharmacology.			
	Biochemistry and pharmacology of atropine, caffeine,			
IV	ephedrine, opioids, taxol, vinca alkaloids. Synthetic	7	CO4	K2 & K4
	substitutes for therapeutically active plant			
	constituents; drug improvement by structural			
	modification and bio-transformation. Criteria for			
	pharmacological evaluation of drugs.			
	Clinical Pharmacology: Drug therapy-therapeutic			
	situation, benefits and risk of drug use. Mechanism of			
	drug action: Pharmacodynamics - Therapeutic			
	efficacy, Therapeutic index and tolerance. Factors			
V	affecting drug action. Dosage forms and routes of	7	CO5	K1,K2&K5
•	drug action. Adverse Drug reactions (ADR) and drug	,		111,1120110
	poisoning: Classification and causes of ADR;			
	principle clinical manifestations and treatment of			
	ADR. Management of drug poisoning: General			
	principles of antidotes. Drug classification.			
Peference I			1	

Reference Books

- Harbanslal, 2011. Pharmaceuticals biochemistry. CBS Publishers and distributors Pvt. Ltd, Chennai.
- Carlos A. Guzmán and Giora Z. Feuerstein, 2009. Pharmaceutical Biotechnology, 1st edition, Springer.
- Daniel Figeys (Ed.). 2005. Industrial Proteomics: Applications for Biotechnology and Pharmaceuticals. Wiley, John & Sons, Incorporated.
- Kayser, O and Muller R.H.. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinical Applications. WILEY-VCH
- Leon Shargel, Andrew B. C. Yu, Susanna Wu-Pong, and Yu Andrew B. C. 2004. Applied Biopharmaceutics & Pharmacokinetics. McGraw-Hill Companies
- Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical
- Gary Walsh. 2003. Biopharmaceutical, Biochemistry & Biotechnology.
- Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology.
- Thomas Lengauer (Ed.). 2002. Bioinformatics from Genomes to Drugs. Volume I& II. Wiley-VCH.
- John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation Theory and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.
- D.I.A. Crommelin, et al., 2002. Pharmaceutical Biology. Amazon prime publications.
- Werner Kalow, Urs A Meyer and Rachel F. Tyndale. 2001.

• Pharmacogenomics. CPL press.

Useful Websites:

- https://tugasakhirsttifbogor.files.wordpress.com/2018/08/pharmaceutical-biotechnology.pdf
- http://library.nuft.edu.ua/ebook/file/Gad2007.pdf
- https://oasis.iik.ac.id:9443/library/repository/a932eb462c49885a2c72755977036b81.pdf

Elective Paper-5

ENVIRONMENTAL BIOTECHNOLOGY

Elective Paper – 5						
Title of the paper	ENVIRONMENTAL Subject code: 25UPBIT1E05					
	BIOTECHNOLOGY					
Category of the	Year	Year Semester		Credits	Hours	
course	course					
Elective Paper	Ι]	Ι	3	3	

Learning Outcome

The subject imparts knowledge on the fundamentals of ecology and pollution. The student will be provided with a basic knowledge and understanding about the functions of ecosystem and reduction of pollution by biotechnological tools.

Course outcomes

On successful completion of the course the students will be able to

CO-1	Explain the basic and legal views of Environment
CO-2	Understanding the design and mechanism of biofilm reactors
CO-3	Examine the techniques involved in remediation of polluted environments
CO-4	Gaining knowledge on various types of pollution & its control
CO-5	Compile biotechnological approaches to degrade xenobiotic compounds and
	assess the toxicity

	SYLLABUS Elective Paper-5 ENVIRONMENTA	L BIOT	ECHNO	DLOGY
Unit	Content	Hours	COs	Cognitive level
	Environment: Basic concepts and issues;			
	Environmental management and Conservation,			
Ι	Environmental Laws & Agencies involved in	7	CO1	K1 & K2
	conservation. Environmental Pollution: Types of			
	pollution & its control strategies -Air pollution, Soil			
	pollution, Water pollution, Oil pollution &			
	Radioactive pollution			
	Biofilm Kinetics: Completely mixed biofilm reactor-			
	Soluble microbial products and inert biomass-Special-	7	CO2	K3 & K4
II	case biofilm solution. Biofilms and Biofilm Reactors-			

	Biofilm Reactor Design Approaches and			
	Considerations- Moving Bed Biofilm Reactors-			
	Biologically Active Filters-Expanded and Fluidized			
	Bed Biofilm Reactors-Emerging Biofilm Reactors.			
	Engineering design of reactors			
	Waste water management, source and treatment of			
III	waste water, - physical, chemical and biological	7	CO3	K4 & K5
	treatment. Microbiology of Waste water;			
	Aerobic and anaerobic process, BOD and COD.			
	Toxicity: Types and Test for evaluating Toxicity.		CO4	
IV	Biosensors, Biomonitoring of toxic materials	7		K4 & K5
	Biomagnification, Biomining and Biofuels			
	Bioremediation: In-situ and Ex-situ Bioremediation of		CO5	K4 & K5
	contaminated soils and waste land; Microbiology of	7		
V	degradation of Xenobiotics in environment;			
	Pesticides, Surfactants, Degradative plasmids. Solid			
	waste: Composting, Vermiculture and methane			
	production			

Reference Books:

- Gareth M. Evans, Gareth G. Evans, Judy Furlong 2011
- Environmental biotechnology: theory and application John Wiley & Sons, Ltd. West Sussex, UK
- M. Moo-Young, W.A. Anderson, A.M. Chakrabarty, 2010. Environmental Biotechnology: Principles and Applications. Springer.
- M. H. Fulekar, 2010 Environmental Biotechnology, by Science Publishers Department of Life Sciences, University of Mumbai, India,
- Stanley E. Manahan, 2009. Environmental Chemistry, Ninth Edition, CRC Press.
- Environmental chemistry 5th edition by A.K.De. 1997.
- Bruce E. Rittmann and Perry L. McCarty. 2001. Environmental Biotechnology :Principles and applications. McGraw Hill, Newyork.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology. Horizon Press.

Useful Websites:

- lbewww.epfl.ch/LBE/Default_E.htm
- http://lbe.epfl.ch

Extra disciplinary subject for other Department students (NME)

MOOC

NME Paper – 1						
Title of the paperMOOCSubject code: 25UPBIT1N01						
Category of the course	Year	Semester	Credits	Hours		
Extra disciplinary subject	Ι	Π	2	4		

SPECIAL ELECTIVE PAPER * 25UPBITSW1: BIODIVERSITY CONSERVATION

*(A special elective paper for students who have not completed a MOOC course)

Paper – SW 1						
Title of the paper		DIVERSITY ERVATION	Subject coo	de: 25UPBITSW1		
Category of the course	Year	Semester	Credits	Hours		
Extra disciplinary subject	Ι	Π	2	4		

Learning Outcomes:

Completely read this paper student will learn following knowledge:

CO1	To learn about threats, values and current status of biological diversity in India and global
	level
CO 2	To understand the methods used for the study plant and animal diversity
CO 3	To learn the methods for studying microbial diversity in different environment
CO 4	the mode of biodiversity conservation at global level
CO 5	To understand the laws and agreements that help protect biodiversity in India and the world.

