

Sl.No.	Particulars	Page No.
I.	About the Programme	2
II.	Program Educational Objectives (PEOs)	2
III.	Program Outcomes (POs)	2
IV.	Program Specific Outcomes (PSOs)	3
V.	Eligibility for Admission	3
VI.	Duration of the Programme	3
VII.	List of Courses	4
VIII.	Semester	5
IX.	Teaching Methodologies	5
X.	Course Components	6
XI.	SWAYAM Courses	6
XII.	Field Work/Training	6
XIII.	Credits	7
XIV.	Course weightage	7
XV.	Evaluation	7
XVI.	Attendance	7
XVII.	Examinations	7
XVIII.	Scheme of Examination	8
XIX.	Passing Minimum	9
XX.	Distribution of Marks	9
XXI.	Calculation of Internal Assessment mark	10
XXII.	Project/Dissertation	10
XXIII.	Question Paper Pattern	11
XXIV.	Syllabus	12

LIST OF CONTENTS

DEPARTMENT OF GEOLOGY Programme: M.Sc., GEOLOGY CHOICE BASED CREDIT SYSTEM (CBCS) Programme code: 514, Duration: 2 Years

TANSCHE –SYLLABUS REGULATIONS

I. About the Programme

Periyar University offers M.Sc., Geology programme, under Choice Based Credit System (CBCS). The CBCS enables the students to select choice of subjects as per her /his interest and requirement. Acquiring knowledge in the related discipline is advantageous to the students. The CBCS programme is framed in such a way that to impart more Knowledge in the field of Geological sciences.

Geology is an inter-disciplinary subject which enables to understand the earth processes and its treasures. It incorporates inputs from almost all science disciplines. Geologists are mainly involved in the exploration and extraction of natural resources viz., minerals, rocks, fossil fuel and water. As it is a fast growing area geologists will have to play a vital role in building the nation. They can also engage in geological research, which has immense potential in the current scenario.

II. Program Educational Objectives (PEOs)

- PEO1: To demonstrate an understanding of the fundamental principles, concepts in theoretical and practical knowledge of the geological Science.
- PEO2: Ability to recognize, evaluate, interpret, and understand issues and opportunities at the frontiers of geological domain.
- PEO3: Ability to apply the basic knowledge of geology to real-life problems besides the use of computational and mathematical knowledge and tools.
- PEO4: Work ethically and professionally alone and as part of a team, complying with applicable legislation and managing time and other resources efficiently and effectively and manage, execute their geological plans to meet desired goals realistic constraints.
- PEO5: Communicate geological information concisely and accurately using written, visual, and verbal means appropriate to the situation.

III. Program Outcomes (POs)

- PO1: Problem Solving Skill Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
- PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making.

PO3: Ethical Value

Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities

PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill

- Capability to lead themselves and the team to achieve organizational goals.
- PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
- PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
- PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
- PO9: Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life

IV. Program Specific Outcomes (PSOs)

PSO1: Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO2: Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3: Research and Development

Design and implement HR systems and practices grounded in researches that comply with employment laws, leading the organization towards growth and development.

PSO4: Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world

PSO5: Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit

V. Eligibility for Admission

A candidate who has passed B.Sc. degree in Applied Geology/Geology of this university or an examination of any other university accepted by the Syndicate as equivalent thereto shall be permitted to appear and qualify for the M.Sc., Geology Degree examinations of this university after a course of two academic years, in the Department of Geology, Periyar University.

VI. Duration of the Programme

The course for the degree of Master of Science in Geology shall consist of two academic years divided into four semesters. Each Semester consists of 90 working days.

Semester–I	Cre dit	Ho urs	Semester-II	Cre dit	Ho urs	Semester-III	Cre dit	Ho urs	Semester–IV	Cre dit	Ho urs
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VIII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurship) 20% Theory 80% Practical	3	4
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 NME I	2	4	3.6 NME II	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30

VII. List of Courses

Template for P.G., Programmes

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

Part	List of Courses	Credits	No. of Hours
	Core – I	5	7
	Core – II	5	7
	Core – III	4	6
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II

Part	List of Courses	Credits	No. of Hours
	Core – IV	5	6
	Core – V	5	6
	Core – VI	4	6
	Elective – III	3	4
	Elective – IV	3	4
	Skill Enhancement Course [SEC] - I	2	4
		22	30

Second Year – Semester – III

Part	List of Courses	Credits	No. of Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	4	6
	Elective – V	3	3
	Skill Enhancement Course - II	2	3
	Internship / Industrial Activity [Credits]	2	-
		26	30

Semester-IV

Part	List of Courses	Credits	No. of Hours
	Core – XI	5	6
	Core – XII	5	6
	Project with VIVA VOCE	7	10
	Elective – VI (Industry Entrepreneurship)	3	4
	Skill Enhancement Course – III / Professional Competency Skill	2	4
	Extension Activity	1	-
		23	30

Sem- ester	Course Code	Title of the Courses	Credits	Hours	Int. Marks	Ext. Marks	Total Marks
	23UPGEO1C01	Physical Geology and Geomorphology	4	5	25	75	100
	23UPGEO1C02	Mineralogy and Instrumentation Techniques	4	5	25	75	100
	23UPGEO1C03	Recent Trends in Paleontology	4	5	25	75	100
Ι	23UPGEO1C04	Stratigraphy of India and Its Application	4	5	25	75	100
	23UPGEO1L01	Mineralogy and Paleontology– Laboratory Practical-I	3	6	40	60	100
	23UPGEO1X01	Geological Field Training	1	*	25	75	100
		Total	20	26	165	435	600
	23UPGEO1C05	Structural Geology and Geotectonics	4	6	25	75	100
	23UPGEO1C06	Applied Petrology	4	6	25	75	100
	23UPGEO1C07	Economic Geology	4	6	25	75	100
II	23UPGEO1L02	Structural Geology, Petrology and Economic Geology- <i>Laboratory</i> <i>Practical-II</i>	3	6	40	60	100
	23UPGEO1E	Elective Course (III Or IV)	3	4	25	75	100
	23UPPGC1H01	Fundamental of Human Rights	1	2	25	75	100
		NME-I, Online Course (SWAYAM, MOOC, NPTEL etc.,)	2	*	00	100	100
		Total	21	30	165	535	700
	23UPGEO1C08	Applied Geophysics	4	5	25	75	100
	23UPGEO1C09	Applied Remote Sensing and GIS	4	5	25	75	100
	23UPGEO1C10	Hydrogeology	4	5	25	75	100
	23UPGEO1C11	Geological Field Mapping	4	4	25	75	100
III	23UPGEO1L03	Geophysics and Hydrogeology & Remote Sensing and GIS <i>–Laboratory</i> <i>Practical -III</i>	3	5	40	60	100
	23UPGEO1E	Elective Course (I Or II)	3	4	25	75	100
	23UPGEO1E	Elective Course (V Or VI)	3	4	25	75	100
	23UPGEO1N	NME-II Supportive Courses	2	2	25	75	100
	23UPGEO1I01	Internship / Industrial Activity (During Vacation at the end of First Year)	2	*	25	75	100
		Total	29	34	240	660	900
	23UPGEO1C12	Engineering and Mining Geology	4	5	25	75	100
	23UPGEO1C13	Applied Geochemistry	4	5	25	75	100
IV	23UPGEO1L04	Engineering and Mining Geology &Geochemistry – <i>Laboratory Practical</i> - <i>IV</i>	3	6	40	60	100
	23UPGEO1P01	Project with Viva-voce	7	10	50	150	200
	23UPGEO1E	Elective Course(VII Or VIII)	3	4	25	75	100
	23UPGEO1S01	Skill Enhancement Course: (<i>NSDC-SSC</i>) SCMS-Mining Mate	2	*	25	75	100
		Total	23	30	190	510	700
		Grand Total	<i>93</i>	120	760	2140	2900
Note	IID University Dr.	ogramme, GEO1- Geology Programmel,	C- Core		E-Electiv		

M.Sc., Geology Programme Structure and Scheme for the Students Admitted in the Year 2023-2024 onwards

Note: UP-University Programme, GEO1- Geology Programme1, C- Core Course, E-Elective Course, S-Skill Enhancement, L- Laboratory Practical, P – Project, N/NME-Non Major Elective, H-Fundamental Human Rights, X*-Extension Activities (Geological Field Training for 7-10 days/60 hours), I* – Internship (15 days), *Geological Field Mapping for 10-12 days/60 hours, SWAYAM - Study Webs of Active Learning for Young Aspiring Minds, MOOC-Massive Open Online Courses, NPTEL- National Programme on Technology Enhanced Learning, NSDC-National Skill Development Corporation, SSC-Sector Skill Council, SCMS-Skill Council for Mining Sector.

Credits for M.Sc., Geology Program				
Core Courses	13 x 4 = 52			
Core Laboratory Practicals	4 x 3 = 12			
Core Project	1 x 7 = 7			
Elective Courses	4 x 3 = 12			
Non-Major Elective (NME) Courses	2 x 2 = 4			
Fundamental of Human Rights	1 x 1 = 1			
Skill Enhancement	$1 \ge 2 = 2$			
Internship	1 x 2 = 2			
Geological Field Training	1 x 1 = 1			
Total Credits	93			

Furthermore, the TANSCHE, Govt. of Tamil Nadu, recommends the candidates to select Non Major Elective two credit courses (NME-I) to be adopted as online course from the platforms such as SWAYAM, MOOC, NPTEL etc., for Even Semester. The fee for these course works will be prescribed by the Controller of Examinations in concurrence with the authorities of Periyar University, Separate certificate will be issued and these exam credits will be included in the Academic Bank Credit (ABC) portal of the candidate. For NME-II (to be offered during odd semester) students should take any one of the courses offered by other Departments. It has to be taught in the last two hours on Tuesdays.

	Elective Courses (Including Discipline Centric, Generic, Industry / Entrepreneurship)						
Sl. No.	Course Code	Title of the Course work		Hours	Int. Marks	Ext. Marks	Total Marks
Ι	23UPGEO1E01	Geo-statistics	3	4	25	75	100
II	23UPGEO1E02	Geo-heritage and Geo-tourism	3	4	25	75	100
III	23UPGEO1E03	Environmental Earth Science	3	4	25	75	100
IV	23UPGEO1E04	Applied Micropaleontology	3	4	25	75	100
V	23UPGEO1E05	Isotope Geology	3	4	25	75	100
VI	23UPGEO1E06	Disaster Management	3	4	25	75	100
VII	23UPGEO1E07	Oceanography and Climatology	3	4	25	75	100
VIII	23UPGEO1E08	Petroleum Exploration and Mud Logging	3	4	25	75	100
		AYAM Courses (Study Webs of Active Learning for	Young As	piring N	linds-SV	VAYAM)	
Sl.	Course Code	Title of the Course work	Creadita	Hours	Int.	Ext.	Total Marks
No.	Course Coae	Title of the Course work	Credits	nours	Marks	Marks	
01		Based on Courses offered by SWAYM Portal	2	4	00	100	100
	Non-M	ajor Elective (NME-II) Courses (Offered to Othe	r Univers	sity Dep	artment	s)	
Sl. No.	Course Code	Title of the Course work	Credits	Hours	Int. Marks	Ext. Marks	Total Marks
1	23UPGEO1N01	Earth and Environment	2	4	25	75	100
2	23UPGEO1N02	Water Resources Management	2	4	25	75	100
3	23UPGEO1N03	Gemmology	2	4	25	75	100
4	23UPGEO1N04	Rainwater Harvesting and Artificial Groundwater Recharge	2	4	25	75	100
5	23UPGEO1N05	Geohazards	2	4	25	75	100
		Skill Enhancement Courses (offered by N	SDC-SS	C)			
Sl. No.	Course Code	Title of the Course work	Credits	Hours	Int. Marks	Ext. Marks	Total Marks
1	23UPGEO1S01	NSDC-SCMS-Mining Mate	2	4	25	75	100
	Value Added (VA	A) Courses (Certificate will be issued separately –	Through	Online			
Sl. No.	Course Code	Title of the Course work	Credits	Hours	Int. Marks	Ext. Marks	Total Marks
1	23UPGEO1VA1	Hydrology and Water Management (or)	2	30	25	75	100
2	23UPGEO1VA2	Environmental Studies and Earth Sciences	2	30	25	75	100
	Add On (AO)	Courses (Certificate will be issued separately – Th	rough O	nline M	ode) - S	emester-	IV
Sl. No.	Course Code	Title of the Course work	Credits	Hours	Int. Marks	Ext. Marks	Total Marks
1	23UPGEO1AO1	Medical Geology	2	30	25	75	100
2	23UPGEO1AO2	Petroleum Geology	2	30	25	75	100
3	23UPGEO1AO3	Groundwater exploration	2	30	25	75	100

Extra Credits				
Credits for Value Added Courses	2 x 2 = 4			
Credits for Add On Courses	$3 \ge 2 = 6$			

Total Credits

VIII. Semester

An academic year consists of two semesters. The Normal semester periods are

- Odd Semester : July to November
- Even Semester: December to April

Each semester has 18 teaching weeks with working hours spread over 5 days a week.

IX. Teaching Methodologies

The classroom teaching would be through conventional lectures and use of power point presentation and field demonstration. The lecture would be such that the student should participate actively in the discussion. The Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill. In the laboratory, instruction would be given for the experiments/exercise followed by demonstration and finally the students have to do the experiments individually. Periodic tests are conducted for the students, In the case of slow learners; they will be given special attention.

X. Course Components

Core courses

Core courses are compulsory basic subjects in the programme offered by the department. Each core course carries 4 credits. Core courses offered by one department will not be treated as elective by other. Core courses include theory, practical, project work, geological mapping, internship, training, field training and industrial visits. Students can be permitted to carry out project works at reputed institutions and industries.

Elective courses

Elective courses (disciplinary) are offered by the parent department. Each elective course carries 4 credits.

Soft Skills

Soft Skillis aimed at bridging the gap in the curricula and to learn the advancements in other disciplines. The department, in consultation with other departments, will offer supportive courses during I, II III& IV semesters. Similarly, students from Geology Department will study the supportive course from other department.

Compulsory Course

A course on Human rights-Duties is compulsory in the II semester.

XI. SWAYAM Courses

Massive Open Online Course (MOOC) introduced to the students to help them compare their course content with that of the eminent faculty across the country. MOOC online course is available in the SWAYAM and SWAYAM PRABHA MHRD web portal.

All the master level students must enroll and complete two MOOC courses related to their discipline of study.

XII. Extension Activities (Field Work/Training)

Geological field mapping is included in the second semester and its participation is a mandatory requirement. The training is to be scheduled in a single batch for duration of maximum 15 days. It may be guided by faculty members in any place which is geologically significant region within India. Alternatively, the student may be attached to an organization engaged in geological field work (say Geological survey of India) for imparting training.

XIII. Credits

The quantum of syllabus for various programs in terms of hours of study. It indicates differential weightage given according to the contents and duration of the courses in the curriculum design. The minimum credit requirement for a two-year Master's programme shall be 90.

XIV. Course weightage

A course carrying one credit for lectures will have instruction of one period per week during the semester. If four hours of lecture are necessary in each week for that course, then 4 credits will be the weighted. Thus, normally in each of the courses, credits will be assigned on the basis of the lectures/ tutorials/ laboratory work and other forms of learning in a 18week schedule.

XV. Evaluation

Evaluation will be done on a continuous basis during the course work through class test and midterm exams. Evaluation may be done by objective type questions, short answers, essays or a combination of these, but the end semester examination is a written examination.

XVI. Attendance

Every teaching faculty handling a course shall be responsible for the maintenance of the common attendance register being maintained in the department for the candidates who have registered for the course.

The student should earn 75% attendance in the courses of that particular semester failing which; he /she will not be permitted to sit for the End-Semester Examination. The student has to repeat the semester in the next year.

XVII. Examinations

There shall be four examinations, each at the end of the semester. Candidates failing in any subject/ subjects will be permitted to re-appear for subsequent semesters as per University norms.

The practical examinations will be conducted at the end of the first, second and third semester. Candidates failing in any of the practical examination / examinations will be permitted to appear for such failed practical examination/ examinations at corresponding subsequent practical examinations.

XVIII. Scheme of Examination

Scheme of examination will be followed as per TANSCHE direction.

XIX. Passing Minimum

A candidate has to secure a minimum of 50% mark in each course and earn a minimum of 90 credits for the award of a Master's degree.

XX. Distribution of Marks

Theory

University Examination		
(External)	:	75 marks
Internal Assessment	:	25 marks

Distribution of Internal Assessment mark

Test	:	10 marks
Attendance	:	5 marks
Assignment	:	5 marks
Seminar	:	5 marks

Total Marks

: 25 marks

Passing Minimum: Internal Assessme	nt	: No Minimum for Internal
assessment		
Passing Minimum: External Assessme	ent	: 50% - 38 marks (Mandatory)
Total Passing Minimum		: 50 marks
Practicals		
Internal Assessment	:	No Minimum for Internal
assessment		
University Examination (External)	:	60 marks
Total Passing Minimum	:	50 marks

XXI. Calculation of Internal Assessment mark

Attendance	:	05 marks
Practical Record Notes	:	10 marks
Practical Test	:	10 marks
Geological Field work, Sample		
Display and Report	:	15 marks
Total Marks	:	40 marks
Passing Minimum: Internal Assessme	nt: 509	% - 20 marks
Passing Minimum: External Assessme	ent: 50	% - 30 marks
Total Passing Minimum	: 4	50 marks

Everything should be supported by proper record separate passing minimum is necessary for Internal and External.

XXII. Project/Dissertation

The student should undertake an individual project work during fourth semester under the guidance and supervision of a faculty. A faculty member may supervise the work of more than one student in related fields of study in adjacent field areas, but should be separate on topics. He/ she should choose a topic within the purview of the course curriculum. The work can be done in collaboration with the scientific research institutes/establishment/academic institutions on cooperating co-guides from that organization.