	SYLLABUS BIODIVERSITY CONSERVATION						
Unit	Content	Hours	COs	Cognitive level			
I	Biodiversity: Definition, types, levels. values. Threats to biodiversity - Indian context and climate change impact. Biodiversity hotspots in India, IUCN red listed species. Climate change and biodiversity; Biodiversity of Indian subcontinent: biodiversity hotspots and their characteristics	7	CO1	K1,K2& K3			
II	Plant and Animal Biodiversity: Techniques for assessing biodiversity in plants and animals; Diversity indices., Biotic communities in forest and ecosystems. Biotechnology tools for genetic diversity evaluation - molecular markers and DNA–Protein Profiling	7	CO2	K2,K3,K4			
ш	Microbial diversity: Microbes in different environments and their roles in ecosystems. Tools for assessing microbial diversity- basic and molecular methods. Techniques for preserving and conserving microbes	7	CO3	K2, K3,K5			

IV	Biodiversity conservation strategies: <i>in situ</i> conservation: Biosphere reserve, sanctuaries, national parks, <i>ex situ</i> conservation: botanical garden, zoological garden, <i>in vitro</i> conservation: germplasm or gene bank, Global and indigenous approaches to biodiversity conservation	7	CO4	K2, K3,K4,K5
v	International Conventions: CBD, CITES, ITTA, UNFCCC, Kyoto Protocol, TRIPS, Ramsar Convention. Indian Biodiversity Regulations: Biodiversity Act 2002, Biodiversity Rules 2004, NBSAP, NBA. Protected Areas: Biosphere Reserves, Community Conservation Areas.	7	CO5	K2,K3,K4,K5

Suggested Books

1. Gaston, K.J and Spicer, J.I. 2004. Biodiversity: An Introduction. Blackwell Publishing Company, USA.

2. Richard. B. Primack. 1998. Essentials of conservation biology. Sinauer Associates, Inc. USA.

3. Ray S. and Ray A.K. 2010. Biodiversity and biotechnology. New central book Agency (P) Ltd. Kolkata

4. Agarwal, S.K. 2002. Biodiversity conservation. Rohini Publishers, Jaipur.

5. Nautiyal, S and Kaul, A.K. 1999. Forest Biodiversity and its conservation Practices in India. Oriental Enterprises, Dehradun.

6. Benson, E.E., 1999. Plant conservation Biotechnology. Taylor and Francis Ltd., London.

7. Sinha, P.C., 1998. Wildlife and forest conservation. Anmol Publication Pvt. Ltd, New Delhi. 13. Edward, O.G., 2004. *Ex situ* plant conservation. Island Press, Washington, DC

SKILL ENHANCEMENT COURSE (SEC - 1) PAPER – 1							
Title of the paper	Title of the paperTeam ProjectSubject code: 25UPBIT1S01						
Category of the	Year	Semester	Credits	Hours			
course	course						
Skill enhancement	Ι	II	2	4			
course							

Compulsory Paper						
Title of the paperHuman RightsSubject code: 25UPPGC1H01						
Category of the	Year	Sem	ester	Credits		
course	Ţ	T	T	1		
Compulsory Course	1	1	1	1		

II SEMESTER END

III SEMESTER

Course			Inst.	Credits	Exam Hrs	Mar	:ks	Total
Components Course Code	Title of Course work	Hrs/ Wk			Int	Ext	Marks	
		SEMESTER – III						
Core Paper-5	25UPBIT1C05	Bioinformatics	5	5	3	25	75	100
Core Paper-6	25UPBIT1C06	Immunology	5	5	3	25	75	100
Core Paper -7	25UPBIT1C07	Bioprocess Technology	5	5	3	25	75	100
Practical III	25UPBIT1L03	Practical – III Bioinformatics, Immunology and Bioprocess Technology	6	4	6	40	60	100
Elective Paper - 6/ Elective Paper - 7 Discipline Centric	25UPBIT1E06/ 25UPBIT1E07	Nano Biotechnology / Molecular Developmental Biology	3	3	3	25	75	100
Internship/ Industrial Activity	25UPBIT1I01	Internship in Industries to Biotechnology Field (food / clinical trial/ dairy/ aqua sciences, pharmaceutical) CSIR/DBT/ DST research laboratories	-	2	3	-	100	100
NME - II	25UPBIT1N02	Applied Biotechnology	4	2	3	25	75	100
Skill Enhancement Course -II	25UPBIT1S02	Mini Project	2	2	6	40	60	100
	Tot	al	30	28				800

Core Paper-5

BIOINFORMATICS

Core Paper-5						
Title of the paperBIOINFORMATICSSubject code: 25UPBIT1C0						
Category of the	Year	Semester	Credits	Hours		
course						
Core Paper	II	III	5	5		

Learning Outcome:

The paper imparts a thorough knowledge of the basics of bioinformatics tools. The student will get to understand the core concepts of in Silico biological research.

Course outcomes:

ourse oute	
CO-1	To get the basic concepts of Bioinformatics and its significance in
	Biological data analysis.
CO-2	Describe the history, scope and importance of Bioinformatics and role of
	internet in Bioinformatics.
CO-3	Explain about the methods to characterize and manage the different types
	of Biological data.
CO-4	Classify different types of Biological Databases.
CO-5	Introduction to the basics of sequence alignment and analysis

SYLLABUS Core Paper-5 BIOINFORMATICS						
Unit	Content	Hours	COs	Cognitive level		
Ι	Introduction to Bioinformatics, Scope and Applications, Introduction to Internet and Its Applications, Biological Databases – Nucleotide and Protein Databases (GenBank, EMBL, DDBJ, UniProt), Structure Databases (PDB, PDBSum, SCOP, CATH), Functional Databases (KEGG, Gene Ontology, Pfam, InterPro), Information Retrieval from Biological Databases, Molecular Visualization Tools – RasMol, PyMOL, Chime, Spdb Viewer.	10	CO1	K1 & K2		

II	Concepts of Sequence Alignment – Match, Mismatch, Similarity, Scoring, Gap Penalty, Pairwise Sequence Alignment – Dot-matrix Alignment, Global (Needleman-Wunsch) and Local (Smith-Waterman) Alignment, Multiple Sequence Alignment – Progressive and Iterative Alignment Algorithms, Consensus Sequence, Patterns, and Profiles, Database Searching – Pairwise Alignment-based Methods (Smith-Waterman), Heuristic Algorithms (FASTA, BLAST, PSI-BLAST), Substitution Matrices – PAM and BLOSUM.	10	CO2	K2,K3 & K5
ш	Protein Structure Prediction – Secondary Structure Prediction (Chou-Fasman, GOR Method), Fold Recognition, Homology Modeling, Structure Alignment and Comparison – VAST, DALI, Structural Biology Techniques – X-ray Crystallography, NMR Spectroscopy, Cryo-EM, Molecular Docking and Structure-Based Drug Discovery, Structure Alignment for Drug Target Identification.	10	CO3	K2 & K5