The student should submit a thesis (certified as authentic and bonafide by both supervising teacher and Head of the Department) prior to attending via-voce. The work done should be presented before the examiners and part of viva-voce. Submission of thesis prior viva-voce and presentation during it are mandatory requirements, without which course will be incomplete. If the candidate failed to attend the viva-voce, they are permitted to appear at the subsequent viva-voce examination.

Project Evaluation				
Internal Assess	sment	:	50	
Report Evaluat	ion	:	50	
Viva –Voce Ex	amination	:	100	
	Total Marks	:	200	•••

XXIII. Question Paper Pattern

Time: 3 Hours

Max. Marks - 75

PART- A Objective Type: 20x1=20 (Answer all questions) (Four questions from each unit)

PART-B Analytical Type: 3 x 5=15

(Answer any three questions)

(One question from each unit)

PART- C Descriptive Type: 5x8=40 (Answer all questions) (One question from each unit with either or type)

XXV. Syllabus

	Se	mester – 1: Physical Geology and	Geomo	rph	olo	gy ((1°'y	vear)			Mark	S
Subje	ect Code	Subject Name	Category	L	Т	Р	Credits		Inst. Hours	CIA	External	Total
23UPG	EO1C01 Physical Geology and Core Y 4										75	100
	-											
CO1		pret natural processes which act on t					and	l the	land	lform	S	
CO2		l the types of landforms and quatern	-		_		1	-				
CO3		oy geomorphological studies for stru										
CO4 CO5		rstand the pedochemical process res								e.		
	To ident	ify different processes involved diff	erent ge	2010	gice	u ia	nar	orms		No. of	Co	ourse
UNIT		Details								Hours		ectives
Ι	Earth and its internal structure, composition, size and shape. An overview of plate tectonics including elementary concepts of plates, lithosphere, asthenosphere, types of plate boundaries and associated important geological features like oceanic trenches, volcanic arcs, accretionary wedges, topography of mid-ocean ridges and transform faults. Palaeomagnetism and its application for determining palaeoposition of continents. Isostasy, Orogeny and Epeirogeny.									12	С	01
II	lithology	s of geomorphology. Landforms , and structure. Earthquakes ns, Seismic belts of the earth. Seism	and re	elate	ed	lan	dsc	ape		12	C	02
III	Geomor	phic Processes – Geomorphic Agent esis, mass movement, erosion, trans	s, weat	heri	ng,					12	C	03
IV	and kars								s	12	C	04
V		ary landscapes. Major geomorphic : bes, Aeolian landscapes, coastal land			Ind	ia:	Flu	vial		12	C	05
		Total								60		
1.	Holmes	Text Boo D.L. (1981) Principles of Physical Geo		BCI	- 	ion						
<u> </u>		J. (1984) An Introduction to Coastal Geo	0.				ld I	onde	on			
3		y, W.D. (1969) Principles of Geomorph	1	U			-					
4	-	iggett, Fundamentals of Geomorpholog										
5		A.N. (1952) Physical Geology. John W	•	Sons	Inc	., Ne	ew Y	York.				
	(Late	References st editions, and the style as given b		nust	t be	str	ictly	y adl	here	d to)		
1.		D.L. (1981) Principles of Physical Geo										
2.		J. (1984) An Introduction to Coastal Ge							on.			
3.		ry, W.D. (1969) Principles of Geomorph		Nile	y Ea	ister	n L	td.				
4.		aggett, Fundamentals of Geomorpholog	-		-		-	• -				
5.	Strahler,	A.N. (1952) Physical Geology. John W	-	sons	Inc	., Ne	ew Y	í ork.				
1.	https://ia-	Web Resou	rces									
1.	mtps://joi	urnals.sagepub.com/home/jom										

Semester – 1 Semester – 1: Physical Geology and Geomorphology (1styear)

2.	https://www.americangeosciences.org/
3.	https://www.egu.eu/
4.	https://www.geosociety.org/

CO1: Basic knowledge about the internal structure of earth,

CO2: Students studied the plate tectonics theory.

CO3: Get knowledge about the Landform: Exogenic and endogenic processes

CO4: Learn the Landform and tectonics Drainage pattern, sea level change and geomorphic cycle.

CO5: Students can introduce the basis of Quaternary landscapes

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Mapping with Programme Outcomes:

	PO 1	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8
CO 1	3	3	3	2	3	3	3	2
CO 2	3	3	3	3	3	3	3	3
CO 3	3	2	3	3	3	3	3	1
<i>CO</i> 4	2	3	3	3	2	3	3	3
CO 5	3	3	2	3	3	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1. Program Specific Outcomes

СО/РО	<i>PO 1</i>	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	PO 5
<i>CO 1</i>	3	3	3	3	3
<i>CO 2</i>	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	Bennes	ster- 1: Mineralogy and Instrumen				lqu		i ye			Mark	S
Subje	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1C02	Mineralogy and Instrumentation Techniques	Core	Y	I	-	-	4	5	5 25 75 100		
CO1	The stude	chara	acter	istics.								
CO2		ble to employ their practical knowledge	in furth	ner s	tudi	es.						
CO3		l techniques for certain necessities.	(1 1	1	- 1 6					1		
CO4 CO5		ate the accuracy and summaries the me and summarise problem.	ethods a	dapt	ed f	or c	erta	in pra	ictica	al acti	vities.	
	Call expla	A							Ν	o. of	Co	urse
UNIT		Details								ours		ctives
Ι	elements Monoclin	ion to crystallography – Crysta – Isometric, Tetragonal, Orn nic and Triclinic systems – Normal c	thorhor classes.	nbio	с,	He	xago	onal,		12		01
Π	Tautozor	aphic projections – Axial ratio – Zonal faces – Equation of the norma relations – Sine ratio – Cosine ratio.	ul – Na			-				12	C	02
III	Descripti Feldspars	on and composition of the followin s, Feldspathoids, Micas, Garner bles, Zeolites and Carbonate mineral	g mine ts, Ol							12 CO3		03
IV	propertie Reflectiv Interferen interferen	tion to Optical Mineralogy Electric s of minerals – Properties of lig rity – Polarization – Extinction – Di- nce colors – Refringence and B nce – Conoscopy – Interference figu- ory and mineralogical spectroscopy.	ht – T ichrois irefring	Fran m – genc	smi Ple e -	issiv eocł – C	vity nrois Orde	and sm – r of		12	C	04
V	Spot test Spectrose	s – Paper chromatography – Nephe copy – Flame photometry – X- copy – Mass spectroscopy – Acceler	ray sp	ectr	osc	ору	_	ŪV		12	C	05
	Don-11D	Total	at a 1 C1		4 . en -		. T <i>i</i>			<u>60</u>		
1.	Holt, Rine	loss F. (1971) Crystallography and Crystellography and Winston, Inc., New York. M. Blackburn and William H. Dennen (•							-
2.	published	by WCB Publishers England.							gy (Secon		1011)
3.		, Optical Mineralogy, 4th ed McGrav								"T -	dox (1)	05
<u>4.</u> 5.	Tisljar, S.	C.D. &A.J. Hall, A. Practical Introduction K. Haldar, Josip (2013). Introduction to SPN 0780124167100										
	•	SBN 9780124167100. References I			,					14 `		
1.	Cornelis	St editions, and the style as given b Klein and Cornelius S. Hurlbut, Jr. (19									y Johr	1
		Sons, Inc. Singapore.	Vilor 0	S ~~		[arr-	Var	lr.				
2. 3.	Wenk, H	Kerr (1967) Optical Mineralogy, John W Ians-Rudolf; Bulakh, Andrey (2016). M	-						nd C	Drigin	. Camł	oridge
4.		ty Press. ISBN 9781316425282. I, William (2010). "Book XV. History of	of Mine	ralo	gy".	His	tory	v of t	ne In	ducti	ve Scie	ences:

Semester- I: Mineralogy and Instrumentation Techniques (1styear)

	From the Earliest to the Present Times. Cambridge University Press. pp. 187-252.											
	ISBN 9781108019262.											
5	Laudan, Rachel (1993). From mineralogy to geology : the foundations of a science, 1650-1830											
5.	(Pbk. ed.). Chicago: University of Chicago Press. ISBN 9780226469478.											
	Web Resources											
1.	https://mineralogy-ima.org/											
2.	https://www.socminpet.it/dwl.php?file=SIMP/GNM/SIMP_ELEM.pdf											
3.	https://www.mineralogicalassociation.ca/											
4.	https://www.cambridge.org/core/societies/mineralogical-society-of-great-britain-and-ireland											
5.	http://www.minsocam.org/											

CO1: Basic knowledge on crystal structures and bonding and laws

CO2: student can learn about the Silicate structures and their physical and chemical properties

CO3: students get knowledge about the description and composition the minerals

CO4: Student gain knowledge on Optical mineralogical studies

CO5: student apply the instrumentation techniques in mineralogical studies

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	2	3	1	2	3	2	1	2
CO 2	3	2	2	3	1	2	3	2	1	2
CO 3	3	2	2	3	1	2	3	2	1	2
CO 4	3	2	2	3	1	2	3	2	1	2
CO 5	3	2	2	3	1	2	3	2	1	2

S-Strong-3; M-Medium -2; L-Low-1.

<i>CO/PO</i>	<i>PSO 1</i>	<i>PSO 2</i>	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	Semester-I: Recent Trends in Paleontology (1 st year)											S
Subj	ect Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UP(GEO1C03	Recent Trends in Paleontology	Core	Y	-	-	-	4	5	25	75	100
		Course Obj										
CO1		t the origin and evolution of life, unde ne history of Precambrian and Phanero gy.		•								
CO2	of selected groups of organisms.											
CO3	genera	about geological history, geographical									•	
CO4		ting the sampling methods and sample		<u> </u>						aleont	ology.	
CO5	TO KNOW a	bout the application of micropaleontol	ogy in h	yaro	cart	oon	exp	iorati		lo. of	Co	urse
UNIT		Details							I	lours		ctives
Ι	Fossil rec molluscs a of specie morpholog Elephant a Carbon Palaeobiog	1. Us tiona Horse	e 11 2,	12	C	01						
Π	Palaeobiogeographic Provinces.Theories on origin and evolution of life – Phylogenetic and OntogeniAnalysis – Species Concept – Types of Fossils and Types of SpeciesPalingensis – Coenogensis – Proterogenesis - ThanatocoenosisBiocoenosis – Sidocoenosis - Biomineralisation and Trace FossilsFossils and their uses – Biometrics – Major events in the history ofPrecambrian and Phanerozoic life.										C	02
III	Vertebrate paleontology: Succession of vertebrate life through geologic time. Broad classification and study of some characteristic Indian vertebrate genera. Indian pre-Tertiary vertebrate - their distribution and paleogeographic implication; extinction of dinosaurs. Indian Tertiary vertebrate - Siwalik mammals; phylogeny - Equidae and Proboscidae.Indian fossil Hominoides and modern theories regarding human evolution.										C	02
IV	Invertebra evolutiona groups of Geologica important Graptoloid	lecte poda n c an	d 1. of d	12	C	02						
v	Orapioloidea.Image: Constraint of the second state of the sec											

Semester-I: Recent Trends in Paleontology (1styear)

	& geological history. Brief knowledge about Pteropods, Calpionellids,										
	Calcareous algae, Siliceous algae, Radiolaria and										
	Condonts.Application of micropaleontology in hydrocarbon										
	exploration.Different microfossil groups and their distribution in India.										
	Text Books										
1.	Palaeontology Evolution and animal distributionC. Jain and M.S. Anantharaman, (1996), Vishal Publications, Jalandhar.										
2.	Invertebrate Palaeontology - H.Woods, (1985), CBS Publishers and Distributors, New										
۷.	Delhi.										
3.	Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995)										
4.	Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambridge University Press. D 2005)										
5.	5. Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952).										
	References Books										
(Latest editions, and the style as given below must be strictly adhered to)											
1.	Principles of Invertebrate Palaeontology, Shrock R.R and Twenohofel W.H, (2005), CBS										
1.	Publishers and Distributors, New Delhi.										
2.	Invertebrate Fossils. Moore R.C, Lalicker C.G and Fisher A.G (1952) McGraw Hill.										
3.	The Vertebrate Story, Romer A.S, (1959) University of Chicago Press, 4 th Edt. Chicago.										
4.	Palaeontology An Introduction, E.W.Nield and V.C.T.Tucker (1985) Pergamon Press, Oxford.										
5.	Colbert E.H. et al., Evolution of the Vertebrates, Wiley. New Delhi 2002)										
	Web Resources										
1.	https://en.wikipedia.org/wiki/Age of Earth										
2.	https://www.lyellcollection.org/doi/10.1144/GSL.SP.2001.190.01.14.										
3.	https://digitalatlas.cose.isu.edu/geo/basics/fossil.htm										
4.	https://www.sciencedirect.com/topics/immunology-and-microbiology/hemichordata										
5.	https://www.qm.qld.gov.au/Explore/Research/Biodiversity										
· · · · · · · · · · · · · · · · · · ·											

CO1: Student can understand about the fossil record and geological time-scale

CO2: To get knowledge about the theory and Origin of life

CO3: Students get more knowledge about vertebrate paleontology

CO4: Students get more knowledge about Invertebrate paleontology

CO5: Student gain knowledge on micropaleontology: Sampling methods and sample processing techniques

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	<i>PO 1</i>	PO 2			PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
<i>CO 3</i>	2	3	1	3	3	1	3	2	3	2
CO 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	50		1. 501 401	graphy of I	nunu unu						y cui			Mark	s
Subje	ct Code		Subj	ect Name		Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1C04		graphy of cations	India and i	ts	Core	Y	-	-	-	4	5	25	75	100
					rse Obje	ectives									
CO1	Can recall the Stratigraphy of India.														
CO2	Can differentiate different deposits of geological time.														
CO3				are differen	<u> </u>		elate	ed to	o St	ratig	grapł	ıy.			
CO4				ce of stratig											
CO5	Can ide	ntify d	fferent pr	ocesses invo	olved dur	ring dif	fere	nt g	geol	ogic	cal ti		f	C	
UNIT				Deta	ails								o. of ours		urse ctives
I	Stratigraphy of India – Tectonic divisions, Cratons and Mobile belts of India. Dharwar Supergroup – Mineral riches of Archaean Cuddapah System and its mineral riches. Vidhyan System and its mineral riches. Cambrian, Ordovician and Silurian Systems. Paleozoid Formations of India. Precambrian-Cambrian (pC/C) boundary.												12	C	01
Π	Stratigraphy of India (Contd.) - Devonian and Carboniferou Systems. Gondwana Super group – Classification and Ag Stratigraphy and Structure, Life, Climate and Sedimentation Economic importance of Gondwana Sequences. Carboniferous an Permian Systems – Triassic System – Lilang System – Permo-Triass (P/T) Boundary- Jurassic System – Jurassic of Kutch - Cretaceou System – Cretaceous of Trichinopoly/ Tiruchirappalli, Mahade									Age, ion– and assic eous		12	CO2		
III	 Formation, Bagh beds. Cretaceous-Tertiary (K/T) Boundary. Stratigraphy of India (Contd.) - Deccan Traps – Lameta Formatio Infra- and Inter-trappean beds – Age of Deccan Traps – Economiriches of Deccan Traps. Cenozoic History – Tectonics - Magmatia activity, Climate, Life, Rise of the Himalayas – Siwalik Group Tertiary of Assam-Arakan region, Andaman-Nicobar Islands, Niniyu Formation, Cuddalore Formation, Quilon Formation. Neogene Quaternary boundary. Quaternary tectonic activity, climate changes sea level changes, fossil primates/ early man in India. Coasta sediments and its useful mineral deposits, Karewa Formation, Potwar Silts and Loess – Indo-Gangetic alluvium. 										omic natic coup, niyur gene- nges, astal		12	CO2	
IV	Applica Stratigra Geologi Geochro Incompl Golden Lithostr Units - Biostrat Stratigra	ations aphic C ical t onolog letenes spike catigrap – Lith tigraphy aphy -	of Str Ilassification y. Categ s of the R s – Glo hy - Str odemic y – Natu – Biozo	ratigraphy ion and Cor Chronostra gories of cock record. bal Standa atigraphic units – A ure of Bios nes – Typ ion – Relati	-Prince rrelation Stratigr Stratoty ard Sect relations Applications stratigrap pes of 1	- Geolo aphic pes and ion an hips - on of hic Ur Biostra	ogic ti Cl d Ty nd Lit Lit nits tigra	al T me assi ype Poin thos thos -	ime fica Loc strat trat Fos	e Sc Units tior calit (GS igra igra sils Uni	ale - s – ies - SSP). sphic phy. and ts –		12	C	02

Semester-I: Stratigraphy of India and its Applications (1styear)

	other stratigraphic units. Chronostratigraphy- classification, Chronostratigraphic Units and equivalent Geochronologic Units.		
v	Applications of Stratigraphy (Contd.) - Dating and correlation techniques – Radiometric dating – Application of radiometric dating – Other isotopic and chemical techniques – Chemo stratigraphy. Magneto stratigraphy. Introduction to seismic and cyclo- and event startigraphy. Sequence stratigraphy - Causes and controls of sequence development - Sea-level changes - Sea level changes and sedimentation – Depositional sequences and systems tracts – Parasequences– Sequence stratigraphy of carbonates– Sequence stratigraphy of siliciclastics – Applications of sequence stratigraphy	12	CO2
	Text Books		
1.	Geology of India and Burma M.S. Krishnan, (2010), 6 th Edi., C.E Distributors, Delhi	3.S publ	ishers and
2.	Geology of India, D.N. Wadia, (1984), Tata McGraw Hill,		
3.	Fundamentals of Historical Geology and Stratigraphy of India, Ravis Wiley Eastern ltd, New Delhi.		
4.	M.Ramakrishnan&Vaidyanadhan.R. Geology of India. Vol. I, Geologica Bangalore(2008).		-
5.	Vaidyanadhan.R&M.Ramakrishnan, Geology of India. Vol. II, Geologic India. Bangalore(2010)		-
6.	Mehdiratta. R.C,Geology of India, Pakistan, Bangladesh and Bu &Sons.Delhi(1974)		
7.	Pascoe, E.H. (1968) A Manual of the Geology of India & Burma (Vols.I-IV) Delhi	Govt. of	India Press,
	References Books (Latest editions, and the style as given below must be strictly adhe	ered to)	
1.	Doyle, P. & Bennett. M.R. (1996) Unlocking the Stratigraphic Record (John W	/illey).	
2.	Stratigraphy: A Modern Synthesis. Andrew D. Miall. 2016. Springer.		
3.	Principle of Stratigraphy, Dunbar and Roggers, (1964), John Wiley and		
4.	An Introduction in Stratigraphy, Stamp L.D, (1964), Thomas Murby, London.		
5.	Stratigraphic Principles and Practices, Weller, J.M, (1962), Harper & Br	os, New	York
6.	Ramkumar, M., (2015)Chemostratigraphy: Concepts, techniques and ap Elsevier. The Netherlands.	1	
7.	Neil Craigie 92018). Principles of Elemental Chemostratigraphy - A Pra Springer. ISBN-978-3-319-71215-4.	ctical U	ser Guide.
8.	Robert, M. S. (1989) Stratigraphy: Principles and Methods, Van Nostrand Reir		
8. 9.	Robert, M. S. (1989) Stratigraphy: Principles and Methods, Van Nostrand Reir International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271.		
	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & Section 2012.	by Mu	urphy and
9.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271.	by Mu	urphy and
9. 10.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & Se Code of Stratigraphic Nomenclature of India. Geological Survey of In	by Mu	urphy and
9. 10. 11.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & So Code of Stratigraphic Nomenclature of India. Geological Survey of In Publication No. 20. (1977) Web Resources https://stratigraphy.org/	by Mu	urphy and
9. 10. 11. 1. 2.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & Se Code of Stratigraphic Nomenclature of India. Geological Survey of In Publication No. 20. (1977) Web Resources https://stratigraphy.org/ https://www.sepm.org/	by Mu	urphy and
9. 10. 11. <u>1.</u> 2. 3.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & Se Code of Stratigraphic Nomenclature of India. Geological Survey of In Publication No. 20. (1977) Web Resources https://stratigraphy.org/ https://www.sepm.org/ https://www.geosocindia.org/	by Mu	urphy and
9. 10. 11. 1. 2.	International Stratigraphic Guide — An abridged version. Edited Salvador, Episodes, Vol. 22, no. 4, pp.255-271. International Stratigraphic Guide. Hedberg. H.D. 1976. Jhon Wiley & Se Code of Stratigraphic Nomenclature of India. Geological Survey of In Publication No. 20. (1977) Web Resources https://stratigraphy.org/ https://www.sepm.org/	by Mu	urphy and

CO1: Students studied and gain knowledge on Dharwar Super group – Mineral riches of Archaean.

CO2: Students able to understand about the Gondwana Group and its stratigraphy

CO3: Students get knowledge on Deccan traps

CO4: Students understand the Stratigraphy of India

CO5: Students used to study the Applications of Stratigraphy

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1		<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
<i>CO 3</i>	2	3	1	3	3	1	3	2	3	2
<i>CO</i> 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

										Ś	Marks						
Subje	ect Code			Subje	ect Nam	e		Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPC	GEO1L01		neralo Ictical			leontol		Core	Y	-	Y	-	3	6	40	60	100
	T					Course											
CO1	To study								els								
CO2	To descri					v				1		C'	1				
CO3	To detern				culate th	hrough	diffe	erent pr	ocec	dure	es to	o fin	d ou	t sol	ution		
CO4 CO5	To recog	/			o alima of	ta											
	To Interp	Jretat		parae	ocimiai	le.								N	o. of	Co	urse
UNIT					1	Details									ours		ectives
Ι	Study of refraction												K-ray		12		01
II	refraction, Powder method, Determination of unit cell parameters12COICrystal projections –Stereographic projection, Spherical Projectionand Gnomonic projection. Study of common rock forming minerals12CO2under petrological microscope12CO2CO2CO2												02				
III	Determination of: relative relief (RI) of minerals by Becke-line test, sign of elongation of minerals, pleochroic scheme of minerals, optic sign of uniaxial and biaxial minerals, extinction angle and its types.12CO2Identification of rock forming minerals in hand specimens. Chemical examination of Industrial and ore minerals / Blowpipe analysis.12CO2											02					
IV	Recognit age base Trilobita Echinode	ed on ., Ga	morj stropo	pholog	gical cł	haracter	ristic	s of f	ossil	s b	elo	ngin	ig to		12	CO2	
V	Interpreta data. Bi reservoir	ostra	tigrapl	hic zo	onal as	ssignme	ent.								12	C	02
1.	Battey, N	И.Н.,	(1972	2), Mir	neralog	y for stu	uden	ts									
2.	Deer, W.	., Hov	wie, R	.A. &	Zussma	an, J., (1	1996), The				<u> </u>					
3	Hutchiso													ues.	John	Wile	y
4.	Murray,		-	-													
5.	Woods, I	H. (19	966), l	Inverte					rnat	ion	al B	look	Bur	eau			
	/ - .			•		Referen					,	•			1 4 1		
						e as giv											mi ~:
1.	Hans-Ru Cambrid	ge Ui	niversi	ity Pre	ess								con	stitt	uion	and o	rigin
2.	Berry Ma					-										<u> </u>	
3.	Putnis Andrew., (1992), Introduction to Mineral Science, Cambridge University Press.Benton, M.J. and Harper, D.A.T., (2009) Introduction to Paleobiology and the fossil																
4.	record. V				r, D.A	.T., (20		Introd	ucti	on	to	Pale	obio	logy	and	the	fossi

Semester- I: Mineralogy and Paleontology Laboratory Practical-I(1st year)

	Web Resources									
1.	https://handbookofmineralogy.org/									
2.	https://www.mindat.org/									
3.	https://www.webmineral.com/									
4.	https://www.paleosoc.org/									
5.	http://paleoportal.org/									

CO1: Basic knowledge on crystal structures and bonding and laws

CO2: student can learn about the Silicate structures and their physical and chemical properties

CO3: students get knowledge about the description and composition the minerals

CO4: Student gain knowledge on Optical mineralogical studies

CO5: student apply the instrumentation techniques in mineralogical studies

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	2	2	3	1	2	3	2	1	2
CO 2	3	2	2	3	1	2	3	2	1	2
CO 3	3	2	2	3	1	2	3	2	1	2
CO 4	3	2	2	3	1	2	3	2	1	2
CO 5	3	2	2	3	1	2	3	2	1	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

<i>CO/PO</i>	<i>PSO 1</i>	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-1 Geological F			-8 (-		<i>,</i>					
			~						S		Mark	S
Subject	t Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPGE	O1X01	Geological Field Training	1		25	75	100					
Course	Objectiv	ves										
CO1	Understand the occurrence of various mineral resources across the country.											
CO2		ts will comprehend the important in the country.	nce of v	vario	us m	ining	g me	thod	s tha	t are l	being	
CO3	Interpret the occurrence of mineral resources and its relationship with various geological										gical	
CO4	Acquiring practical knowledge through actual field visits and interaction with subject experts											
CO5	Evaluate the importance of mineral exploration techniques.											
UNIT		Details							No. Hot		Cou Objec	
Ι	Students will be taken to various mines and mineral exploration industries across the country to gain first hand field experience on various mining methods, R&D activities in mineral exploration, interaction with subject experts in various industries and organizations involved in mineral exploration activities.*CO1									01		
	orguniz		*Geologi				ıg: 7	-10 da	ays/60	hours	5	
			Text B									
1.		.J. (1988). Geological Structures a	-		0							
2.	Brian Si	impson. (1968). Geological Maps.			ress I	imite	ed, C)xfor	d			
		Referen										
		st editions, and the style as giv										
1.	(Publish	s, J.A.G. (1977). An Introduction to ners) Limited, London. 2 nd Edition										
2.		harya, D.S. and Bagchi, T.C. (197) etation with Exercises. Orient Long						Мар	Read	ing ar	ıd	
		Web R										
1.	Journal of Geological Society											

Semester-I Geological Field Training (I Year)

Course outcomes

CO1: students learn the practical knowledge in the field visit

CO2: students identify and collect the rock specimens in the field visit

CO3: students experienced in mining areas and learn about the mining techniques.

CO4: students get interaction with eminent scientist at various institutions during filed visit

CO5: Students prepare the field training reports and gain knowledge about the geological sites.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point
scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	2	3	2	1	3	2	3	2	2
CO 2	2	2	3	2	1	3	2	3	2	2
<i>CO 3</i>	2	2	3	2	1	3	2	3	2	2
<i>CO</i> 4	2	2	3	2	1	3	2	3	2	2
<i>CO</i> 5	2	2	3	2	1	3	2	3	2	2

S-Strong-3 ; M-Medium -2 ; L-Low-1. Program Specific Outcomes

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

•

									s	2 Marks		
Subje	ect Code Subject Name L T P O Credits								Inst. Hours	CIA	External	Total
23UPG	EO1C05	Structural Geology and Geotectonics	4	6	25	75	100					
		Course O										
CO1		ent can interpret and evaluate di										
CO2	Can critically assess and review the energy needed to cause different str											
CO3		ribe and explain major and mine				1.4		1 /1				
CO4 CO5		erstand to compare and contrast uate and explain the causes of di					eac	n oth	ler.			
UNIT	Calleval	Details	merent	struc	lure	.8.				o. of ours		urse ectives
Ι	Theory of Mohr's of Geometry activation Common tectonic f	12 CO1		01								
Π	Techniques of strain analysis – Particle paths and flow patterns – Progressive strain history and methods for its determination.Deformation mechanisms – Role of fluids in deformation processes – Geometry and analysis of brittle-ductile and ductile shear zones – Petrofabric analysis – Field and laboratory techniques – Point and percentage diagrams – Preparation of petrofabric diagrams of quartz, biotite and calcite –12CO2									02		
III	Symmetry of fabric – Symmetry of movement.Rotated minerals – Syn-, pre- and post-kinematic – Differential movement in rocks using rotated minerals – Oscillatory movements – Characteristics – Neotectonics – Indian and global evidences – Methods of study of neotectonics. Sheath folds – Geometry and mechanics of development of folds – Boudins – Foliation and lineation – Interference patterns and structural analysis in areas of superposed folding – Fault-related folding – Geometry and mechanics of faults – Gravity-induced structures.									12 CO2		
IV	Major tectonic features and associated structures in extensional-, compressional-, and strike-slip terrains – Joints and unconformities – Penecontemporaneous deformational structures of sedimentary rocks. Plate tectonics – Concept and principles – Continental drift – Geological and geophysical evidences – Mechanics, objections and present status of plate tectonics.									02		
V	-	and magnetic anomalies at mic	l-oceani and mo		-	, de cha	-	sea —	1	2	C	02

Semester- II Semester- II: Structural Geology and Geotectonics (I year)

	Contrained and see the single of a later through the									
	Geological and geophysical characteristics of plate boundaries –									
	Geodynamic evolution of the Himalayas – Paleomagnetism – Sea floor spreading and plate tectonics – Island arcs, oceanic islands									
	and volcanic arcs – Isostasy, orogeny and epeirogeny –									
	Geodynamic of the Indian Plate.									
	Text Books									
	(Latest Editions)									
	Billings, M.P. (2014) Structural Geology. Prentice-Hall, Inc., Learning Pvt. Ltd., Delhi.									
1.	3 rd Edition. ISBN: 978-81-203-0059-03.									
2	Beloussov, V.V. (1962). Basic Problems in Geotectonics. McGraw-Hill Book Co., New									
2.	York.									
3	Badgeley, P.C. (1965) Structural and Tectonic Principles. Harper & Row Publishers,									
5	New York. ASIN: BOOBXTMTK6.									
4	Twiss, R.J. and Moores, E.M. (2007). Structural Geology. W.H.Freeman and Company,									
4	New York. 2 nd Edition. ISBN: 10: 0-7167-4951-									
5	B.A. van der Pluijm and S. Marshak (2004). Earth Structure - An Introduction to Structural									
	Geology and Tectonics (2nd ed.). New York: W. W. Norton. p. 656. ISBN 0-393-92467-X.									
	References Books									
	(Latest editions, and the style as given below must be strictly adhered to)									
1.	Suppe, J. (1985) Principles of Structural Geology. Prentice-Hall, Inc., Englewood Cliffs,									
	New Jersey. ISBN: ISBN 0137105002.									
2.	Marshak, S. and Mitra, G. (1988) Basic Methods of Structural Geology. Prentice-Hall,									
	Inc., Englewood Cliffs, New Jersey. ISBN: 0130651788.									
3.	M. King Hubbert (1972). Structural Geology. Hafner Publishing Company.									
4.	G.H. Davis and S.J. Reynolds (1996). The structural geology of rocks and regions (2nd ed.).									
5.	Wiley. ISBN 0-471-52621-5.C.W.Passchier and R.A.J. Trouw (1998). Microtectonics. Berlin: Springer. ISBN 3-540-58713-6.									
5.	Web Resources									
1.	http://www.labotka.net									
2. 3.	http://www.patnasciencecollege.org									
	https://geomorphology.org.uk									
<u>4.</u> 5.	https://gradeup.co									
Э.	https://www.nps.gov>subjects>gla									

CO1:To gain knowledge about the geological structures like fold, fault, unconformity, foliation and lineation and its causes and mechanisms.

CO2: Gain knowledge on techniques of strain analysis

CO3: Student learn about the Methods of study of neotectonics

CO4: Student understand on Major tectonic features and associated structures in extensional-, compressional-, and strike-slip terrains – Joints and unconformities

CO5: Student gain knowledge on Gravity and magnetic anomalies at mid-oceanic ridges, deep sea trenches, continental shield areas and mountain chains.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point
scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	2	3	3	2
CO 2	3	3	3	2	3	3	2	3	3	2
CO 3	3	3	3	2	3	3	2	3	3	2
CO 4	3	3	3	2	3	3	3	3	3	2
CO 5	3	3	3	2	3	3	3	3	3	2

S-Strong-3; M-Medium -2; L-Low-1 Program Specific Outcomes

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

			Semester II- Applied Petr	lology		Car) 					Mark	s
Subje	ct Code		Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1C06	1	Applied Petrology	Core	Y	-	-	-	4	6	25	75	100
	Course Objectives												
CO1	Understa												
CO2	To analyze various magmatic compositions to understand the format rocks.											ous igr	neous
CO3	To comp	ore	hend the genesis of metamorphic	rocks.									
CO4	To understand the formation of sedimentary rocks, their depositional environments and												d
CO5	Understa	anc	ding the complete system of the Ea	arth						1		1	
UNIT			Details								o. of ours		urse ctives
I	geotector rocks. l carbonati igneous emplacen studies o Magma magmas. tectonics- diagrams	emplacement and crystallization of magmas. Phase equilibrium12CO1studies of simple systems, effect of volatiles on melt equilibria.12CO1Magma -mixing, - mingling and -immiscibility. Generation of magmas. Factors affecting their evolution and their relation to plate tectonics- Magmatic differentiation and Assimilation. Variation12CO1											
Π	Silicate melts equilibria, binary and ternary phase diagrams.Experimental Petrology - Phase equilibrium of binary and ternary silicate systems and its petrological implications – Effect of Pressure on silicate systems – Trace elements in magmatic crystallization – Trace element modelling. Petrogenetic aspects of important rock suites of India, such as the Deccan Traps, layered intrusive complexes, anorthosites, carbonatites, charnockites, alkaline rocks, Kimberlites, ophiolites and granitoids.12CO2										02		
III	 agents metamory paragene charnock metamory Regional rocks.Min thermody different granitizat 	orph esi cito ph l a ine yn gutic uire oli	sPetrogenesis of important me e – eclogite – amphibolite – mignic belts Textures and structures and contact metamorphism of peliteral assemblages and P/T cond amic appraisal of metamorphic re- grades and facies of metamorphic on, migmatites.Plate tectonic ed metamorphic belts.Mineral re- tid solutions, mixed vola	rades. I fon contractions metamore matites of me ic and i litions.I actions hism.M es an eactions	Faciof orph s – etan imp Expo .Cha letas d s w	ies maic Khanorr ure erin arac som maith	con etan ro onda ohic calo nent cteri atis etan	cept norp cks alite roo care tal stic m norp	t of ohic 	1	2	C	02

Semester II-	Applied Petrology (I year)
	ipplica i culology (i jear)

Plate tectonic concepts – Sedimentary basins of India – Paleocurrent and Basin analysis – Provenance and Diagenesis of sediments.	
Sedimentary environments and facies, Continental alluvial – fluvial, lacustrine, desert – Eolian and Glacial sedimentary systems; Shallow Coastal Facies, Marine and Continental Evaporates; Shallow water Carbonates; Deep sea basins; Volcanoclasts Petrography of rocks of 	CO2
Text Books	
1. Philpotts, A., 1992, Igneous and Metamorphic Petrology, Prentice Hall.	
2. Turner, F.J., 1980, Metamorphic Petrology, McGraw Hill., New York.	
3. Best M.G,IgneousPetrology.Wiley.NewDelhi(2005)	
4. Hatch,F.H. et al,Petrology of the Igneous Rooks, CBSDelhi.	
5. Hyndman D.W, Petrology of the Igneous and Metamorphic McGrawHill.NewYork(1985)	Rocks
References Books	
(Latest editions, and the style as given below must be strictly adhered to)	
1. Bose, M.K., 1997, Igneous Petrology., World Press.	
2. Bucher, K and Frey, M., 1994, Petrogenesis of Metamorphic Rocks, Springer – Verlag.	
3. Winter, J.D, Principles of Igneous and Metamorphic Petrology, PHI.New	
4. Middlemost E.A.K,Magmas and Magmatic Rocks.Longman UK(1985)	
5. Winkler, H.G.F, Petrology of the Metamorphic Rocks. Springer, New Delhi (1970)	
Web Resources	
1. https://minerva.union.edu/hollochk/c-petrology/resources.html	
2. https://topex.ucsd.edu/es10/lecture/lecture10/lecture10.html	
3. https://geology.com/rocks/igneous-rocks.shtml	
4. https://course.lumenlearning.com/wmopen-geology/chapter/outcome-metamorphic-r	ocks/
5. https://serc.carleton.edu/NAGTWorkshops/coursedesign/goalsdb/10875.html	

CO1: To gain knowledge about the study of rocks - igneous, metamorphic, and sedimentary - and the processes that form and transform them.