	Big Data Analysis in Genomics – DNA/RNA/Protein			
	Sequences, Gene Expression, Protein-Protein			
	Interaction (PPI) Data, Genome Sequencing and			
IV	Assembly – Whole-Genome Sequencing, EST	10	CO4	K4 & K5
	Clustering, Gene Prediction in Prokaryotes and			
	Eukaryotes, Regulatory Sequence Analysis – Promoter			
	and Motif Discovery, Genome Maps and Variation			
	Analysis, Bioinformatics for Microarray Data and			
	Transcriptional Profiling.			
	Bioinformatics for Metabolic Reconstruction and			
	Pathway Analysis, Gene Ontology (GO) and			
	Functional Annotation, Phylogenetics and			
\mathbf{V}	Evolutionary Analysis, Medical Bioinformatics –	10	CO5	K3,K4 & K6
	Disease Gene Identification, Drug Discovery Process –			
	Target Identification and Validation, QSAR, ADME,			
	Preclinical Pharmacology and Toxicology, Rational			
	Drug Design, Computer-Aided Drug Design – Ligand-			
	based and Target-based Approaches.			
Refere	nce Books:			
•	DassanayakeS.Ranil, Y.I.N. Silva Gunawardene, 2011. Genomic and	Drotoomia	Taabniqu	a. Naraca Dublishing
	House Pvt. Ltd, New Delhi.	FIOLEOIIIIC	rechniqu	es, Naiosa Fuolisillig
•	Thiagarajan B, Rajalakshmi.P.A., 2009. Computational Biology, MJH	P publishers	s, Chennai	i.
	BosuOrpita, SimminderKaurThukral, 2007. Bioinfor Algorithms, Oxford University press, New Delhi.	matics	Databas	es, Tools and
	Rastogi.S.C, Mendiratta.N, Rastogi.P, 2004. Bioinformatics methods private limited, New Delhi.	and applica	ations, Pre	entice-Hall of India
٠	Lohar s. Prakash, 2009. Bioinformatics, MJP Publishers, Chennai.			
	Stephen misener and Stephen A. Krawetz., 2000. Bioinformatics met New Jersey.	-		-
	Durbin.R, S.Eddy, A.Krogh and G.Mitchison, 1998. Biological seque Cambridge.	ence analys	is, Cambr	idge university press,

Core Paper-6

IMMUNOLOGY

Core Paper-6							
Title of the paperIMMUNOLOGYSubject code: 25UPBIT1C06							
Category of the	Year	Semester	Credits	Hours			
course							
Core Paper	II	III	5	5			

Learning Outcome

The paper imparts a thorough knowledge on the basics of immunology. The student will get to understand the core concepts of immune systems and their non-specific and specific mechanisms, and vaccine development.

Course outcomes

At the end of the course the students will be able to

CO-1	Illustrate various mechanisms that regulate immune responses and
	maintain tolerance
CO-2	Describe key events and cellular players in antigen presentation, and how the
	nature of the antigen will shape resulting effector responses
CO-3	Learn the concepts of cellular and molecular processes that represents the
	human immune system.
CO-4	Elucidate the role of immunological regulation and tolerance at a cellular and
	molecular level
CO-5	Compile concepts on immunological principles and diagnosis

	SYLLABUS Core Paper-6 IMMUNOLOGY					
Unit	Content	Hours	COs	Cognitive level		
Ι	History and overview of the immune system. Types of immunity - innate, acquired, passive and active, self vs non-self-discrimination. Basics / introduction to Humoral and Cell Mediated Immune response. Cells and organs of the immune system. Hematopoiesis and differentiation of lymphocytes.	10	CO1	K1 & K2		
II	Lymphocyte- sub-populations of mouse and man. Antigen Presenting Cells, lymphokines, Phagocytic cells, macrophage, dendritic cells, T Cells - TH, Tc and NK Cells. Nature and biology of antigens, epitopes, haptens, adjuvants. Immunoglobulins- structure, distribution and function. Immunoglobulin super family Isotypic, Allotypic and Idiotypic variants, generation of antibody diversity	10	CO2	K2,K3 & K5		
III	Monoclonal antibody production and its applications. Types of vaccine and vaccination schedule for children. Role of MHC antigens in immune response, Structure and function of Class I and Class II MHC molecules. MHC antigens in transplantation and HLA tissue typing. Transplantation immunology- immunological basis of graft rejection, clinical transplantation and Immunosuppressive therapy. Tumour Immunology - Tumour antigen, Immune response to tumours	10	CO3	K2 & K5		
IV	Effector mechanisms in immunity - macrophage activation, cell mediated cytotoxicity, cytotoxicity assay. Hypersensitivity reactions: Type I, II, III and Delayed type hypersensitivity reaction. Complement system - introduction, mode of activation, classical, alternative and lectin pathways. Biological functions of C proteins.	10	CO4	K4 & K5		

V

- K.M.Murphy, C.Weaver, Leslie J Berg, Janeways's Immunobiology 10th Edition Norton & Co. New York, USA. .2022.
- Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, Essential Immunology. 13th edition Wiley-Blackwell. USA 2011.
- Abbas, A.K., A.H.L. Lichtman and S.Pillai, 2021. Cellular and Molecular Immunology. 10th Edition. Saunders Elsevier Publications, Philadelphia.
- Jenni Punt, Sharon A Stanford, Particia P Jones and Judith A Owen. 2019. Kuby Immunology, 8th edition, W. H. Freeman & Company.

Useful Websites:

- www.library.csusm.edu/course guides/biology
- www.immunologylink.com
- <u>http://www.wiley.com/college/bio/karp12791/weblinks.html</u>

Core Paper-7

BIOPROCESS TECHNOLOGY

Core Paper-7						
Title of the paper BIOPROCESS TECHNOLOGY Subject code: 25UPBIT1C07						
Category of the	Year	Semester	Credits	Hours		
course						
Core Paper	II	III	5	5		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of bioprocess and industrial fermentation. The student will get to understand the core concepts of fermentation and its commercial application.