CO2: Students gain on Silicate melt equilibria, binary and ternary phase diagrams.

CO3: students learn about the Basic Concepts of Metamorphic Petrology

CO4: Students learn Definition, measurements and interpretation of grain size

CO5: Students get knowledge on Sedimentary environments and facies

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	3	3	3	2	3	1	3
CO 3	3	3	3	3	3	3	2	3	3	3
CO 4	3	3	3	3	3	2	3	3	3	3
CO 5	1	1	2	3	3	3	2	1	2	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

			Jein		Economic				,					Mark	s
Subje	ct Code		S	ubject N	ame	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1C07]	Economic	Geology	7	Core	Y	-	-	-	4	6	25	75	100
	r				Course Ob										
CO1	different	m	nineral dep	osits, its	and processes genesis and d	istributi	on o	f m	ajor	ore	mir	neral	5.		
CO2	of study.	•			on ore minera										
CO3	formation	n i	in various	geologic	ontrols exerte al settings.										n ore
CO4	To provide the knowledge on geological processes responsible for miner formation, weathering and other secondary mineralization processes.										eral	and o	ore		
CO5	To familiarize mode of occurrence of economic minerals, m minerals.									m	etalli				
UNIT					Details								o. of ours		urse ctives
Ι	ore bodie of ore an	es nd	and relati	onship w ninerals.	Mode of occu vith host rock Modern conc on. Geothermo	s -Textu cepts of	res ore	and gen	Str	uctu s. F	ıres]	12		01
II	Paragene and Pro controls Orthomag	esi ovi o ngr s-	is and zon vinces. St of ore loo matic pro-	ning in n ructural, calization cesses-	nineral depos physico-che n. Study of Sedimentary cesses. Ore d	its-Meta emical ore fo process	llog and rmi ses-	ene st ng Me	tic ratig pro etan	Epc graf ces norf	ohic ses- ohic]	12 CO		02
Ш	the follow Copper, Group of geologica deposits bauxite; I	wi G of 1 al in mi	ing metalli Gold, lead, metals. Di character 1 India- ch inerals use	iferous de Zinc – istribution istics of romite, de ed in refra	ences, uses an eposits – Iron Chromium, n of mineral important in liamond, mus actory, fertiliz l as abrasive,	n, Manga Molybdo deposits ndustrial covite, S zer, cerar	ines enur in mi Sn-V nic,	e, A n, 1 Ind nera V, A cen	Alum Rare ian al a Au, I nent	nini e Ea shi nd Fe-l t, gl	um, arth eld; ore Mn,	1	2	C	02
IV	paint industries; minerals used as abrasive, filler; building stones.The study of non- metallic mineral deposits with reference to geology, mode of occurrence, origin, uses and distribution in India of Mica, Asbestos, Barytes, Gypsum, Limestone, Garnet, Corundum, Calcite, Quartz, Feldspar, Clays, Kyanite, Sillimanite, Graphite, Talc, Fluorite, Beryl and Gem minerals.								02						
v	Strategic, critical and essential minerals; India's status in mineral production; co-products and byproducts; consumption, substitution and conservation of minerals; National Mineral Policy; Mineral Concession Rules; marine mineral resources and its laws.12CO2									02					
1	Anthony	F	una (1002)) Or $C = -$		trial Min	ore1	Ic1	n 11	7:1	ρ	0.000			
1.	÷				logy and Indus									dition	
2.					omic Mineral I	-			uon	51111	д ПО	use,	∠nu E	22	•

Semester II- Economic Geology (I year)

3.	Coggin, B. and Dey, A.K. (1955) India's Mineral Wealth, OUP.,
4.	Craig, J.M. & Vaughan, D.J., (1981): ore Petrography and Mineralogy. John Wiley
5.	Cuilbert, J.M. and Park, Jr. C.F.(1986): The Geology of Ore Deposits, Freidman
	References Books
	(Latest editions, and the style as given below must be strictly adhered to)
1.	R.M. Umathay, (2006)Mineral Deposits of India, Dattsons, New Delhi, India
2.	Robb, L. (2005)Introduction to ore-forming processes, Blackwell publishing, U.K.
3.	Mookherjee, A. (2000): Ore Genesis-A Holistic Approach, Allied Publisher
4.	James R. Craig and David J.Vaughan (1994): Ore Microscopy and Petrography
	Web Resources
1.	https://www.ualberta.ca/science/economic-geology
2.	https://pubs.geoscienceworld.org/economicgeology
3.	https://www.britannica.com/topic/economic-geology

CO1: This is the course which links directly to the industry and share the knowledge about a wide range of ore deposit the geometry of ore bodies, alteration patterns and assemblage of ore and gangue minerals.

CO2:It offers a detailed study of origin of economic mineral deposits, its identification, properties, and distribution in India.

CO3: The students will be familiar with how, where, and when earth's most important ore deposits have formed,

CO4:This course also aims at providing a comprehensive knowledge in reflective light optic and ore textures.

CO5:The students get a basic concept of mineral deposit modeling

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	3	3	3	2	3	1	3
CO 3	3	3	3	3	3	3	2	3	3	3
CO 4	3	3	3	3	3	2	3	3	3	3
CO 5	1	1	2	3	3	3	2	1	2	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	bein	ester- 11: Structural and Economic		gy 1	1a		ai (.	I yee	Ĺ		Mark	'C
			ŗy					S	ars			
Subjec	t Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPGH	EO1L02	Structural and Economic Geology Practical	Core	Y	-	-	-	3	6	40	60	100
		Course Obje	ectives									
CO1	To ider	ntify and list out the issues and proble	ems.									
CO2	To dese	cribe and explain the solution to follo	W									
CO3		ct a particular solution for some spec a different procedures to find out solu	-	oble	ms.	То	inte	erpre	et and	l calc	culate	
CO4	To revi	ew an idea regarding solution for a p	roblem	۱.								
CO5		erent between different structures.To			and	con	cep	tuali	ze th	ie sol	utions	
UNIT		Details							No. of Hours		Cou Objec	
Ι		ination of attitude of beds – Geome		<u> </u>					12		CC)1
		metric projections – Tabular and non										
II		truction of parallel fold and fault		epai	atio	on a	and		12	CO2		
	-	s of structure contour map – Isopach			61							
III		action of perpendicular and vertical			-	-	-		12		CC	2
111	comple	Geochronology – Pi and beta dia	igrains	_	Su	ucu	II al		12		CC	12
		to strata – True thickness of beds	s - Int	erni	etat	ion	of					
		ical maps involving normally dipp										
IV	0 0	nterpretation of geological maps in	0						12		CC	02
		mmetrical fold, isoclinal fold, recu										
	fold, st	rike fault and step fault.										
v		of Industrial and ore minerals with							12		CC	12
v	physica	l, chemical characteristic mode of oc	curren	ces	and	use	es.		12		CC	2
			books									
1.		Simpson. (1968). Geological Maps. Pe	0									
2.		R.J. (1988).Geological Structures and	<u> </u>		· ·							
		.G., Butcher, N.E., Clark, P., Francis ith, P.J., Stevenson, J., Thorpe, R.								•		
3		Field Relations – A Second Level C										
	Londor		ourse	in S	cier	ice.	1 110	e Op		mve	isity i	1035,
4.		al geology, Billing. M.P. (1974), Prentic	e Hall	Nev	v De	lhi						
		ine of Structural Geology, Hobbs, B.E					d W	illiar	ns. P	P.F. (1	976):	John
5.		New York.	,un	-, ,					, 1	(1	· · · ·,·,	
		References I st editions, and the style as given b		anet	he	ctr	ictly	he v	here	d ta)		
		charya, D.S. and Bagchi, T.C. (1973)										and
1.		etation with Exercises. Orient Longn			•			~	~ 1 *1(ν _P Λ	Luung	unu
	<u> </u>	e, N.W. (2006).A Manual of Probler							CBS	S Pub	lisher	s and
2.		utors, New Delhi.						0,	6			
3.		roblems of GeotectonicsBelousov.V.V.	(1962):,	Mc	Gra	w H	ill, l	New	York			
							_	_			_	

Semester- II: Structural and Economic Geology Practical (I year)

4.	Structural GeologyDe Sitter. L.U. (1956):, McGraw Hill, New York
5.	Elements of Structural GeologyHill. E.S. (1972):, John Wiley, New York
	Web Resources
1.	https://stratigraphy.org/
2.	https://www.sepm.org/
3.	https://www.geosocindia.org/
4.	https://www.moes.gov.in/
5.	https://isegindia.org/

CO1: Students workout on the determination of attitude of beds

CO2:Student gain knowledge on preparation and analysis of structure contour map

CO3:Students learn about the Construction of perpendicular and vertical sections of plunging fold

CO4: Students gain knowledge on find out the true thickness and vertical thickness of beds CO5:Interpretation of geological maps

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	2	3	1	3	2	3	1	1
CO 2	3	3	2	3	1	3	2	3	1	1
CO 3	3	3	2	3	1	3	2	3	1	1
CO 4	3	3	2	3	1	3	2	3	1	1
CO 5	3	3	2	3	1	3	2	3	1	1

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-II- Petrology Pra	ctical (y cu						Mark	S
Subje	ect Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	GEO1L02	Petrology Practical	Core	Y	-	1	-	3	6	40	60	100
		Course Obje										
CO1	To composite studies.	are and contrast different rock types	by me	ans	of r	neg	asco	opic	and	micro	oscopi	c
CO2		ce the knowledge about minerals in			g po	etro	graj	ohic	tech	nique	es	
CO3		out grain size analysis to distinguish										
CO4		out grain size analysis to distinguish										
CO5	To carry	out gravel analysis to establish of pa	aleoflu	vial	cha	nne	ls a	nd p				
UNIT		Details							No. (Hou			ırse ctives
I	InterviewHoursMegascopic and microscopic study (textural and mineralogical) of the following igneous rocks: Granite, Syenite, Gabbro, Basalt, Peridotite, Pyroxenite, Dunite. Lamprophyres, Dolerite, Phonolite, Rhyolite, Trachyte, Andesite, Pitchstone, Anorthosite, Aplite, Pegmatite. Introduction to modal analyses of Granite, Basalt and Gabbro.12								Objectives CO1			
II	the follow serpentin tremolite metamor garnetife eclogite,	rousschists, sillimanite-kyanite-bear diopside-forsterite marble. Labo blots for petrochemistry and interpr	e meta schis to phiboli ing roo oratory	imor it, hi te, cks, ez	rphi slate gh h Gra xerc	c ro e, g iorn anul ises	ocks talc rade fels lites	: - e , , , ,	12		CO	02
III	the follo	pic and microscopic study (textural owing Sedimentary rocks: Sand lerate, Arkose, mud rocks.							12		CO	02
IV	Harker's,	, Larsen's variation diagrams – Poliggli's variation diagram –	eacock	's A	Alka	ıli-I	Jim	e	12		CO	02
V	paramete	<i>.</i>	ncy and d grap	nd hic	cur	nula	ativ	e	12		CO	02
			Books									
1.	publication										Camb	ridge
2.		Winter 2001. An Introduction to Ign										
3.		R&A. Bulakh, Minerals, Cambridge			y Pı	ess	,Ne	w De	elhi(2	2006)	
4.), 3rd ed. Prentice Hall India, NewDell										
5.	Haldar,S.	K.&J.Tisjlar, Introduction to Mineral		1 Pe	trol	ogy,	, Els	sevie	r,(20	14)		
		References I			. 1					J 4		
	(Lates	t editions, and the style as given b	elow n	nust	t de	str	ictly	y ad	nere	a to)		

Semester-II- Petrology Practical (Ist year)

1.	Yardley, B W D. 1990. An introduction to metamorphic petrology. ELBS publication.
2.	Best, M.G. 2002. Igneous and metamorphic petrology. Wiley publication.
3.	An Introduction to Rock forming Minerals, Deer, Howie and Hussmann, (1982), 2 nd Edit.,
5.	Orient Longman, London.
4.	Deer,W.A.,R.A.Howie&J.Zussman. An Introduction to the Rock-Forming Minerals.
	ELBS.London(1992)
5.	Berry L.G., B.Mason&R.V. Dietrich, Mineralogy, CBS New Delhi (1985).
	Web Resources
1.	https://en.m.wikipedia.org/wiki/mineral
2.	https://britannica.com/science/chlorite-mineral
3.	https://mineralseducationcoalition.org/minerals-database/zeolite
4.	https://www.britannica.com/science/epidote
5.	https://www.abracom.es

CO1Study theMegascopic and microscopic study for igneous rocks

CO2Study theMegascopic and microscopic study for sedimentary rocks

CO3Megascopic and microscopic study for metamorphic rocks

CO4Statistical parameters in Sedimentology

CO5Preparation of Thin sections

(textural and mineralogical) of the following igneous rocks, metamorphic rocks and sedimentology rocks is also studied

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1		<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	<i>PO 9</i>	PO 10
<i>CO 1</i>	3	3	3	3	3	3	3	3	3	3
<i>CO 2</i>	2	3	3	3	3	3	1	2	1	2
<i>CO 3</i>	1	2	2	1	2	1	1	1	2	1
<i>CO</i> 4	3	3	3	3	3	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3	3	3	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	<i>PSO 2</i>	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
<i>CO</i> 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-11: Environmental							s		Mark	S
Subject	Code Subject Name Subject Name L T P		0	Credits	Inst. Hours	CIA	External	Total				
23UPGEC	D1E03	Environmental Earth Science	Electiv	Y	_	_	-	3	4	25	75	100
			e bjectives									
001	To ide	entify knowledge on various type	0	onm	ent	al is	sue	s in	relat	ion t	o the	Earth
CO1	as a System											
CO2	To exp	plain the various causes of polluti	on									
CO3	To exp	plain the various types of pollutio	n									
CO4	To sel	ect the remedial measures to be ta	aken as an	indi	ivid	ual	and	a gr	oup			
CO5	Under	standing the dynamics of the Ear	th									
UNIT		Details							No. Hou			ırse ctives
Ι	HoursHoursObjectivesConcept of environment – Environmental monitoring – Water as a resource, Water pollution – Point and non-point pollution12CO1sources – Ground water pollution.12CO1											
II	Air pollution – Natural and anthropogenic sources of air pollution – Primary and secondary air pollutants – Anthropogenic activities and air pollution – Indoor air quality – Biological sources of indoor pollution – Health effects – Air quality standards – Case histories – Air quality monitoring – Acid rain – Adverse effects of acid rain – Health effects – Mitigation measures – Roles and responsibilities.12CO2									02		
III	Photo effects Proces	 Mechanism of smog format chemical smog – Ozone and I s – Catalytic converters – Green sses of removal of greenhouse gas 	PAN form nhouse gas ses.	natio ses	on and	– F eff	Ieal Tect	th —	12	2	C	02
IV	Methods of waste disposal – Landfills – Trash compactors – Incineration – Recycling – Biological processing – Mulch and compost – Energy production – Waste reduction – Waste12CO2handling and transport – Waste management – Concept of waste12CO2											
v	hierarchy – Education and awareness.Image: Constraint of the second											
	D · 1		Fext Book			1	<u> </u>	•		10		
1.	Fairbr John V	idge, R.W. (1972) Encyclopedia (Wiley.	of Geochei	nist	try a	and	Env	iron	ment	tal Sc	cience	
2.	Keller, Edward A. (1996) Environmental Geology. New Jersey: Prentice-Hall											
3.	Coppola D.P, Introduction to International Disaster Management, Butterworth Heinemann(2007)											
	Pine,J.C, Natural Hazards Analysis: Reducing the Impact of Disasters, CRC Press, Taylor and Francis Group(2009)											
4.	and Fr	ancis Group(2009)										

Semester-II: Environmental Earth Science (I year)

	Press(2001)							
	References Books							
	(Latest editions, and the style as given below must be strictly adhered to)							
1.	Strahler, A.N. and Strahler, A.H. (1973) Environmental Geoscience – Interaction							
1.	between Natural Systems and Man. Hamilton Publishing Co., Santa Barbara, California.							
2.	Kudesia, V.P. (1980) Water Pollution. PragathiPrakasam, Meerut.							
3.	Groundwater Assessment Development and Management, Karanth.K.R. (1987) Tata							
5.	McGraw Hill Publishing Company, Ltd.							
4.	Miller T.G. Environmental Science. Wadsworth Publishing.US(2004).							
5.	Coates, D.R. Environmental Geology. McGraw Hill.NewYork(1984)							
	Web Resources							
1.	https://www.britannica.com/science/geology/sedimentary-petrology							
2.	https://limk.springer.com/chapter/10							
3.	https://www.geo.mtu.edu/UPSeis/hazards.html							
4.	https://www.omafra.gov.on.ca/english/engineer/facts/							
5.	https://geology.com/rocks/rock-salt.shtml							

CO1: To know the basic knowledge about theClimate: Classification, Global warming and climate change