Course outcomes:

The student will learn about the:

CO-1	Outline the basis of Bioprocess Engineering and food safety
	measures
CO-2	Relate reactors in fermentation
CO-3	Differentiate fermentation processes
CO-4	Assess Scale up and Scale down
CO-5	Compile the output of fermentation processes

	SYLLABUS Core Paper-7 BIOPROCESS TECHNOLOGY					
Unit	Content	Hours	COs	Cognitive level		
I	Introduction to fermentation. General requirements of fermentation. Microbial growth kinetics of batch and continuous culture. Solid substrate, slurry fermentation and its application. Microbial cell culture. Food Safety: Introduction to food safety aspects and food related hazards – HACCP and ISO.	10	CO1	K1 & K2		
П	Types of bioreactors: Submerged reactors, surface reactors, mechanically agitated reactors, non- mechanically agitated reactors. Design of fermenters, body construction. Production of citric acid, penicillin and insulin. Isolation and improvement of Industrially important Micro-organisms, Media for Industrial fermentation and Sterilization.	10	CO2	K2,K3 & K5		
III	Introduction to bioproducts and bioseparation. Primary recovery process: Cell disruption methods. Cell lysis and Flocculation: Osmotic and mechanical methods of lysis. Flocculation by electrolysis; polymorphic flocculation. Precipitation methods. Filtration: Principles, Conventional, Crossflow filtration. Sedimentation: Principles, Sedimentation coefficients. Extraction Principles, Liquid liquid extraction, aqueous two phase extraction, supercritical fluid extraction.	10	CO3	K2 & K5		
IV	DownStreamProcessing:ChromatographyTechniques,Membraneseparation,ultrafiltration.Drying.Principlesandoperationofvacuumshelfdryer,rotarydryer,freezerandspraydryer.CrystallizationandWholebrothprocessing.	10	CO4	K4 & K5		
V	Aerobic and anaerobic fermentation processes and their application in the field of biotechnology industry. Production of commercially important primary and secondary metabolites, Effluent Treatment and Fermentation Economics.	10	CO5	K3,K4 & K6		

- Min-tzeLiong, 2011. Bioprocess Sciences and Technology. Nova Science Pub Inc.
- Michael L.Shuler, Fikret Kargi. 2003. Bioprocess Engineering. PHI publishers.
- P.A.Belter, E.L.Cursler, and W.S.Hu. 1988.Bioseparation: Downstream processing for Biotechnology. John Wiley and sons.
- R.G. Harrison, P.Todd, SR.Rudge and D.P. Petrides. 2003.Bioseparation science and engineering. Oxford Press.

Useful Websites:

- www.wildfermentation.com/John Schollar and BenedikteWatmore, Practical Fermentation-a technicalguide
- web.mit.edu/professional/short.../fermentation_technology.html

PRACTICAL-III

Bioinformatics, Immunology & Bioprocess Technology

PRACTICAL						
Title of the paperPRACTICAL-III Bioinformatics, Immunology & Bioprocess Technology		Subject code: 25UPBIT1L03				
Category of the course	Year	Semester	Credits	Hours		
Practical	II	III	4	6		

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to calculate and improve their practical skill and knowledge.

CO-1	To learn the Bioinformatics tools for sequence retrieval and
	Alignment
CO-2	To apply the learned tools for various applications
CO-3	To isolate, identify & enumerate immune cells
CO-4	To learn the technique of immunodiagnostics
CO-5	To study upstream & downstream techniques

	SYLLABUS PRACTICALS PRACTICAL-III					
Unit	t Content Hours COs Cognitive level					
Α	(A) Bioinformatics-Practical	15	CO1	K1,K2,K3,K4		

			Gee	0.77.5
	1. Sequence retrieval from Genbank		CO2	&K5
	2. Sequence retrieval from Uniprot.		CO3	
	3. Sequence identity search- Sequence similarity		CO4	
	search using BLAST			
	4. Sequence similarity search using FASTA		CO5	
	5. Sequence similarity search using PSI BLAST			
	6. Sequence similarity search using PHI- BLAST.			
	7. Prediction of signal sequence using SignalP online			
	8. Pattern Search (Domains & Motifs) using Pfam			
	9. ORF gene Search - Genscan			
	10. Sequence translation using ExPASy translate tool			
	11. Characterization of retrieved protein sequence by			
	ProtParam tool.			
	12. Pair-wise global sequence alignment using EBI-			
	EMBOSS Needleman Wunsch tool			
	13. Pair-wise local sequence alignment using EBI- EMBOSS Smith Waterman tool			
	14. Multiple sequence alignment using EBI-			
	CLUSTALW2.			
	15. PHYLOGENY- Phylogenetic tree using PHYLIP.			
	16. Prediction of secondary protein structure using			
	GOR (Garnier Osguthorpe-Robson) server.			
	17. Prediction of tertiary protein structure using			
	SWISS-MODEL Server			
	18. Validation of the predicted structure using			
	PROCHECK server			
	19. Molecular visualization of proteins			
	using RASMOL.			
	20. Docking of small molecule with protein structure			
	using Hex software.			
	21. Docking of two proteins using PatchDock			
	(Protein-Protein docking) tool.			
	22. Retrieval of E.Coli glycolytic pathway from			
	KEGG			
	(B) Immunology - Practical			
	1. Identification of various immune cells from human			
	peripheral blood.			
	2. Lymphocyte separation and identification		CO1	
	3. Determination of lymphocyte viability by trypan		CO2	
-	blue method			
В	4. WBC counting	15	CO3	K2,K3,K4
	5. Preparation of serum and plasma		CO4	
	6. Electrophoretic profile of human serum in native		CO5	
	PAGE 7. Propagation of collular antigent, human PBC		-	
	7. Preparation of cellular antigen – human RBC			
	8. Preparation of antigen-adjuvent mixture for production of polyclonal antibody			
	production of polyclonal antibody 9. Isolation of IgG molecule from serum			
	9. Isolation of IgG molecule from serum			

	 10. Immunodiagnostics: CRP 11. Immunodiagnostics: ASO 12. Immunodiagnostics: Widal 13. Immunodiagnostics: RA 14. Immunodiagnostics: Blood grouping and typing 15. Immunodiagnostics: hCG 16. ELISA 17. Radial Immunodiffusion 18. Ouchterlony Immunodiffusion 19. Immunoelectrophoresis 20. Rocket electrophoresis 21. Counter current immunoelectrophoresis. 22. Bioassays for cytokines 23. Radioimmunoassays (Demonstration) (C) Bioprocess Technology - Practical 			
С	 Parts and design of fermenter Solid state fermentation Submerged fermentation Foaming and antifoaming agents Media preparation and sterilization Isolation of industrially important microorganisms for microbial processes. Conservation of Bacteria by Lyophilization. Production and estimation of protease Production of wine using grapes Production of penicillin Determination of penicillin activity Citric acid production Use of alginate for cell immobilization. Media standardization (C:N ratio) for maximum biomass production of an industrially important microorganism. Cell disruption (Sonication) Aqueous Two Phase Extraction of enzymes 	15	CO1 CO2 CO3 CO4 CO5	K2,K3,K4 & K5

Elective Paper-6

NANO BIOTECHNOLOGY

Elective Paper-6						
Title of the paperNANO BIOTECHNOLOGYSubject code:25UPBIT1E06						
Category of the	Year	Semester	Credits	Hours		
course						
Elective Paper	II	III	3	3		

Learning Outcome: The subject imparts knowledge on the fundamentals of nanoparticles. The student will be provided with a basic knowledge and understanding about the role of nanoparticles in biotechnology.

CO-1	Understand the bases for Introduction to Nanotechnology
CO-2	To impart understanding on Nanoparticle based Drug Delivery.
CO-3	Fabrication of nanomaterials for bone tissue grafting
CO-4	Methods of Nanofabrication
CO-5	Understand the application of Nanotechnology

SYLLABUS Elective Paper-6 NANO BIOTECHNOLOGY					
Unit	Content	Hours	COs	Cognitive level	
I	Nanotechnology: Introduction, Scientific revolution and Emergence. Feynman's vision. Classification of nanobiomaterials: Types of nanomaterials – nanoparticles, nanotubes, nanowires, Nanofibers. Size dependent variation in the properties of Nanomaterials, Nature's Nanophenomena.	7	CO1	K1	
II	Preparation of Nanomaterials, Top down and bottom up approaches, Biosynthesis, nanobiomaterials - Polymer, Ceramic, metal based nanomaterials and Carbon based nanomaterials in tissue engineering, DNA based Nanostructures, Protein based Nanostructures, Quantum dots, Magnetic Nanoparticles, Nanofibres, Hydrogels, Films and nanocomposites.	7	CO2	K4	
III	Application of Nanomaterials in Bone substitutes and Dentistry. Food and Cosmetic applications, Bio- sensors and Lab-on-a-chip, Bio-devices and implantable devices, Bioremediation. Nanomaterials for anti-microbial coating – medical implants and paints, Application of Nanotechnology in textile industry.	7	CO3	K1 & K5	
IV	Nanomaterials for diagnosis and therapy, Implications of drug delivery, Nano-carriers for application in medicine, polymeric nanoparticles as drug carriers, Drug release mechanism, Targeted Drug Delivery using nanocarriers, Nanoparticle technologies for cancer therapy and diagnosis, Point of Care and Personalized medicine, Magnetic nanoparticles for imaging and Hyperthermia.	7	CO4	K2	

V

- Nanotechnology, S.Shanmugam, MJP publication. 2011.
- Advanced nanomaterials, Kurt E. Geckeler, Hiroyuki Nishide , Wiley VHC.2010.
- Nanotechnology and tissue engineering. T.Laurencin, Lakshmi S. Nair, CRC press. 2012.
- Handbook of carbon nanomaterials. Francis D souza, Karl M. Kadish. World Scientific Publishing co. Pvt. Ltd. 2011.
- Oded Shoseyov (Editor), Ilan Levy, 2010. NanoBioTechnology: BioInspired Devices and Materials of the Future, Humana Press.
- Chad A. Mirkin and Christof M. Niemeyer, 2007. Nanobiotechnology II: More Concepts and Applications, Wiley-VCH.
- ChallaS.S.R.Kumar (Ed). 2006. Biologicals and pharmaceutical nanomaterials, Wiley-VCH Verlag Gmbh& Co, KgaA.
- K.K.K.Jain 2006. Nanobiotechnology in Molecualr Diagnostics: Current Techniques and Applications Horizon Bioscience
- Niemeyer, C.M., Mirkin, C.A. (Eds). 2004. Nanobiotechnology Concepts, Applications and Perspectives, Wiley-VCH, Weinheim.
- Andrze w. Miziolek, Shashi P.Karna, J malthew Mauro and Richard A.Vaia. 2005 Defense Applications of Nanomaterials :
- Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer-Verlag (2004)
- The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C.N.R. Rao, A. Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)
- Nanomaterials for medical diagnosis and therapy, Challa Kumar, Wiley-VCH, 2007.
- Nanotechnology for cancer therapy, Mansoor M. Amiji, CRC Press, 2007.
- K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
- Nanomaterials: An introduction to synthesis, properties and application, Dieter Vollath, Wiley VCH, 2008
- Cato T. Laurencin and Lakshmi S. Nair, Nanotechnology and Tissue Engineering The Scaffold, CRC Press taylor& Francis Group.
- Introduction to Nanoscience and Nanotechnology, Gabor .L et al, Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.
- Assessing Nanoparticle Risks to Human Health, Gurumurthy Ramachandran, Elesvier, 2011.
- Nanotechnology: Environmental Health and safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010.
- Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, CRC Press, 2013

Useful Websites:

http://www.zyvex.com/nano www.fda.gov/nanotechnology/ www.nature.com/nnano/

Elective Paper-7

Elective Paper-7						
Title of the paperMOLECULARSubject code: 25UPBIT1E07						
DEVELOPMENTAL BIOLOGY						
Category of the	Year	Semester	Credits	Hours		
course						
Elective Paper	II	III	3	3		

MOLECULAR DEVELOPMENTAL BIOLOGY

Learning Outcome:

The subject imparts knowledge on the fundamentals of developmental biology. The student will be provided with a basic knowledge and understanding about the molecular aspects of developmental biology.

CO-1	Illustrate the structure and function of developmental biology, Gametogenesis
CO-2	Discuss basic fertilization process of animals
CO-3	Demonstrate the functions of embryonic development process
CO-4	Illustrate the organ development of vertebrate animals
CO-5	Demonstrate the impact of gene in developmental biology and developmental
	Disorders

S	SYLLABUS Elective Paper-7 MOLECULAR DEVELOPMENTAL BIOLOGY					
Unit	Content		COs	Cognitive level		
Ι	Definition and scope of developmental biology. Gametogenesis - Spermatogenesis and Oogenesis. Structure of Sperm and oocyte. Instructive and permissive interactions, competence, epithelial - mesenchymal interactions. Important signaling pathways in vertebrate development	7	CO1	K1,K2& K5		
II	Fertilization - Definition, mechanism of fertilization in mammal & sea urchin. Types of fertilization. Nieuwkoop center, Molecular role of organizer	7	CO2	K4		
ш	Cleavage in Xenopus, Chick and mammals, Regulation of cleavage cycle. Morphogenetic movements, Gastrulation in Xenopus, Chick and mammals. Fate Maps	7	CO3	К3		
IV	Vertebrate Development: Formation of the neural tube, myogenesis, and hematopoiesis. Mechanism of vertebrate eye development	7	CO4	K2		
V	Drosophila Maternal effect genes, induction at single	7		K1 & K4		

cell level - differentiation of photoreceptors in	CO5	
ommatidia. Developmental disorders Spina bifida,		
Anenecephaly, and craniorachischis, Cyclopia,		
Thanotrophic dysplasia		

- Scott F.Gilbert, 2010. Developmental Biology, 9th edition, Sinauer Associates Inc.
- Subramoniam, T. 2002. Developmental Biology. 1st edition. Narosa publications.
- Richard M.Twynman, 2001 Developmental Biology. (2 nd edition), Viva Publications, New Delhi.