CO2: Student gets knowledge on Pollution Monitoring studies

CO3: Students know about the EnvironmentalHealth hazard

CO4: Students learn the Waste management studies

CO5:Student get involved in Medical geology applications

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	<i>PO 1</i>	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	<i>PO 6</i>	<i>PO</i> 7	<i>PO</i> 8	<i>PO 9</i>	PO 10
<i>CO</i> 1	3	2	1	2	3	3	1	2	2	3
<i>CO</i> 2	3	2	1	2	3	3	1	2	2	3
<i>CO 3</i>	3	2	1	2	3	3	1	2	2	3
<i>CO</i> 4	3	2	1	2	3	3	1	2	2	3
<i>CO</i> 5	3	2	1	2	3	3	1	2	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	<i>PSO 2</i>	PSO 3	PSO 4	PSO 5
<i>CO 1</i>	3	3	3	3	3
<i>CO</i> 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-II: Applied Mici	opareontor	Ugy		yea.					Mark	c
Subje	ect Code	Subject Name	Category	Credits O A L T				Inst. Hours	CIA	External	Total	
23UP	GEO1E04	4	25	75	100							
			Objectives									
CO1	of Micropaleontology											
CO2	To develop skills, innovation, research temperament and contribution to the geological sciences through critical thinking											
CO3		capability to identify the microf									ents	
CO4		tion to the geological problems									1	6
CO5	work eth scientific	nically in an interdisciplinary and	d multidisci	plin	ary	en	v1ro	nme	nt ar	id co	rrelati	on of
UNIT												urse
	Definitio		ments of m	nior	anal	aon	tol	JON	H	ours	Obje	ctives
Ι	Definition, scope, historical developments of micropaleontology. Microfossils - definition, types of microfossils. Sampling methods, processing techniques used in separation of microfossils and 12 CO1 preparation of faunal slides. Field and Laboratory equipments used for micropaleontological studies.									01		
II	Foraminifera: habit, life cycle, dimorphism; test morphology, wall composition, wall structure, chamber shape and arrangements, aperture openings and ornamentation of foraminifera. Ecology, 12CO2paleoecology, geological distributionand classification of foraminifera.CO2									02		
III	Ostracoda: Morphology, hinge types, ornamentation, ecology and paleoecology, geological distribution and classification. Nannofossils: Sample preparation techniques, morphology, ecology, paleoecology and geological distribution.									12	C	02
IV	Conodonts:Extraction methods, morphology, composition and stratigraphic utility of conodonts. Sample preparation techniques, major morphological groups and application of radiolarians and diatoms. Maceration techniques, outline of morphology and application of fossil spores and pollen.12CO2								02			
V	Application of Microfossils: Significance of microfossils in biostratigraphy and correlation. Major mass extinction events in earth's history - types of global bio-events: causes and effects. Use of micropaleontology in hydrocarbon exploration. Importance of microfossils in interpretation paleoenvironment, paleotemperature and sea-level changes.										02	
			Fext Book									
1.		G., (1985). Elements of Micropal										
2.		M.D., (1982). Principles of Micr								~		
3.		r, M.F., (1945). Principles of Mi	_	_	-					_		
4.		J.,(1969). Introduction to Micro					_		_	-		
5.		A. R. (Jr.) & Tappan, J. (1988): n NostrandRenhold.	Foraminiter	a G	ene	ra ð	x T	neir	Class	sifica	tion (v	7.1

Semester-II: Applied Micropaleontology (I year)

	References Books							
	(Latest editions, and the style as given below must be strictly adhered to)							
1.	Armstrong, H. and Brasier, M.D., (2005). Microfossils. Blackwell Publishing.							
2.	Kathal, P. K. (2012). Applied Geological Micropaleontology, Scientific Publishers, New							
۷.	Delhi-Jodhpur.							
3.	Saraswati, P. K. & Srinivasan, M. S. (2016): Micropaelontology, Principles & Applications,							
5.	Springer.							
4.	Martin, R.E. (2000). Environmental Micropaleontology. Springer.							
5.	Haq, B.U. and Boersma, A., (1998). Introduction to Marine Micropaleontology. Elsevier.							
	Web Resources							
1.	https://en.wikipedia.org/wiki/Micropaleontology							
2.	https://www.britannica.com/science/micropaleontology							
3.	https://www.ucl.ac.uk/earth-sciences/research/micropalaeontology							
4.	https://www.sciencedirect.com/topics/earth-and-planetary-sciences/micropaleontology							
5.	https://egyankosh.ac.in/bitstream/123456789/69612/1/Unit-10.pdf							

CO1: To know the basic knowledge about theClimate: Classification, Global warming and climate change

CO2: Student get knowledge on Pollution Monitoring studies

CO3: Students know about the Environmental Health hazard

CO4: Students learn the Waste management studies

CO5:Student get involved in Medical geology applications

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1		<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	<i>PO 9</i>	PO 10
<i>CO 1</i>	3	2	1	2	3	3	1	2	2	3
<i>CO 2</i>	3	2	1	2	3	3	1	2	2	3
<i>CO 3</i>	3	2	1	2	3	3	1	2	2	3
<i>CO</i> 4	3	2	1	2	3	3	1	2	2	3
<i>CO</i> 5	3	2	1	2	3	3	1	2	2	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	<i>PSO 4</i>	PSO 5
<i>CO 1</i>	3	3	3	3	3
<i>CO</i> 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III
Semester-III: Applied Geophysics (II year)

		Semester-III: Applied							Ś		Mark	s
Subjec	ct Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1C08	Applied Geophysics	Core	Y	-	-	-	4	5	25	75	100
		Course										
CO1	ground v	will able to apply geophysical water, oil and natural gas resou	rces.							nine	als,	
CO2	_	the principles behind different				-	-		-			
CO3	data.	analyze and interpret gravitation		0			ectro	omag	netic	surv	veying	5
CO4		andthe earth subsurface using e										
CO5		es the subsurface of the Earth in sm, conductivity, and heat flow	- •	al ter	ms –	der	nsity	, ele			istivit	у,
UNIT		Details								. of urs		urse ctives
I	Introduction – Physical basis of geophysical exploration, various surface and sub-surface methods and their classification. Physical properties of rocks and minerals exploited in exploration and factors that control them. Geophysical anomaly, Radioactivity of rocks and ores, radioactive minerals and ores. Radiation measuring devices – Ionization chambers, gas filled (Geiger Möller) counters, scintillation counters, radiometers and γ ray spectrometers. Field radiometric methods – Air-borne surveys, automobile surveys, foot surveys.Processing and interpretation of field data.Application of radiometric methods.									2	C	01
Π	Gravity Prospecting: Gravity prospecting – Principles, the Earth's gravitational field and units, its variation, Newton's Law – Geoid, spheroid and normal gravity field, figure of earth. Order of anomalies produced by geological discontinuities, absolute and relative measurement of gravity, gravimeters and their operation in the field. Field procedure, reduction and correction of gravity field data, separation of regional and residuals, upward and downward continuation, interpretation of gravity data obtained over spherical and cylindrical objects, sheet, dike and faults – Applications of								1	2	C	02
III	gravity methods. Electrical methods – Electrical properties of earth materials – Conduction in rocks, conduction in water-bearing rocks, description of geoelectric sections, classification of electrical methods. Resistivity method – Ohm's Law, resistivity, factors affecting resistivity, effect of homogenous earth, various configurations for resistivity methods, configuration factor, response over a layered earth. AC and DC type resistivity meters, field procedure for electrical profiling and sounding, logarithmic curve matching, advantages of plotting the data on a logarithmic graph paper. Interpretation of profiling and sounding field data, use of modelling in electrical methods, introduction to self-potential,									2	C	02

	induced polarization methods.		
IV	Seismic methods – Fundamentals of elasticity – Young's modulus, Bulk modulus, Poisson's ratio, elastic waves, laws of reflection and refraction, Huygen's principle, Fermat's principle, Principle of superposition, Seismic wave theory – Helmhotz's theorem and seismic wave propagation – Body and surface waves – Primary, Secondary, Rayleigh and Love waves – Seismic energy sources – Detectors – Seismic noises and noise profile analysis – Reduction to a datum and weathering corrections - Short period, long period, broad band and strong motion – Seismic instruments – Seismic channel – Details of geophones – Filters, Amplifier and reproducible and non-reproducible recording – Seismic timer field layout – Arc shooting – Fan shooting – Profile shooting	12	CO2
V	Data processing – Corrections applied to seismic field data, Simple interpretation of field data – Seismic refraction and reflection data processing – Applications.	12	CO2
	Text Books		
1	Keller, G.V. and Frischknecht, F.C. (1982) Electrical Methods inGeo	physical	
1.	Prospecting. Pergamon Press, New York.		
2.	Rama Rao, B.S. and Murthy, I.V.R. (1978) Gravity and Magnetic Me	ethods of	
2.	Prospecting. Arnold Heinemann Publishers, New Delhi		
3.	Davies, Geoffrey F. (2001). Dynamic Earth: Plates, Plumes and Mantle C University Press. ISBN 0-521-59067-1.		_
4.	Bozorgnia, Yousef; Bertero, Vitelmo V. (2004). Earthquake Engineerin Seismology to Performance-Based Engineering. CRC Press.	-	
5.	Pedlosky, Joseph (1987). Geophysical Fluid Dynamics (Second ed.). Spri 387-96387-1.	inger-Verl	ag. ISBN 0-
	References Books		
	(Latest editions, and the style as given below must be strictly ad		
1.	Dobrin, M.B. (1984) An Introduction to Geophysical Prospecting. Mo Delhi.	cGraw-H	ill, New
2.	Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1976) A Oxford-IBH Publishing Co. Pvt. Ltd., New Delhi	Applied C	eophysics.
3.	Hardy, Shaun J.; Goodman, Roy E. (2005). "Web resources in the hi American Geophysical Union. Archived from the original on 27 Apri September 2011.		
4.	Kivelson, Margaret G.; Russell, Christopher T. (1995). Introduction to Space University Press. ISBN 978-0-521-45714-9.	ce Physics.	Cambridge
5.	Lowrie, William (2004). Fundamentals of Geophysics. Cambridge Univ 521-46164-2	versity Pre	ss. ISBN 0-
	Web Resources		
1.	https://iugg.org/associations-commissions/commissions/sedi/		
2.	https://iugg.org/		
3.	https://www.usgs.gov/programs/geomagnetism		
4.	https://www.udemy.com/course/learn-seismic-data-processing/		
5.	https://seg.org/Default.aspx?TabId=176&language=en-US		
Course	e Outcome:		

CO1: Student can learn in detail about the Gravity and gravity anomalies, gravity survey, gravity map preparation

CO2: Magnetic fields, magnetic behavior of rocks, magnetic methods – anomalies, preparation of magtnetic anomaly maps

CO3: Thermal and electrical properties of rocks, resistivity method

CO4: Application of electrical method in groundwater exploration

CO5 Seismic method, wave propagation principles, seismic data interpretation.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3	3	2	2	3	2
<i>CO</i> 4	3	3	3	3	2	3	3	3	3	3
<i>CO</i> 5	3	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	~	EMESTER-III: Applied Remote Se				. (-			S		Mark	s				
Subject	t Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total				
23UPGE	EO1C09	Applied Remote Sensing and GIS	Core	Y	-	-	-	4	4 5 25 75							
		Course Obje	ctives													
CO1	propert	tand the basics of remote sensing, ele ies, aerial photography and to list the	e impor	tant	me	rits	of t	hese	tech	nolo	gy too					
CO2	objects	ts will comprehend the core part of re , interaction of EMR with the atmosp e sensors including the generate of Fa	here ar	nd tl	ne a	cqu	isiti	ion o	f dat	a by	differ					
CO3	interpre	on the understanding of the basics, the tation of aerial photographs and FCC c maps.				-					0					
CO4	Information Information Information	ing advanced skills on the aspects of ation Technology tools, the students detection, monitoring of resources e	are exp tc.	ecte	ed to	o do	qu	antita	ative	anal	ysis o					
CO5	Evaluat way for	te the importance of these technology ward.	y tools o	ovei	CO	nve	ntio			_						
UNIT		Details							No. of Hours		Cou Objec					
Ι	technol radiatio spectral acquisit resoluti Introdu sensors structur	nentals of remote sensing: History ogy – Remote sensing system on – Spectral properties of terrestrial l reflectance curves – Types of tion – Multi-spectral scanners on – Introduction to thermal ction to microwave remote sensin – Remote sensing in landform and ral mapping, coastal and ocean st space missions.	 Electron satelli Rer remote and land 	ectr – A ites note e s nev use	oma Anal – sens sens w s ma	agno ysis Ima ens ing atel appi	etic s of age ing - lite ng,		12		СС)1				
П	 Aerial photography: Introduction – Vertical and oblique photographs – Photoscale – Image displacement due to relief – Parallax in aerial photographs – Aerial photographic procedures – Camera and flight requirement – Flight planning – Filters – Compensation – Stereoscopy – Photomosaics. Photographical studies – Photo recognition elements and keys – Interpretation of lithology, structures and landforms from aerial photographs. 								12		СС	02				
III	Digital Pre-pro	processing in remote sensing: Digi data format. Introduction to digital cessing techniques – Image class enhancement techniques.	image	pro	oces	sin	g —	- 12 CO2								
IV	Image enhancement techniques.Applications of remote sensing: Visual interpretation – Different sensors – Data and image interpretation key elements. Exercises on mapping of geology – Land use/land cover and geomorphology based on visual method – Preparation of base maps and transformation of thematic maps. Validation of remote									ses nd 12 CO2 ise						

SEMESTER-III: Applied Remote Sensing and GIS (II Year)

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

	sensing analysis output by ground truth – Accuracy, estimation		
	and introduction to GPS technology.		
v	Fundamentals and application of GIS: Concept of GIS – GIS types – Data storage – Retrieval and analysis. GIS database organization and development – Combined use of remote sensing and GIS. Preparation of spatial decision support system (SDSS).Highlights on different applications using GIS tool with particular reference to Applied Geosciences and Ocean Science.	12	CO2
	Text Books		
1.	Asrar, G. (1989) Theory and Applications of Optical Remote Sons, New York.	Sensing. Jo	hn Wiley &
2.	Curran, P.J. (1984) Principles of Remote Sensing. Longman Group	o Ltd.	
3	Lillesand, T.M., Kiefer, R.W. and Chipman, J.W. (2007) <i>Rem Interpretation</i> . Wiley India, 763.		g and Image
4	Paul R. Wolf. (1986) Elements of Photogrammetry, McGraw-Hill	Book com	oany. 628.
5.	Lasaponara, R. and Masini N. 2012: Satellite Remote Sensing - A n Remote Sensing and Digital Image Processing Series, Volume 16, 36 8801-7.	ew tool for	Archaeology.
	References Books		
	(Latest editions, and the style as given below must be strictly	adhered to)
1.	Sabins, F.F. (1998) Remote Sensing Principles and Interpretation.	W.H.Freen	nan& Co
2.	Agarwal, C.S. and P.K. Garg (2000) <i>Textbook on Remote Sensition monitopring and management</i> , Wheeler Publishing, 196.	ng In natur	al resources
3.	Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). The Gu 57230-640-0.	uilford Press	. ISBN 978-1-
4.	Jensen, J. R. (2007). Remote sensing of the environment: an Earth resord Prentice Hall. ISBN 978-0-13-188950-7.		
5.	Richards, J. A.; X. Jia (2006). Remote sensing digital image analysis: Springer. ISBN 978-3-540-25128-6.	an introduc	tion (4th ed.).
	Web Resources		
1.	https://stratigraphy.org/		
2.	https://www.sepm.org/		
3.	https://www.geosocindia.org/		
4.	https://www.moes.gov.in/		
5.	https://isegindia.org/		

CO1:To gain the basic concept of remote sensing

CO2: Students study the Photogeology

CO3:Student gets knowledge on Image processing in remote sensing

CO4: Students learn about the Applications of remote sensing

CO5: Students gain knowledge on Fundamentals and application of GIS

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2			PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	S	3	3	2	3	3	3	2	3	3
CO 2	S	3	3	3	3	3	3	3	3	3
<i>CO 3</i>	S	3	3	3	3	3	2	2	3	2
<i>CO</i> 4	S	3	3	3	2	3	3	3	3	3
CO 5	S	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	<i>PSO 2</i>	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III: Hydrogeology (II year)

			ter-III: Hydro			, ,				S		Mark	KS
Subjec	t Code	Subject	Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPGF	EO1C10	Hydrogeology		Core	Y	-	-	-	4	5	25	75	100
~~ .	m		Course (
CO1		ne different term	<u> </u>				U		<u> </u>				
CO2		merate the conce										er	
CO3	ground												
CO4	ground	rpret the conditio water is being ex	ploited against	the natu	ral la		ct so	ome	area	s wh	ere tl	ne	
CO5	To criti	cally assess diffe	rent factors/asp	ects inv	olve						~	~	
UNIT			Details							No. o Hour		Cou Objec	
I	water composi infiltrat movem of asse formati permea	bility, compressi	f water - Hy- tion, evaporate anoff and sub- ater and their en- ability. Water-to isotropic and bility of rocks.	drologic ion, ev surface stimatio pearing I d anist	al cy vapot distr n for prope tropic	ycle ransj ributi the erties 2, p	and piration purj of t	l its tion and pose rock sity	5 , 1 2 5 ,	12		CC	01
Π	distribu saturati Darcy' conduc and ti Ground	rence and mo tion of ground on – Geologica s experiment and tivity, transmissi dal efficiency water flow dire	water: zone o l formations its limitations, tivity – Reyno of aquifers -	f aeration as aquif fluid pro- lds Num - Grou	on a fers ressu iber nd	ind z – Sp re, hj - Bai water	zone pring ydra rom r fl	gs aulic etric low-	f - - -	12		CC	02
III	 Water wells: Types of wells - Well hydraulics - Cone of depression, radius of influence, drawdown and specific capacity Drilling of shallow wells and deep wells - Well Completion - Well development - Testing wells for yield- Protection and rehabilitation of well- Collector wells and Infiltration galleries - Tracer tests and slug tests - Ground water budgeting - Ground water levels and water level maps - Safe yield and Conjunctive uses - Artificial recharge and methods. 									12		CC	02
	Groundwater Quality and Pollution: Chemical constituents in groundwater: sources and effects - Quality criteria for different uses -Geochemical cycle of surface water and ground water- Graphical presentation of groundwater quality data- Dissolved gases in groundwater- Impact of solar energy on groundwater – Sources and causes for pollution of groundwater – Pollution attenuation – Treatment for contaminated groundwater.12CO2Exploration techniques and Saline water intrusion : Methods12CO2)2		
IV V	gases in Source attenua	s and causes for tion – Treatment	r pollution of for contaminat	groundv ed grour	vater ndwa	– P ter.			ı	10			22