Useful Websites:

sackler.tufts.edu/.../Cell-Molecular-and-Developmental-Biology www.devbio.com/

INTERNSHIP/ INDUSTRIAL ACTIVITY

Summer Internship						
Title of the paperINTERNSHIPSubject code: 25UPBIT1I01						
Category of the	Year	Semester	Credits	Hours		
course						
Paper	II	III	2			

Learning Outcome:

To gain hands-on training and expertise in handling sophisticated instruments and acquire in depth knowledge in their applications.

Course outcomes:

The student will learn to

CO-1	Understand the working principles and the techniques of various
	processes
CO-2	Apply standard operating procedures followed in industries
CO-3	Prepare to face challenges & gain confidence in the field of study.
CO-4	Critically assess the utilization of sophisticated instruments and
	expensive consumables
CO-5	Develop work ethics to be followed in a scientific laboratory

Extra disciplinary subject for other Department students (NME) APPLIED BIOTECHNOLOGY

NME Paper – 2						
Title of the paper APPLIED BIOTECHNOLOGY Subject code: 25UPBIT1N				JPBIT1N02		
Category of the course	Year	Semester	Credits	Hours		
Extra disciplinary subject	Ι	Π	2	4		

Learning Outcomes:

• Completely read this paper student will learn following knowledge:

CO-1	This paper provides an in-depth scope and significance of various ecotechnological applications
CO-2	The student will gain knowledge in production and utilization of the Biofuel for commercial application
CO-3	To learn the techniques for production of vermiculture, sericulture and biofertilizers.
CO-4	To gain the basic knowledge on aquaculture and design for aquafarms.

	SYLLABUS NME-II APPLIED BIOTECHNOLOGY							
Unit	Content	Hours	COs	Cognitive level				
Ι	Vermiculture: Vermicomposting - Definition and methods - pit method, heap method and indoor method. Factors affecting vermicomposting: pH, moisture, temperature, nutritional value of feed. Application of vermicompost in agricultural and horticultural practices.	7	CO1	K1,K2& K5				
Π	Sericulture: Silkworm - life cycle. Rearing programme- hatching, feeding, cleaning and spacing, care at mounting. Environmental conditions: Leaf quality- rearing early age silkworms- rearing late age silkworms- mounting and harvesting. Process of stifling: Reeling techniques- process of reeling- methods of collection of silk.	7	CO2	K3,K4				

ш	Biofertilizers: Definition, Types-Rhizobium, Azotobacter, Azospirillum and Mycorrhizal Biofertilizers. Mass production and formulation of Biofertilizers. Biofertilizers in Sustainable Agriculture and Organic Farming. Nano-Biofertilizers	7	CO3	K2, K3,K5
IV	Aquaculture: Definition, scope and significance. Aquaculture systems -Extensive, Semi-Intensive, Intensive, and Raceway Cultures. Freshwater vs. Marine Aquaculture. Fish nutrition and feeding habits - Herbivores, carnivores, omnivores and feeding strategies. Aqua farms: Design and construction. Selection of cultivable species - choosing fish for aquaculture. Recent advancements in aquaculture technology.	7	CO4	K2, K3,K4,K5
v	Biofuel: Bioenergy sources – Sugar waste, Starch waste, Lignocellulosic waste, livestock waste Categories - Biodiesel: Source & production; Biogas: Source & production; Bioethanol: Source & production.	7	CO5	K1,K3 & K4

- Ranganathan, L.S., 2006. Vermitechnology from soil health to human health, Agrobios (India), Agrohoude, Chopasani Road, Jodhpur.
- Ramalingam, R., 2007. Vermiculture. Tamil Nadu State Council for Higher Education (TANCHE), Chennai.
- Ramakrishnan Iyer, T.V., 1984. Handbook of economic entomology for South India. International Books and periodicals Supply Service, New Delhi.
- Fenemar, P.G. and Alka Prakash, 1992. Applied entomology. Wiley Eastern Ltd., New Delhi.
- Kaushik. B.D. Deepak Kumar. Shamim. Md. 2019. Biofertilizers and Biopesticides in Sustainable Agriculture. 1st Edition. Apple Academic Press. USA.
- Pillay. T.V.R. and M.N. Kutty, 2005. Aquaculture Principles and Practices, Black Well Sciences, U.K.
- Joachim W. Hertrampf and Felicitas Piedad-Pascual. 2000. Handbook on ingredients for aquaculture feeds. Kluwer Academic Publishers, London.
- Damian Price. 2017. Biodiesel Production Processes and Technologies. Larsen and Keller Education. USA.
- Alemayehu Gashaw. Solomon Libsu. 2016. Biodiesel, Bio-Ethanol and Biogas as an Alternative Fuels. American Academic Press. USA

SKILL ENHANCEMENT COURSE (SEC - II) Paper – 2						
Title of the paperMini ProjectSubject code: 25UPBIT1S02						
Category of the Course	Year	Semester	Credits	Hours		
Skill Enhancement Course	Π	III	2	2		

III SEMESTER END

IV SEMESTER

Course	Course Code	Title of Course work	Inst. Hrs/	credits	Exam hrs	Marks		Total Marks
Components						Int	Ext	
		SEMESTER – I	(V					
Core Paper-8	25UPBIT1C08	Research Methodology	6	5	3	25	75	100
Project-1	25UPBIT1P01	Dissertation/ Project with Viva-voce	18	8	6	60	240 (40-work book, 150 Dissertati on +50- Viva)	
Elective Paper -6		Stem Cell Biology/ Bioethics, Biosafety, Clinical Trials, IPR & Entrepreneurship	4	3	3	25	75	100
Skill Enhancement Course –III	25UPBIT1S03	Bio-Entrepreneurship in Biotechnology	2	2	6		100	100
Extension Activity	25UPBIT1X01		-	1		-		
	Total		30	19				600

Core Paper-8

RESEARCH METHODOLOGY

Core Paper-8							
Title of the paper	RESEARCH METH	IODOLOGY	Subject code: 25UPBIT1C08				
Category of the	Year	Semester	Credits				
course							
Core Paper	II	IV	5				

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

CO-1	Understand the bases for research
CO-2	To know about research proposals and dissertation writing.
CO-3	To know about Statistical application in research
CO-4	To know about office tools used in research
CO-5	To know about search engines.