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

r									
	Sensing techniques, geomorphological inputs, gravity, magnetic,								
	seismic and electrical methods – Basics of ground water								
	modeling – Physical, analog and mathematical models, finite								
	difference modeling -Hydrogeology of arid zones of India -								
	Hydrogeology of wetlands. Hydrodynamic equilibrium of fresh								
	and saline water –Ghyben-Herzberg relation- Control of saline								
	water intrusion.								
	Text Books								
1.	Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice-Hall. London.								
2.	Fetter, C. W. (2018). <i>Applied Hydrogeology</i> . Waveland Press. ISBN: 9781478637448. 4 th Edition.								
2.	E-Book.								
	De Marsily, G., 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers,								
3.	Academic Press, Inc., Orlando Florida. — Classic book intended for engineers with mathematical								
	background but it can be read by hydrologists and geologists as well. ISBN 0-12-208916-2								
1	LaMoreaux, Philip E.; Tanner, Judy T, eds. (2001), Springs and bottled water of the world:								
4.	Ancient history, source, occurrence, quality and use, Berlin, Heidelberg, New York: Springer- Verlag, ISBN 3-540-61841-4 Good, accessible overview of hydrogeological processes.								
	Porges, Robert E. & Hammer, Matthew J., 2001. The Compendium of Hydrogeology, National								
5.	Ground Water Association, ISBN 1-56034-100-9. Written by practicing hydrogeologists, this inclusive handbook provides a concise, easy-to-use reference for hydrologic terms, equations,								
	pertinent physical parameters, and acronyms								
	References Books								
	(Latest editions, and the style as given below must be strictly adhered to)								
	Todd, D.K. and Mays, L.W. (2013) <i>GroundwaterHydrology</i> .John Wiley & Sons, New								
1.	York. ISBN: 978-81-265-3003-8. 3 rd Edition.								
2.	Davis and DeWeist. (1966). Geohydrology. John Wiley & Sons, New York.								
2.	Domenico, P.A. & Schwartz, W., 1998. Physical and Chemical Hydrogeology Second Edition,								
3.	Wiley. — Good book for consultants, it has many real-world examples and covers additional								
0.	topics (e.g. heat flow, multi-phase and unsaturated flow). ISBN 0-471-59762-7								
	Driscoll, Fletcher, 1986. Groundwater and Wells, US Filter / Johnson Screens. — Practical book								
1	illustrating the actual process of drilling, developing and utilizing water wells, but it is a trade								
4.	book, so some of the material is slanted towards the products made by Johnson Well Screens.								
	ISBN 0-9616456-0-1								
	Anderson, Mary P.&Woessner, William W., 1992 Applied Groundwater Modeling, Academic								
5.	Press. — An introduction to groundwater modeling, a little bit old, but the methods are still very								
	applicable. ISBN 0-12-059485-4								
	Web Resources								
1.	https://iah.org/								
2.	http://www.groundwateruk.org/								
3.	https://gw-project.org/books/groundwater-resource-development.								
4.	https://www.epa.gov/dwreginfo/drinking-water-regulations.								
5.	https://www.guidelinegeo.com/groundwater-prospection								

CO1: This study helps to understand the Hydrological cycle, Aquifer; flow rates and flow directions, Groundwater fluctuation: types, controlling factors

CO2: Occurrence and movement of Groundwater

CO3: Groundwater wells, types and methods

CO4: Groundwater chemistry: Components of groundwaterGroundwater pollution: Arsenic, fluoride and Nitrate

CO5 Salinity in Groundwater, Seawater intrusion and Ghyben-Herzberg Relation

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2			PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	1	2	3	3	3	2
CO 2	3	3	3	2	1	2	2	3	3	2
<i>CO 3</i>	3	3	3	2	2	3	2	3	3	3
CO 4	3	3	3	3	2	3	2	3	3	3
CO 5	3	3	3	3	2	3	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1. Program Specific Outcomes

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

	Semester-III: Geological Field Mapping (II year)											
			>						SI		Mark	S
Subje	ect Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPC	GEO1C11	Geological Field Mapping	Core	Y	-	-	-	4	4	25	75	100
		Course Obje	ectives									
CO1	To identi	fy and list out the issues and problem	18									
CO2	To descri	be and explain the solution to follow	7									
CO3	To interp	ret and calculate through different pr	ocedur	es to	o fii	nd o	ut s	olut	ion			
CO4	To select	a particular solution for some specif	ic prob	lem	S							
CO5	To review	w an idea regarding solution for a pro	oblem									
UNIT		Details							No. Hour		Cou Objec	
Ι	and back toposhee	inometer compass for geographic dia bearing, strike and dip, reading of a t – Use of GPS for co-ordinates an) – Geomorphological mapping (One	and loca Id mapp	atin	g oi	nese	elf c	n	12	,	CO	D1
II	samples a	igneous rock outcrops for mappin and field set-up studies (Two days) - 'hin section studies of rocks (One day	- Mapp						12	2	CO	02
III		sedimentary terrain for mapping of s 'wo days).	strata a	nd o	coll	ecti	on	of	12		CO	02
IV	structures	netamorphic terrain for mapping of a s, collection of rock samples (Two One day).					-		12	2	CO	02
V		ical investigations – Field measur and electrical methods (Two days).	rements	us	ing	gra	avit	у,	12	2	CC	02
		*Geologi			-				•	hours	5	
1.		npson. (1968). Geological Maps. Perg										
2.		J. (1988).Geological Structures and I	^	<u> </u>								
3	Smith, P	G., Butcher, N.E., Clark, P., Francis, I J., Stevenson, J., Thorpe, R.S., Tur <i>lations – A Second Level Course in S</i>	mer, C.	, W	ilso	n, l	R.C	.L.,	Wrig	ht, J	.B. (1	972).
		References 1										
		st editions, and the style as given b										
1.		J.A.G. (1977). An Introduction to	Geolog	ical	! M	aps	G	eorg	e Al	len a	and U	nwin
		ers) Limited, London. 2 nd Edition.	. =-		-		-					
2.		arya, D.S. and Bagchi, T.C. (1973			•		-	gica	l Ma	p Re	eading	and
	Interpret	ation with Exercises. Orient Longma		ted,	Cal	cut	ta					
	1	Web Resour	rces									
1.		bs.geoscienceworld.org/jgs										
2.		w.geosocindia.org/index.php/gsi/pages/	view/ed	1								
3.	https://ww	ww.gsi.gov.in/webcenter/portal/OCBIS										

Semester-III: Geological Field Mapping (II year)

CO1:Student apply the knowledge on use of clinometer compass for geographic directions CO2:Students studied practically on the collection of rock samples and field set-up studies CO3:Students can get the field exposure and field knowledge for identification of rock types CO4:Students studied the mapping of rocks and metamorphic structures

CO5: Student trained the Geophysical investigations using geophysical instruments **Mapping with Programme Outcomes:**

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	2	3	1	3	2	3	1	1
CO 2	3	3	2	3	1	3	2	3	1	1
CO 3	3	3	2	3	1	3	2	3	1	1
CO 4	3	3	2	3	1	3	2	3	1	1
CO 5	3	3	2	3	1	3	2	3	1	1

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		cophysics and Hydrogeology & N				,					Marl	KS
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1L03	Geophysics and Hydrogeology & Remote Sensing, GIS Practical	Core	Y	-	-	-	3	5	40	60	100
		Course Obje	ctives									
CO1		ify the groundwater potential zone										
CO2		ribe the different geophysical metho										
CO3		and how groundwater infiltrates and			U							
CO4		pret groundwater flow direction from		opog	grap	hic	fea	tures	5			
CO5	To critic	ally assess the quality of groundwa	ter						Na	e f	Ca	urse
UNIT		Details							No. Hot			urse ctives
Ι	sounding curve r	al Resistivity methods: Interpretat g data obtained over 2- and 3-layered matching and auxiliary point c rration of resistivity, seismic SP and les.	ed earth hart n	usi neth	ng t Iod	he !	S-li Fi	ne, eld	12			01
П	- Exerci of gravi magneto Interpret	Methods: Computation of gravity ises on drift correction, separation ity data – Contouring of gravity ometer – Interpretation of field ma tation of seismic refraction data of earth – Computation of configuration	of regio data - gnetic o btained	onal – C data I ov	and Calib ov ver 2	d re orati er a	sidi ion di	ual of ke.	12	2	C	02
III	Aquifer water flo Specific Storativi linear v unidirec Solubilit Oxidatio On field	s and Aquitards:Factors affecting ow: Porosity – Permeability - Grain retention – Hazen method for H ity. Groundwater flow: Specifi elocity – Flow net – Flow across tional flow – Unsteady radial flow ty –Ionic strength of groundwater on potential <i>Eh</i> . Laboratory – Us d water parameter analysis techn is for analysis.	infiltra ydrauli c disch ss wate ow. W - Tril es of M	ation - Sp c co narg er t ate inea Mult	n ar ecif ond e – able r cl ar d tipa	ic y ucti Av -S nen liag	vielo vity vera Stea nist i ram	1 – nge ndy r y: 1 –	12	2	C	02
IV	Aerial Stereosc informat Interpret structure Interpret lithology	Photography: Stereovision Test tope - 3D Observation, Dem	arcation Recogni forms, oding o pholog	n tion roc of S y, s	of k tj atel strug	ma eler ype lite ctur	urgin mer s a da ve a	nal nts. ind ita, ind	12	2	C	02
V	GIS: So Image,	canning, Digitization, Preparation Geo-Referencing. Overlay analy ty analysis. Digital Elevation Mode	sis. No l.	etwo					12	2	C	02
1	Easter P		Books		. 11	. <u>11</u> 1	r	d a .:				
1.	Freeze, F	R.A. and Cherry, J.A. (1979) Groundwa	<i>iter</i> . Pre	ntic	e-Ha	all. I	Lon	don.				

Semester-III: Geophysics and Hydrogeology & Remote Sensing, GIS Practical (II year)

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

2.	Fetter, C. W. (2018). <i>Applied Hydrogeology</i> . Waveland Press. ISBN: 9781478637448. 4 th Edition. E-Book.
3.	De Marsily, G., 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press, Inc., Orlando Florida. — Classic book intended for engineers with mathematical background but it can be read by hydrologists and geologists as well. ISBN 0-12-208916-2
4.	LaMoreaux, Philip E.; Tanner, Judy T, eds. (2001), Springs and bottled water of the world: Ancient history, source, occurrence, quality and use, Berlin, Heidelberg, New York: Springer- Verlag, ISBN 3-540-61841-4 Good, accessible overview of hydrogeological processes.
5.	Porges, Robert E. & Hammer, Matthew J., 2001. The Compendium of Hydrogeology, National Ground Water Association, ISBN 1-56034-100-9. Written by practicing hydrogeologists, this inclusive handbook provides a concise, easy-to-use reference for hydrologic terms, equations, pertinent physical parameters, and acronyms
	References Books
	(Latest editions, and the style as given below must be strictly adhered to)
1.	Todd, D.K. and Mays, L.W. (2013) <i>GroundwaterHydrology</i> .John Wiley & Sons, New York. ISBN: 978-81-265-3003-8. 3 rd Edition.
2.	Davis and DeWeist. (1966). Geohydrology. John Wiley & Sons, New York.
3.	Domenico, P.A. & Schwartz, W., 1998. Physical and Chemical Hydrogeology Second Edition, Wiley. — Good book for consultants, it has many real-world examples and covers additional topics (e.g. heat flow, multi-phase and unsaturated flow). ISBN 0-471-59762-7
4.	Driscoll, Fletcher, 1986. Groundwater and Wells, US Filter / Johnson Screens. — Practical book illustrating the actual process of drilling, developing and utilizing water wells, but it is a trade book, so some of the material is slanted towards the products made by Johnson Well Screens. ISBN 0-9616456-0-1
5.	Anderson, Mary P.&Woessner, William W., 1992 Applied Groundwater Modeling, Academic Press. — An introduction to groundwater modeling, a little bit old, but the methods are still very applicable. ISBN 0-12-059485-4
	Web Resources
1.	https://iah.org/
2.	https://gw-project.org/books/groundwater-resource-development/
3.	https://info.aquaclara.org/what-are-the-most-common-water-contaminants
4.	https://www.usgs.gov/mission-areas/water-resources

CO1:The student will be able tounderstand the Electrical Resistivity methods

CO2: Understand the application of near surface geophysical techniques for aquifer characterization.

CO3: Student gain knowledge on Groundwater flow

CO4: Student gets knowledge on Aquifers and Aquitards studies

CO5: Student learn about the Water chemistry

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
<i>CO 1</i>	3	3	3	3	3	2	2	3	3	3
<i>CO</i> 2	3	3	3	3	3	2	3	3	3	3
<i>CO 3</i>	2	3	3	3	3	1	2	3	3	3
<i>CO</i> 4	2	3	3	3	3	1	2	3	3	3
<i>CO</i> 5	2	3	3	3	3	1	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

<i>CO/PO</i>	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-1: Geo-Statistics							rs		Marl	KS
Subject	Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	Externa l	Total
23UPGE	O1E01	Geo-Statistics	Elective	Y	-	-	-	3	4	25	75	100
		Course O	- V									
CO1	Earth	ourse provides the learners to hav Science Data sets										
CO2	enabli	ourse aims to introduce the difference of the difference of the second s	tion and mo	odel	ing							
CO3		ledge of statistical procedures is i								-		
CO4		ourse will help the students in the					-					
CO5	The st estima	udents will be able to correlate be tors.	etween vari	iabl	es a	nd ı	ise s	stati				
UNIT		Details							No. Hot			urse ctives
	Basic	Statistics – Classification and pre	esentation of	of st	atis	tica	l da	ta.	ΠΟΙ	115	Obje	cuve
Ι	Charao tenden regress	cteristics of Normal distribut acy and dispersion, correlation, sion analysis, probability and ot of population and sample	ral nd ns,	12	2	C	01					
II	Testin test, A	l limit theorem; Concept and n g and its application in geology NOVA (one way)	- student's	s t t	est,	Ft	est,	χ2	12	2	C	02
III	kriging	pt of regionalized variable- semi g, Basic spatial interpolation: ce, trend surfaces, Introduction to	nearest ne	igh	bors	5, i			12	2	C	02
IV	and c Locati Deviat Functi Statist	sis of sequences of data: Mark ross correlation, Univariate sta on and Spread, Mean, me tion. Univariate Plots: Histog on (PDF), Cumulative Density ics: Bivariate Data Display: S ate Measures (Covariance, Corre	atistics: Mo dian, var gram, Prol Function (Scatterplot	easu ianc babi (CD or	ures xe, ility PF). Ci	to Sta D Biv	ols anda ens: varia	of ard ity ate	12	2	C	02
V	-	sis of multivariate data, Map an Regression, De-clustering.	alysis. Fra	ctal	s in	ge	olog	gy.	12	2	C	02
1.	Cressi	e, N. (1993). Statistics for Spatia	l Data (Rev	vise	d Eq	1.)	Joh	n W	ilev A	& Sr	ons. In	с.
2.		, J. P. and Delfiner, P. (1999) Ge										
		Referenc		-		0	1					J *
	(Late	st editions, and the style as give	en below m	ust	be	stri	ctly	adl	hered	<u>d to)</u>		
1.		. Diggle, Paulo J. Ribeiro, Jr (20							-			
2.		enberger, O. and Gotway, C. (20 nan & Hall/CRC.		cal	Me	tho	ds fo	or \overline{S}	patia	l Da	ta Ana	alysi
	1	Web Res										
1.	-	/www.nrc.gov/docs/ML0227/ML		<u> </u>	f							
2.	https://	/www.science.gov/topicpages/g/g	geostatistic.	5								

Semester-I: Geo-Statistics (Elective-I) (1st year)

CO1: Student can understand about the fossil record and geological time-scale

CO2: To get knowledge about the theory and Origin of life

CO3: Students get more knowledge about vertebrate paleontology

CO4: Students get more knowledge about Invertebrate paleontology

CO5: Student gain knowledge on micropaleontology: Sampling methods and sample processing techniques

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
<i>CO 3</i>	2	3	1	3	3	1	3	2	3	2
CO 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

					0							Ľ	s s		Mark	s
Subject	Code			Subj	ect Name	5	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPGE	O1E02		Geo-he	ritage	and Geo	-tourism	Elective	Y	-	-	-	3	4	25	75	100
							Objectives									
CO1	makin	ng İ	laws to	prese	erve then	n would b	nd geotouris e emphasiz	ed								or
CO2							the above									
CO3				-	al and ge oheritag	-	logic featur	es c	listr	ibu	ted	throu	ugho	ut the	e coun	try
CO4							nany of thes									
CO5			he lack tional t			and string	gent laws li	ttle	effo	orts	are	bein	_			
UNIT						Details							No. Hoi		Cou Objec	
I	Geoco	troduction and importance of Geodiversity, Geoheritage eoconservation; Geoparks andGeotourism; History of th oncept of Geoheritage.											12		CC	
Π	Conse related	erv d f	vation, features	prote s of N	ction, n	naintenand importanc	Threats ce of geol ce; Conserv	ogic	cal	site	es a	nd	12	2	CC	02
III	Karna	atal	ka, An	dhra	Pradesh,		India; Ra Pradesh, 7 esh	•					12	2	CC)2
IV	UNES Geoto		-	-	-		works acr lonuments.		th	e	glo	be;	12	2	CC	02
V	Guide local, Geohe	elir s erit	nes for state	selec and rotect	tion of national	Geosites; governr	Geoheritaș nents; Cu ry; Global	ge 1 rren	it :	stat	us	of	12	2	CC)2
1.			0 1		0	atural Her	e monumer itage Divis						n Na	tiona	l Trus	t for
	(T 4				J 41		ces Books		1				L	J 4 \		
							en below n otential Ge								in 1	India
1.							Research									
2.	Ezzou				-	ent Series) 2009. Ge Springer. P			ge,	Ge	opar	∙ks a	nd C	Geotou	rism
-				•		Web Re										
1. 2.	_			_		ries/11639 enter/porte) al/OCBIS/p	age	s_p	age	Geo	Info	/pag	eGE	ΟΤΟΙ	RIS

Semester-I: Geo-heritage and Geo-tourism (Elective-II) (1st year)

CO1: Student can understand about the fossil record and geological time-scale

CO2: To get knowledge about the theory and Origin of life

CO3: Students get more knowledge about vertebrate paleontology

CO4: Students get more knowledge about Invertebrate paleontology

CO5: Student gain knowledge on micropaleontology: Sampling methods and sample processing techniques

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
<i>CO 3</i>	2	3	1	3	3	1	3	2	3	2
<i>CO</i> 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Semester-III: Isotope	Geology (I	I ye	ear))						
									rs		Marl	ks
Subje	ct Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	Externa 1	Total
23UPG	EO1E05	Isotope Geology	Elective	Y	-	-	-	3	4	25	75	100
CO1		e knowledge on economically rele		tive	mir	neral	s					
CO2	· · · ·	n the abundances of unstable nuclion										
CO3		e practical knowledge on the mine										
CO4		the methods applied for mineral ex-	<u> </u>									
CO5	10 summa	arise the radioactive mineral depos	105						No.	of	Co	urse
UNIT		Details							Hoi			ectives
I	on isoto stability emitted,	y of radioactivity, stable and radio pe geology. Nuclear structure and abundance. Theory and me positron, negatron and alpha dec s, growth and retaintion of o	e, atomic vechanism of cay, effect of	wei f de of m	ghts cay	s, n , pa ral/o	ucl rtic crys	ear les stal	12	2	C	O1
II	and diffe as major geochem chemical	separation, isotope dilution and	hemes, radi d trace ele rometer: l ratio analy	oac eme Ins vsis.	tive nts trur	e ele anc nen	eme 1 th tati	nts eir on,	12	2	C	02
III	track, 40 14C, Be	of dating: Isochron method, r DAr-39Ar, U and Th disequili and Al. Interpretation and geolo	brium, cho gical signif	nco icai	ordia nce	am ofa	eth ges	od,	12	2	C	02
IV		systematics of K-Ar, Rb-Sr, Supplic and sedimentary rocks and le.							12	2	C	02
V	sulphur. and at geobaron exploration	sotopes of oxygen and hydro Fractionation of stable isotopes mosphere. Stable isotope netry.Isotopes in mineral on, paleo-climate evaluation, he nental aspects.	in lithosph geothre explorati	ere rmc	, hy ome	dro	sph t	ere ind	12	2	C	02
		· · · · · · · · · · · · · · · · · · ·	'ext Books									
1.		. (1970) Lead isotopes. Springe										
2.		and Powell, J.L. (1972) Stronti				<u>gy</u> .	Spr	inge	r Vei	·lag,	188p.	
			ces Books									
		t editions, and the style as give							nere	d to)		
1.	Faure, G.	. (1986). Principles of Isotope G		nn V	Vile	ey, 5	589 <u>p</u>)				
	1.		esources									
1.	-	ww.britannica.com/topic/econom										
2.	^	.m.wikipedia.org/wiki/supergene	0 01									
3.	<u> </u>	hergymining.sa.gov.au/minerals/r										
4.	https://w geology	ww.slideshare.net/mobile/monok	aonaBoruał	n/ma	agm	atic	-dej	posit	s-ecc	nom	10-	

CO1: Students will have the knowledge and skills to recognise common ore minerals.

CO2: Demonstrate familiarity with a wide range of mineral deposits, including recognising the overall geometry, zonation and alteration patterns associated with specific classes CO3: To get awareness on geochemistry of radioactive minerals

CO4: Fundamentals of coal petrology, Gain knowledge on the Origin, migration and entrapment of natural hydrocarbons

CO5: Student learns more knowledge on industrial aspects in geological studies.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3	3	2	2	3	2
<i>CO</i> 4	3	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	3	2	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

			<u> </u>						S		Marl	KS
Subje	ect Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	GEO1E06	Disaster Management	Elec tive	Y	-	-	-	3	4	25	75	100
CO1	vulnerabl	nd the basics of natural hazards, dis le communities, importance of inter-	-discipl	inaı	ry st	udi	es.			_		
CO2	communi	will comprehend the core part of dis ity aspect and environmental aspect	and its	inte	er-li	nka	ges	_			l aspe	ect,
CO3	monitorir mitigation		n and a	ppr	opri	ate	tech	nnolo	ogy t	ools		
CO4	(DRR), c	g knowledge on community-based d ommunity resilience and the import	ance of	f haz	zard	l ma	ippi	ng.				
CO5		the importance of this inter-discipling these skills in the real-world scena		ourse	e thi	roug	gh c	ase s	study	exp	eriend	ces
UNIT		Details	u10						No.			urse
UNII	Conorali	introduction to natural hazards and	diaasta	r a ·]	Dhu	ioo	1 .01	4	Hou	rs	Obje	ctives
Ι	geodynar surges, tr different	nic characteristics of earthquakes opical cyclones, monsoonal floods, types – monitoring and manage de trends in natural catastrophes and	, tsuna landsl ment a	amis ides and	ar . Di wi	nd s roug	stor: ghts	m -	12		C	01
II	Global (change – natural r	Climate Change: Global warmin Threat of sea level changes on glo esources, environment – Social food security, poverty and Climate C	g and bal coa impact	er asts of	viro - Iı dis	npa saste	ers	on	12	,	C	02
III	remote se	ent: Hazard-prone areas identifica ensing and GIS tools – Hazard mapp ation and case studies.							12		C	02
IV	comparis Stakeholo managem Participat	ness: Risk reduction concepts – on and analysis – Understanding ders' participation and preparation nent plans – Community-based disast tory risk assessment – Coastal nent in tsunami reconstruction – Nat	the don of the risl	lisas cor k ma ions	ster mpr anag 5 –	cy ehe gem Co	cle nsiv ient past	– ve – al	12	,	C	02
V	recovery implement recovery recovery	n and recovery: Inter-relationship b – Process for developing haz ntation of comprehensive mitigatio planning – Disaster emergency and reconstruction – Disaster R es - Early warning systems.	ards n n strate prepar isk Re	nitig egie redn	gatio s — .ess	on Dis an	pla sast d c	n, er on	12	,	C	02
1	Uandhaa		Books	$\frac{1}{1}$	10	0004	5)					
<u>1.</u> 2.		k of Disaster Research Eds. H. Roda naw and Krishnamurthy, R.R. (2						nem	ent	_ т	he G	lobal
		gy Periyar University, Salem – 636011, Ta				111	alla	gem	un	- 1	62	novai

Semester-III: Disaster Management (II year)

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

	Challenge and Level Caleting Humanities Deve Hadarahad and 500
	Challenges and Local Solutions, Universities Press, Hyderabad, pp. 560.
3.	Groundwater Assessment Development and Management, Karanth.K.R. (1987) Tata
5.	McGraw Hill Publishing Company, Ltd.
4.	Miller T.G. Environmental Science. Wadsworth Publishing.US(2004).
5.	Coates, D.R. Environmental Geology. McGraw Hill.NewYork(1984)
	References Books
	(Latest editions, and the style as given below must be strictly adhered to)
1	Shaw, R. and Rouhban, B. (2005) Disaster Reduction and Human Security. UNESCO &
1.	Kyoto University.
2	Babar, Md. (Ed.) (2007) Environmental Changes and Natural Disasters. New Delhi
2.	Publishing Agency.
2	Coppola D.P. Introduction to International Disaster Management, Butterworth
3.	Heinemann(2007)
4	Pine, J.C, Natural Hazards Analysis: Reducing the Impact of Disasters, CRC Press, Taylor and
4.	Francis Group(2009)
~	Smith K, Environmental Hazards: Assessing Risk and Reducing Disaster Rout ledge
5.	Press(2001)
	Web Resources
1.	https://www.britannica.com/science/geology/sedimentary-petrology
2.	https://limk.springer.com/chapter/10
3.	https://www.geo.mtu.edu/UPSeis/hazards.html
4.	https://www.omafra.gov.on.ca/english/engineer/facts/
5.	https://geology.com/rocks/rock-salt.shtml

CO1: Understand the need and significance of studying disaster management

CO2: Understand the different types of disasters and causes for disasters.

CO3: Gain knowledge on the impacts Disasters on environment and society

CO4: Study and assess vulnerability of a geographical area.

CO5: Students will be equipped with various methods of risk reduction measures and risk mitigation

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	2	2	3	2
CO 4	3	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

SEMESTER-III: INTERNSHIP (II year)

		SEMESTER-III: INTERNSHIP (II year)						T			S			Ma	ark	S																						
Subje	ect Code	Subject Name Subject Name Subjec		Credits	T1	Inst. Hours	CIA			External	$\Gamma_{\sim} I_{\sim}$	1 otal																										
23UPC												2	-		2	5	7	75	1(00																		
Course	Objective																																					
CO1	The studen															-																						
CO2	They will a																											<u> </u>		1						<u>c</u>		1
CO3	They will papers/repo							e	1ľ	ito	u	nci	nar	tere	ed	teri	rito	ory	W	1th	re	ga	rd	to	5	C16	enti	f1C/	16	echn	ıca	l v	vriti	ng	01	re re	sear	rch
CO4	The studen							1 u	ind	ler	sta	nd	W	hat	is E	Bibl	liog	grap	ohy	/, h	low	to	cit	e r	efe	re	nce	s ar	ıd	how	v to	qu	ote	he	m i	n th	e te	xt.
CO5	They will b															edu	ınd	lanc	ies	5, V	vhic	h (con	sti	tute	e a	m	ajor	р	roble	em	wh	ile v	vri	ting	g a		
005	Scientific F	Pa	Pap	ap	aj	pe	er/	Τe	ecl	nni	cal	Re	epo	ort.																	1	No	o. of			Co		_
UNIT															Ľ	Deta	ails	s															o. 01 ours		C	Co)bje		
Ι	THE PR Paper?-W SCIENTI Framewo CONTEN Paper-Pro	V IF or N	Vh IF ork	ה ה ויו	'h F rk	na TIC <- FS	t F S	F 01 O	is PA m F	PI at S	a ER -K CI	ee EN	Te DR pi VT	ech R ng IF	nnic REF a IC	cal POI Ca PA	R] arc AP	Re F: S d I PER	epc Str nd	ort ruc lex	? ctu: x-A	P re-	PLA -He	AN eac nb	VN din lin	IN Igs g	IG s-N th	, lote e I	TI e : Da	HE for ata.		1	2			C	01	
II	CONTEN Investiga Study-Al Maps-Lin Illustratio	N' ati lte ne	N] tio te ne	io e	io e	ΓS or rr	S ns na E) I-I Iti Dr	DF Pro Ve	op e vii	ΓE os: O:	EC als rde	H] S-F er	NIC Prog	CA gre ILI	L ess LU	R I ST	EP Rep ΓRΑ	201 47	rts FIC	-In ON	fo S	orm A	at N	ioi ID	1-]	Fea TA	asit ABI	oil LE	ity ES:		1	2			C	02	
III	STYLE A of Expre TO WRI of words Units and	res IT IS-	es Tl s-l	:s [] -]	:s Г] -]	si IN Pl	io N(la	n- G: ce	-C (oh Gra ner	ier am it	en im of	ar f	e-C an Phi	on d ras	cis Us es-	sen sag	iess ge-A Itali	s-L Ab ics	Log obr s-l	gic ev: Nu	al lat ne	S ior eric	ec ns- cal	jue -Co I I	eno on	ce. npo	A Dun	di	DS ing		1	2			C	02	
IV	WRITIN Preparati reading I of MS F Publishin Reproduc Proceedin	io R Pr ng ct	or Re Pro ng- cti ng	or Re re g. ti	or Re re g. ti	n eq - <i>A</i> io g.	ju pa Au n	f ir ira utl	F er ati hc	ina ne on ors of	al nts hip	M s-F Al p-C	lar Pro BC Co Pu	oof DU' opy ubli	Crij R T rig ish	pt. eac PU ht- ed	C dir JB	ng BLIS C N	P Sy SH Cat	R ym HIN tal	DC bo NG og ria	F ls- : uii	R Pro ng- Roy	EA Ac oc val	AD ode edi	rn ur G	NG Nes- uai	: F Iet Do ran fer	Pro ho oul te er	bof bds ble es- nce		1	2			C	02	
V	REFREE Standard POSTER Presentat PROJEC Project D Proposal	tio T	I io T Pr	F O C Pr	Р О Г Р	Fo on P	or F -A PR	m PF Ai C	at RE ds DP	I S S S S-S	Rea EN to SA So	qu IT L L m	ire A' S:	eme FIC Dra Ty for	ent DN dl ype rma	s-E S: Pi s o ats	Ed res of 1	itin Pr sent Pro of valu	ig tat jeo Pi ua	o am tio ct roj	f I ible n-l Pre jec	Pro Po Po pp	oof Mo ste osa Pro	s. de r als	С е Е Б-]	R Pre	AI of ese e S	_ A nta Stra	AN O tio	ND oral on.		1	2			C	02	
	W/h:4:-1					_	7	T	X 7	<u></u> .	11 -	-	C	<u>.</u>	n+11	F i -	P						ks	<u>.</u>	~	-1	1		<i>c</i> .	- + -	<u>م</u>	4 4	he '	12	1.~1	NT	4.	nc1
1.	Whiteside Meeting o										-							•							-		•	•										

	of Chemical Information, CINF 17.												
2.	The Science of Scientific Writing Full textan article by George Gopen and Judith Swan, published												
۷.	in American Scientist, Vol. 78, No. 6 (November-December 1990), pp. 550-558.												
	References Books												
	(Latest editions, and the style as given below must be strictly adhered to)												
1	Guide to Scientific and Technical Writing - P. G. Cooray 1992. ISBN - 9559543407,												
1	· 9789559543404, 159 pages												
	Web Resources												
1	1. <u>https://www.springer.com/journal/12594</u>												

CO1: students understand the basis of writing skills.

CO2: students practice how to write the technical reports

CO3: Students learn about the styles and form, grammar, spelling and conclusion

CO4: Student gain about the writing practices

CO5: Understand to prepare the poster presentation and preparation of project proposals **Mapping with Programme Outcomes:**

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
<i>CO</i> 2	3	3	3	3	3	3	3	3	3	3
<i>CO 3</i>	3	2	3	3	3	3	3	1	3	3
<i>CO</i> 4	2	3	3	3	2	3	3	3	3	3
<i>CO</i> 5	3	3	2	3	3	3	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Subje	ect Name	e	Category					S	In			
Course O CO1 1	D1C12	Enginoaring	Subject Name						0	Credits	Inst. Hours	CIA	External	Total
СО1 Т		Geology	and	Mining	Core	Y	-	-	-	4	5	25	75	100
	0	es												
		nerate the differe	<u> </u>	<u> </u>	0.0	-								
CO2 b	basis of	ly summarise th engineering geo	logy		-									
CO3 b	basis of	ly summarise th engineering geo	logy		-									
CO4 v	various 1	loy the students mining methods	adopted									unde	erstan	d the
CO5 1	l'o theor	ries the knowled	ge								N T	af 1	C	
UNIT			De	etails							No. Hot			urse ctives
I s b	Engineering geology: Engineering properties of rocks, sof sediments and soils – Geological investigations pertaining to bridges, buildings, dams, highways and airfields – Types o reservoirs – Geological investigations of reservoir sites.											2	01	
II p e	Problems pertain to tunneling in hard and soft grounds – Geological investigations preceding tunneling – Geological investigations pertaining to harbors, docks, coastal erosion – Shoreline engineering – Construction of retaining walls – Problems and solutions.									ns ne	12	2	C	02
III u	ised in c	geology: Termir coal mines – Pro – Quarrying – ere.	specting	and explo	ration -	- Al	luvi	al n	nini	ng	12	2	C	02
IV –	- With	s of underground artificial suppo – Caving method	orts – C	•							12	2	C	02
V C	Coal mining: Longwall advancing – Longwall retreating – Board and Pillar method – Horizon mining.12CO									02				
					Books				, th					
1. I	BH Pub	wamy, R.N.P. (blishing Co., Nev	w Delhi.											
/	Peters, W New Yo	W.C. (1978) <i>Exp</i> rk	oloration	and Minin	ng Geol	logy	<i>v</i> . 2 ⁿ	^{id} E	ditio	on. J	ohn	Wile	ey & 1	Sons
1		P.M, Global Cha Ecology and glo	•				-		ıt, B	eyor	nd glo	obal		
4. N	Miller T.	.G. Jr, Environme	ental Scie	ence, Wads	worth P	ubli	shin	ıg C						
5. T	Thomas,	,R.T, Introductio				Grav	NН	ill, I	Nev	v Yo	ork(1	986)		
	_	t editions, and t		eferences I			_					_		

Semester-IV Semester-IV: Engineering and Mining Geology (II Year)

1.	Blyth, F.G.H. (1963) <i>A Geology for Engineers</i> . 4 th Edition. The ELBS & Edward Arnold (Publishers) Ltd., London
2.	Legget, H.F. and Hatheway, A.W. (1988) <i>Geology and Engineering</i> . 3 rd Edition. McGraw-Hill Book Co., New York
3.	ArogyaswamyR.N.P,Courses in Mining Geology, Oxford &IBH, New Delhi(1988)
4.	Singh,R.D, Coal Mining, New Age Publishers, Delhi(1998)
5.	Hartman,H.L, SME Mining Engineering Handbook, SME Colorado, USA (1992)
	Web Resources
1.	https://link.springer.com/chapter/10.1007/
2.	https://www.sciencedirect.com/sciencedirect.com/science/article/pii/
3.	https://www.google.com/ur1?sa=t&source=web&rct=j&ur1=https//mines.gov.in/
4.	https://www.ncbi.nml.gov/books/
5.	https://www.sciencedirect.com/sciencedirect.com/science/article/pii/

CO1: Students can understand the Engineering properties of rocks

CO2: student can apply the knowledge and ideals on geological investigations for constructions