	SYLLABUS Core Paper-8 RESEARCH M	ETHOD	OLOGY	Y
Unit	Content	Hours	COs	Cognitive level
Ι	Introduction to Research, Objectives and Types of Research - qualitative and quantitative research, Types of Research Design - Experimental, Correlational and Descriptive. Review of Literature - Importance, Process of Conducting Review of Literature, Sources of Literature, Summarising and Synthesising the existing research. Formulating Hypothesis - Null and Alternate Hypothesis and its importance in research. Sampling Methods-Types (Random, Stratified, Cluster, Convenience). Collection of Data - Surveys, interviews, observations, experiments, and questionnaires. Pros and cons of each method. Ethical Considerations: Ethical issues in research, informed consent, confidentiality, and research integrity.	10	CO1	K1
II	Writing the Research Report (Thesis and publications): Components of Research report - Title, Authors, Addresses, Abstract, Keywords, Introduction, Review of literature, , Aim and Objectives, Materials and Methods, Results, Discussion, Summary, Acknowledgements and Bibliography	10	CO2	K2 &K6
ш	Collection and classification of data: diagrammatic and graphical representation of data. Measures of central tendency; Measures of deviation; Hypothesis testing Parametric and nonparametric Test; Student t test; Correlation and regression; Chi square test; One Way ANOVA and Post-hoc tests		CO3	K3
IV	Spreadsheet Tool (Microsoft Excel): Introduction to spreadsheet application, Using formulas and functions, Data storing, Features for Statistical data analysis, Generating graphs. Presentation Tool (Microsoft Powerpoint): Introduction to presentation tool, features and functions, Creating presentation, Customizing presentation, Showing presentation.	10	CO4	K1 & K4
V	Plagiarism Tools for Thesis and Manuscript. Using Google Drive for Preparing your reports - google docs, google excel, PowerPoint. Reference Manager - Mendeley and EndNote. Search Engines and their Importance in Research - Google, Yahoo, SCOPUS, Clarivate Analytics, PubMed. Use of Boolean Expression in Searches. Ethical Issues Regarding the Use of AI in Research Writing for Journals and Dissertations. Important Scientific Publishing Houses - Elsevier, Springer Nature, CRC Press, Wiley	10	CO5	K1 & K2

- Montgomery, Douglas C. (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- Montgomery, Douglas C. & Runger, George C. (2007), 3/e, Applied Statistics & Probability for Engineers (Wiley India).
- Kothari C.K. (2004), 2/e, Research Methodology- Methods and Techniques (New Age International, New Delhi).
- Krishnaswamy, K.N., Sivakumar, AppaIyer and Mathiranjan M. (2006), Managing Research Methodology; Integration of Principles, Methods and Techniques, Pearson Education, New Delhi.
- The complete reference Office Xp Stephan L. Nelson, Gujulia Kelly (TMH).
- Basic Computer Science and Communication Engineering R. Rajaram (SCITECH).

Useful Websites

www.ask.com/Methodology+Research www.qmethod.org/

PROJECT-1						
Title of the paperDISSERTATIONSubject code: 25UPBIT1P01						
Category of the course	Year	Semester		Credits	Hours	
Core Paper	2 nd	4 th		8	18	

PROJECT-1

DISSERTATION

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of pursuing research.

Elective Paper-8

STEM CELL BIOLOGY

Elective Paper-8							
Title of the paperSTEM CELL BIOLOGYSubject code: 23UPBIT1E08							
Category of the	Year	Semester		Credits			
course							
Elective Paper	2	4 3					

Learning Outcome:

The subject imparts knowledge on the fundamentals of stem cells. The student will be provided with a basic knowledge and understanding about the application of stem cell biology.

Course Outcomes:

At the end of the Course, the Student will be able to:

CO1	To understand the major discoveries of stem cell biology				
CO2	To provide basic knowledge about stem cell niche and functions				
CO3	To enlighten the students on Stem cell isolation and culture techniques				
CO4	To update the knowledge on Stem cell cycle				
CO5	To assess and appraise Applications of Embryonic stem cells.				

SYLLABUS Elective Paper-8 STEM CELL BIOLOGY					
Unit	Content	Hours	COs	Cognitive level	
I	Stem cells - Definition, Characterization, Pluripotency, Self-renewal and differentiation. Types of stem cells- Embryonic stem cells, Adult stem cells and mesenchymal stem Cells, Adipose stem cells	7	CO1	K1	
II	Stem cell niche, Niche specification - Drosophila germ line stem cells. Receptors, genes and markers of stem cells		CO2	K1 & K2	
III	Stem cell isolation and culture techniques. Characterization of stem cells	7	CO3	K3, K4	
IV	Cell cycle. Chromatin modification and transcriptional regulation, chromatin modifying factors, Chromosomal inactivation. JAK -STAT pathway, Ras\Raf pathway, PI3K cell signaling, p53 check points, Role of LIF pathway in cell cycle control	7	CO4	K3,K3 & K5	
V	Therapeutic application of stem cells, Embryonic stem cells, Bone marrow stem cells, Adipose derived stem cells and Hematopoietic stem cells. Bio-safety and bio-ethics in human stem cell research as per ICMR guidelines.	7	CO5	K3,K4 & K5	
Referen	ce Books:				

- Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press
- Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer, STEM CELL TECHNOLOGY Syllabus Semester First References:
- Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- Progress in gene therapy, Volume 2, Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers
- Stem Cells Handbook: Stewart Sell, Humana Press; Totowa NJ, USA; Oct. 2003,
- Human Embryonic Stem Cells: The Practical Handbook by Stephen Sullivan and Chad A Cowan

Elective Paper-9

Elective Paper-9						
Title of the paper	Title of the paper BIOETHICS, BIOSAFETY,		Subject co	de: 25MBTEB09		
	CLINICAL TRIALS, IPR &					
	ENTREPRENEURSHIP					
Category of the	Year	Sem	ester	Credits		
course						
Elective Paper	2 4		1	3		

BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

Learning Outcome:

This course provides the guidelines and regulations governing research; evaluate ethical conduct and social responsibilities; to adhere to safe working practices; to appreciate the need for protection of human subjects; to recognize the potential harms in research and show sensitivity to cultural and ethical issues; to create a general awareness about IPR.

Course Outcome:

CO-1	Understand the basics of biosafety and bioethics and its impact on biological
	sciences and the importance of human life.
CO-2	Apply the knowledge to recognize the importance of biosafety guidelines
	and good clinical practices.
CO-3	Acquire adequate knowledge in the use of genetically modified organisms
	and its effect on human health.
CO-4	Evaluate the benefits of GM technology and importance of IPR
CO-5	Analyse the importance of protection of new knowledge and innovations and
	its role in business and entrepreneurship

SYLLABUS | Elective Paper-9 | BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

Unit	Content	Hours	COs	Cognitive level
Ι	Introduction to Bioethics Need for bioethics in social and cultural issues. Bioethics & GMO's Issues and concerns pertaining to Genetically modified foods & food crops, Organisms and their possible health implications and mixing up with the gene-pool. Bioethics in Medicine Protocols of ethical concerns related to prenatal diagnosis, gene therapy, Organ transplantation, Xenotransplantation, Containment facilities for genetic engineering experiments, regulations on field experiments and release of GMO's labeling of GM foods.	10	CO1	K2,K3 & K4

II	Clinical trials –Regulations. Bioethics & Cloning Permissions and Procedures in Animal Cloning, Human cloning, Risks and hopes. Bioethics in Research Stem cell research, Human Genome Project, Use of animals in research - CCSCA guidelines, human volunteers for Clinical research, Studies on Ethnic races. Ethics in patient care, Informed consent.	10	CO2	K3, K4 & K5			
III	Biosafety – Biological risk assessment. Biological agents and Hazard groups. Criteria in biological risk assessment. Guidelines for categorization of genetically modified plants for field test. Regulation, national and international guidelines of Biosafety, rDNA guidelines, Regulatory requirements for drugs and Biologics GLP. Biosafety levels. Safety equipments and Biological Safety cabinets.	10	CO3	K3,K4 & K5			
IV	IPR: Introduction to Intellectual Property rights, Patenting – Factors for patentability – Novelty, Non- obviousness, Marketability. Procedures for registration of Patents. Copyright works, ownership, transfer and duration of Copyright. Renewal and Termination of Copyright. Industrial Designs - Need for Protection of Industrial Designs. Procedure for obtaining Design Protection. Infringement, Right of Goodwill, Passing Off. Trademarks - Introduction to Trademarks. Need for Protection of Trademarks. Classification of Trademarks. Indian Trademarks Law. Procedural Requirements of Protection of Trademarks	10	CO4	K4, K5 & K6			
v	Geographical Indications - Indication of Source and Geographical Indication. Procedure for Registration, Duration of Protection and Renewal. Infringement, Penalties and Remedies. Layout- Designs of Integrated Circuits: Conditions and Procedure for Registration. Duration and Effect of Registration Protection of Plant variety and Plant breeders' rights in India. Protection of traditional knowledge, Bioprospecting and biopiracy. India's new IP Policy (2016), Govt of India's steps to promote IPR. Career opportunities in IP. Entrepreneurship: Ideation, registration, implementation, finances and marketing	10	CO5	K4,K5 & K6			
Reference Books: • "Bioethics & Biosafety" by Sateesh MK, IK International publications, 2008							
	 USPTO Web Patent Databases at: www.uspto.gov/patft Government of India's Patents Website: patinfo.nic.in 						

- Intellectual property India: www.ipindia.nic.in
- Indian Patent Law : Legal and Business Implications" by AjitParulekar, Sarita D'Souza Macmillan India publication, 2006
- Agriculture and Intellectual Property Rights", edited by: Santaniello, V., Evenson, R.E., Zilberman, D. and Carlson, G.A. University Press publication, 2003
- Ganguli P, (2001), Intellectual Property Rights, Tata Mcgraw Hill.
- Ramesh Chandra, (2004), Issues Of Intellectual Property Rights, Isha Books
- Shiv Sahai Singh, (2004), Law Of Intellectual Property Rights, Deep & Deep Publications (p) Ltd.
- Subbian A, Bhaskaran S, (2007), Intellectual Property Rights: Heritage, Science And Society Int. Treaties, Deep & Deep Publications.
- EladHarison (2008). Intellectual Property Rights, Innovation and Software Technologies. Edward Elgar Publishing Limited, UK.

SKILL ENHANCEMENT COURSE (SEC - III) Paper – 3					
Title of the paper	Bio-Entrepreneurship in	Subject code: 25UPBIT1803			
Category of the course	Year	Semester	Credits	Hours	
Skill Enhancement Course	II	IV	2	2	

Learning Outcome:

Students will be able to Gain knowledge in selling their biotechnological innovative ideas. Find problems worth solving in entrepreneurial setup Mobilize people and resources Add value for their innovation by company formation, Social Innovation and Intellectual property Licensing.

CO-1	To learn the basic elements of Entrepreneurship and Bio-Entrepreneurship
	skill development
CO-2	To gain fundamental knowledge on becoming a bioentrepreneur and legal
	steps for establishing a biotech company/industry.
CO-3	To learn the elements and development of HR and its role in the success of an
	industrial sector.
CO-4	To gain the skills related to marketing strategies of new biotech products and
	management of IPR
CO-5	To gain the knowledge on the funding agencies for establishment of new
	biotech industry/company

SYLLABUS SKILL ENHANCEMENT COURSE (SEC - III) Paper – 3					
Bio-Entrepreneurship Skill in Biotechnology					
Unit	Content	Hours	COs	Cognitive level	
I	Entrepreneurship and Bioentrepreneurship - Scope and Importance – Characters and Skills of Bioentreprenuer, Organization chart, Process, competencies, opportunités and avenues. Types of Bio-industries, Strategy and operation of	7	CO1	K2,K3 & K4	
	bio-sector firms. Entrepreneurial motivation				

		1		
	Entrepreneurship in Biotechnology-Profiling of			
II	Bioentrepreneur, Elements - problem identification, idea	7	CO2	K3, K4 & K5
	generation, innovation, idea transformation and assessment.			
	Entrepreneurial planning, Taxation and Legalization steps			
	for establishing a biotech company.			
	Human Resource management: Workflow strategy,		CO3	
III	functions of HRM, Recruitment, Training and Development	7	005	K3,K4 & K5
	process of human resources. Government initiatives in			
	India: Biotech Parks, Technology Business incubators,			
	Startup India & Startup Tamil Nadu.			
IV	Bio-Product Marketing: Value chain, business models,	7	CO4	K4, K5 & K6
1 V	process of commercialization, Product lifecycle,	,		\mathbf{K} +, \mathbf{K}) & \mathbf{K} 0
	Management of IPR- patents, Trademarks, Trade secrets.			
	National and international agencies for marketing of biotech			
	products			
V	Schemes for Funding: DBT-Biotechnology Industry	/	CO5	K4,K5 & K6
	Partnership Program (BIPP), Small Business innovation			,
	Initiative (SBIRI), Biotechnology ignition Grant (BIG).			
	DST- Promoting Innovations in individuals, startups and MSMs (PRISM), DSIR- Patent Acquisition and			
	collaborative research and Technology Development			
	(PACE). Schemes of the Ministry of Micro, Small and			
	Modern Enterprises.			

Reference Books/Journals/Report:

- National Biotechnology Development Strategy Promoting Bioscience Research education and entrepreneurship. Department of Biotechnology, Govt. of India (2015)
- Report of the Expert committee on Innovation and Entrepreneurship, NITI Aayog, New Delhi, Aug, 2015.
- Damian Hine, John Kapeleris, 2006. Innovation and Entrepreneurship in Biotechnology An international Perspective- Concepts, theories and Cases.
- Mark J Ahn, and Michael Meeks, 2008. Building a conducive environment for life Science –based entrepreneurship and industry clusters. Journal of Commercial Biotechnology 14 (1): 20-30.

EXTENSION ACTIVITY					
Title of the paper	Extension activity		Subject code:25UPBIT1X01		
Category of the	Year	Semester	Credits	Hours	
course					
Extension activity	II	IV	1		

#