CO3: Getting knowledge about the alluvial mining methods

CO4: Study themethods of underground metal mining

CO5: Understand the knowledge about the coal mining methods and techniques

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	<i>PO 9</i>	PO 10
<i>CO 1</i>	2	3	3	1	2	3	1	2	1	3
<i>CO</i> 2	2	3	3	1	2	3	1	2	1	3
<i>CO 3</i>	2	3	3	1	2	3	1	2	1	3
<i>CO</i> 4	2	3	3	1	2	3	1	2	1	3
<i>CO</i> 5	2	3	3	1	2	3	1	2	1	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	<i>PSO 1</i>	<i>PSO 2</i>	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

																	<u>nistr</u>	Ĩ	Ì						S			Mar	ks
Subje	ct Code						Sı	ıbj	ect	t Na	am	ie					Category]	L	T	Р	0		Credits	Inst. Hours		CIA	External	Total
23UPG	EO1C13	I	A	p	oli	ed	G	eoc	che	mis	stry	у				(Core	7	Y	-	-	-		4	5	4	25	75	100
	Objective		_		_																								
CO1	To study							-	-															<u> </u>			-	-	• 1
CO2	To under differenti					OC.	k c	che	mis	stry	/ ar	nd e	evc	olu	t101	n (of va	1r1	ou	s ro	ock	ty	pe	s th	rou	gh	ge	oche	emical
CO3	To briefly					nar	ise	the	e Is	iot	one	eGe	eoc	hei	ms	irt	v												
CO4	To under and mine	rst	ta	nd														n	of	eco	ono	mic	cal	ore	es				
CO5	To theori	ies	es	an	d	the	e kr	nov	vle	dge	e of	f En	nvir	ron	nme	ent	al G	eo	och	em	istr	y							
UNIT	Details																o. of			ourse ectives									
	Principles Of Geochemistry: Introduction Periodic table, Objectives																												
Ι	Geochemistry of the Earth; Formation of the solar system and geochemical history of the earth. The geochemical cycle- Distribution of elements in rocks and soils.																												
Π	Geochemistry Of Minerals, Rocks And Waters: Mineral stability, compositional changes in minerals. River water, Seawater, Seafloor hydrothermal systems; Groundwater and Lakes. Characteristics of Magma, Melting of rocks, Water in Magmas, eutectic and melting. Distribution of trace components between rocks and melts.12CO2																												
III	IsiotopeC Decay ti Lead Sy Exchange Sulphur i	tin ys ge	m st	e, em be	P at tw	ota ics ee	assi n	iun Ty mi	n-A pes ner	Argo s o als	on of aı	Sy Iso nd	yste oto wa	em pe ate	atio - er,	cs, Fr C	Ur actio arbo	an ona n,	iu atio C	m- on,)xy	Гhс is	oriu soto	m. ope	-	12	2		C	202
IV	Explorati pattern, Geochem technique geochem	tion S nic	on Se ica	ecc al 1se	Ge onc ai ed	eoc lar nor in	her y nal the	mis di ly	stry spe –	v: ersio geo	Inta on och	trod pa nem	uct atte ica	tion ern d	n – san	_ np	Prin back ling.	na (gi I	ary rou Pri	d Ind nci	v	alu s a	es nc	1	12	2		C	202
V	Environmental Geochemistry: Anthrosphere aquatic environment – Marine, fluvial, lacustral, aerosols. Perturbations caused by human12CO2activity.1212																												
1.	Arthur B 1996	Bro	:0	wn	lo	w,	G	eod	che	mis	stry	y (S	Sec	on	d e	edi	tion),	Pe	ars	on	Ed	uc	atio	on, 1	IN	С.,	Aus	stralia,
2.	Faure, G Australia		P	rir	nci	ple	es a	anc	1 aj	ppli	icat	tion	1S (of	Ge	oc	he41	ns	sitr	y , 1	Pea	rso	n	Edı	icat	ior	n, 1	998,	INC,
3.	Criss, R.I					_						_	_																
4.	Lajtha, J Blackwel	ell,	l, 1	U.I	K.	, 1	994	4												_	-		e	nvi	roni	ne	enta	1 Sc	ience,
5.	Mason, E	B.a	.a	nd	N	00	ore,	, an	nd (C.B						_		eo	och	em	istı	у							
											R	lefe	rer	nce	es I	30	oks												

Semester-IV: Applied Geochemistry (II Year)

	(Latest editions, and the style as given below must be strictly adhered to)
1.	John V. Walther, Essentials of Geochemistry, Jones and Bartlett Publishers, 2005, Boston
2.	Girard, Principles of Environmental Chemistry, Jones and Bartlett Publishers, 2005,
۷.	Boston
3.	Nelson EBY, G., Principles of Environmental Geochemistry, Thomson Brooks/Cole,
5.	UK,2004
4.	Govett, G. J.S.: -Handbook of Exploration Geochemistry
5.	Kraustopf, K.B.: - Introduction to Geochemistry
	Web Resources
1.	https://earthref.org/GERM/#gsc.tab=0
2.	https://georoc.eu/georoc/new-start.asp
3.	https://www.geochemsoc.org/
4.	https://www.usgs.gov/centers/gggsc/science/geochemistry
5.	https://www.internetchemistry.com/chemistry/geochemistry.php

CO1: The student is introduced to a detailed discussion, study, and Principles of Geochemistry

CO2: Student can learn the formulas for Estimation of ore reserves

CO3: Student learn the mining geology calculations

CO4: Students can understand the sophisticated instrumental operations for analysis

CO5: Student apply the techniques for analysis of rocks/minerals/ores.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	<i>PO 1</i>	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	<i>PO 9</i>	PO 10
<i>CO 1</i>	2	3	3	1	2	3	1	2	1	3
<i>CO 2</i>	2	3	3	1	2	3	1	2	1	3
<i>CO 3</i>	2	3	3	1	2	3	1	2	1	3
<i>CO</i> 4	2	3	3	1	2	3	1	2	1	3
<i>CO</i> 5	2	3	3	1	2	3	1	2	1	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	<i>PSO 4</i>	PSO 5
<i>CO 1</i>	3	3	3	3	3
<i>CO</i> 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

PSO Subject CodeSubject Name $\stackrel{\bullet}{50}$ SubjectLTPO $\stackrel{\bullet}{50}$ Subject23UPGE01L04Engineering, Mining Geology and Geochemistry PracticalCoreY3Course ObjectivesTo enumerate need of practical knowledge in the fieldTo conduct the field surveys for mineral explorationTo briefly summarise the various mining methods adopted in addition reservesTo employ the students in geotechnical investigationsTo critically assess the properties of rocks, minerals and oresUNITDetailsEngineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits, and unit weights. Granulometric curves – Uniformity co-efficient	J 6	of		100 100 of ore									
230PGEOIL04 and Geochemistry Practical Cole I <th>on to es</th> <th>stima</th> <th>ation o</th> <th>of ore</th>	on to es	stima	ation o	of ore									
To enumerate need of practical knowledge in the field To conduct the field surveys for mineral exploration To briefly summarise various mining methods adopted in addition reserves To employ the students in geotechnical investigations To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,	No. (of											
To conduct the field surveys for mineral exploration To briefly summarise various mining methods adopted in addition reserves To employ the students in geotechnical investigations To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,	No. (of											
To briefly summarise various mining methods adopted in addition reserves To employ the students in geotechnical investigations To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,	No. (of											
reserves To employ the students in geotechnical investigations To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,	No. (of											
To employ the students in geotechnical investigations To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,			Cor	Irse									
To critically assess the properties of rocks, minerals and ores UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,			Cor	Irse									
UNIT Details Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,			Cor	irse									
Engineering Geology: Determination of specific gravity, porosity, void ratio, moisture content, degree of saturation, Atterberg limits,				USP									
void ratio, moisture content, degree of saturation, Atterberg limits,	1104	rs											
void ratio, moisture content, degree of saturation, Atterberg limits,													
I and unit weights. Granulometric curves – Uniformity co-efficient	void ratio, moisture content, degree of saturation, Atterberg limits,												
	12		CC	D1									
- Dry and wet density curves - Mohr's stress circle - Ultimate													
and safe bearing capacity of cohesive and non-cohesive soils.													
Mining Geology: Assaying – Determination of average grade –													
II Determination of average width – Uniform sampling – Variable sampling – Influence of interval. Drilling: Core and sludge	sampling – Influence of interval. Drilling: Core and sludge 12 CO2												
recovery – Estimation of ore reserves – Determination of coal	12		C	J2									
pillar size – Determination of ideal shaft location.													
Geochemistry: Analysis of rocks/minerals/ores – Analysis of													
III water – Elemental analysis – Flame photometry –	12		CO	יר									
Spectrophotometry –Analysis of trace elements using AAS –	12		C	JZ									
ICPMS – radioactive dating methods													
Text Books		~	-										
1. Krynine, D.P. and Judd, W.R. (1957) <i>Principles of Engineering</i>	; and	Geo	techni	ques.									
McGraw-Hill Book Co., New York			Zorl.										
 Legget, H.F. (1962) <i>Geology and Engineering</i>. McGraw-Hill Book G Dobrin. M.B– introduction to Geophysical prospecting. McGraw–Hill, 		ew Y	OFK										
3.Dobrin. M.B Introduction to Geophysical prospecting. McGraw-Hill,4.Mason. B, Principles of geochemistry– Willey Toppan, 1966.	1701												
HE Hawkes and Webb Geochemistry in Mineral Exploration	n. Ha	rper	and	Row									
5. Publishers1965.	11, 11u	uper	unu	100									
References Books													
(Latest editions, and the style as given below must be strictly a													
1. Zaruba, Q. and Menci, V. (1976) <i>Engineering Geology</i> . Elsevier	Scien	tific	Publi	shing									
Co., Amsterdam													
2. Arogyaswamy, R.N.P. (1980) <i>Courses in Mining Geology</i> . 2 nd Edition	on. Ox	ford	and &	: IBH									
Publishing Co., New Delni.													
3. Govett, G.J.S.Handbook of Exploration Geochemistry.(Ed), 1983.	ou No	w V-	rl (10))85)									
4. Craig,R.C& D.V. Vaughan. Ore Microscopy and Ore Petrography. Wile Aiyengar, N.K.N, Minerals of Madras, Dept.of Industries &Comme	•			-									
5. Aryengar, N.K.N, Minerals of Madras, Dept.of Industries & Comme	лее. С	Juni		.uras,									

Semester-IV: Engineering, Mining Geology and Geochemistry Practical (II year)

	Web Resources
1.	1. https://www.Sciencedirect.com
2.	https://www.geos.iitb.ac.in
3.	https://pubs.usgs.gov
4.	https://www.britannica
5.	https://www.intechopen.com

CO1:The student is introduced to a detailed discussion, study, and application of engineering properties of rocks

CO2: Student can learn the formulas for Estimation of ore reserves

CO3: Student learn the mining geology calculations

CO4: Students can understand the sophisticated instrumental operations for analysis

CO5: Student apply the techniques for analysis of rocks/minerals/ores.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	<i>PO 1</i>	<i>PO 2</i>	<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	<i>PO</i> 6	<i>PO</i> 7	<i>PO</i> 8	<i>PO 9</i>	PO 10
<i>CO 1</i>	2	2	3	2	1	3	2	3	2	2
<i>CO 2</i>	2	2	3	2	1	3	2	3	2	2
<i>CO 3</i>	2	2	3	2	1	3	2	3	2	2
<i>CO</i> 4	2	2	3	2	1	3	2	3	2	2
<i>CO</i> 5	2	2	3	2	1	3	2	3	2	2

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
<i>CO 1</i>	3	3	3	3	3
<i>CO</i> 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

									S		Mark	S	
Subje	ct Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total	
23UPG	EO1E07	Oceanography and Climatology	Elective	Y	-	-	-	3	4	25	75	100	
Course	Objectiv	ves	•								•		
CO1		the physical and chemical	components	and	phe	enor	nena	a rela	ated	to oce	eanog	raphy	
	and clim				- C	(1							
CO2 CO3		rstand the morphologic and t						n fic	or				
CO3		e and Contrast cloud physics y assess the ocean current pa						ccifi	ratio	ne			
CO ₄		rentiate and understand the d						55111	catio	115			
	To unit			cume	Cu	iiieii			Ν	o. of	Co	urse	
UNIT		Detail								ours	Obje	ectives	
Ι	floor –c chemica Residen and tide the oce	and Atmosphere Hypsograp ontinental shelf, slope, rise a l properties of sea water ce times of elements in sea es, important current system anic conveyor belt. Major Biological productivity in the	and abyssal and their water. Oc s, thermoha water mas	plain spa ean aline	ns. H atial curr circ	Phys va rents cula	sical triati s, w tion	and ons. aves and		12	C	CO1	
Π	and stab warming radiation weather Western distribut	e and chemical composition ility, scale height, geopotent g. Cloud formation and prece- n balance. El Nino Souther systems of India, - Monsoor disturbances and sever tion of precipitation over Ir n, ozone depletion.	ial, greenho ipitation pro n Oscillation system, cy e local c	ouse g ocess on (E clone onve	gase es, l ENS e an e ctiv	s an heat O). d je re	d gl buc Ger t stro syste	obal lget, neral eam, ems,		12	C	02	
III	composi Hydroth Circulat diverger	logic and tectonic domains ition and mechanism of the ermal vents Ocean margin ion, Coriolis Effect and nee and upwelling, El Nino - haline circulation and oceani	e formation is and their Ekman s - La Nina, l	n of sign piral India	oc offica , c	eani ance onv	ic c e. O erge	rust. cean ence,		12	CO3		
IV	Physical composi multiple clouds, terrestria Greenho	terrestrial radiation, radiation windows, radiative transfer, Greenhouse effect, net radiation budget; Clausius – Clapeyron					12 CO4						
V	equation.Image: Cloud Physics: Cloud classification, condensation nuclei, growth of cloud drops and ice-crystals, precipitation mechanisms: Bergeron, Findeisen process, coalescence process. Atmospheric turbulence: Mixing length theory, planetary boundary layer equations, surface12CO5											05	

Semester-IV: Oceanography and Climatology (II year)

	layer, Ekman layer, eddy transport of heat. Richardson criterion.
	Text Books
1.	Kennett, J.P. (1982) Marine Geology. Prentice Hall, London.
2.	Seibold, E. and Berger, W.H. (1982) The Sea Floor. Springer Verlag, Berlin
3.	Sverdrup, HaraldUlrik; Johnson, Martin Wiggo; Fleming, Richard H. (1942). The Oceans, Their Physics, Chemistry, and General Biology. New York: Prentice-Hall.
4.	Rice, A. L. (1999). "The Challenger Expedition". Understanding the Oceans: Marine Science in the Wake of HMS Challenger. Routledge.
5.	Benjamin Franklin's 'Sundry Maritime Observations'". Archived from the original on 18 December 2005.
	References Books
	(Latest editions, and the style as given below must be strictly adhered to)
1.	Strahler, A.N. and Strahler, A.H. (1987) <i>Modern Physical Geography</i> . 3 rd Edition. John Wiley & Sons, New York.
2.	Strahler, A.N. (1974) Physical Geography. 4th Edition. John Wiley & Sons, New York.
3.	Boling Guo, Daiwen Huang. Infinite-Dimensional Dynamical Systems in Atmospheric and Oceanic Science, 2014, World Scientific Publishing, ISBN 978-981-4590-37-2.
4.	Hamblin, Jacob Darwin (2005) Oceanographers and the Cold War: Disciples of Marine Science. University of Washington Press. ISBN 978-0-295-98482-7
5.	Lang, Michael A., Ian G. Macintyre, and Klaus Rützler, eds. Proceedings of the Smithsonian Marine Science Symposium. Smithsonian Contributions to the Marine Sciences, no. 38. Washington, D.C.: Smithsonian Institution Scholarly Press (2009) Roorda, Eric Paul, ed. The Ocean Reader: History, Culture, Politics (Duke University Press, 2020) 523 pp. [http://www.h-net.org/reviews/showrev.php?id=58118
	Web Resources
1.	https://en.wikipedia.org/wiki/British_Oceanographic_Data_Centre
2.	https://psl.noaa.gov/data/gridded/tables/ocean.html
3.	http://www.vega.org.uk/video/
4.	https://unesdoc.unesco.org/ark:/48223/pf0000030893
5.	http://www.mcirano.ufba.br/ftp/books/baum_04.pdf
r	· · · · · · · · · · · · · · · · · · ·

CO1: Students can introduce into the Physical and chemical properties of sea water

CO2:Students learn about the Structure and chemical composition of the atmosphere

CO3:Gain knowledge in the Morphologic and tectonic domains of the ocean floor Structure

CO4:Students can introduce into Physical Meteorology

CO5:Studied and gain knowledge on Cloud Physics

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1		<i>PO 3</i>	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
<i>CO</i> 2	3	3	3	3	3	3	3	3	3	3
<i>CO 3</i>	3	2	3	3	3	3	3	1	3	3
<i>CO</i> 4	2	3	3	3	2	3	3	3	3	3
<i>CO</i> 5	3	3	2	3	3	3	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		ester-IV: Petroleum Expl				/ 55**	8 (1				Mark	S	
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total	
23UPG	EO1E08	Petroleum Exploration and Mud logging	Elective	Y	-	-	-	3	4	100			
Course	Objective												
CO1		tify and enumerate the r s. To summarize the whole			-					-			
CO2		pret and select the prosperi	-	_									
CO3	_	e and contrast the difference		_	_						l sites.	,	
CO4		y assess and review the ide		gic s	ituat	ion a	it the	e dril	ling	site			
CO5	Can mak	ke hypothesis to achieve th	e target						NT	P	C		
UNIT		Deta	ails							o. of ours		urse ctives	
I	Petroleum Exploration – Petroleum Geology - Applied Mathematics in Petroleum Engineering. Oil Field Drilling – Onshore and Offshore Drilling - Drilling Rigs – Well Types - The Drill String – Drill Bits – Well Profile- Bore-hole volume Calculation and Displacement – Lag time – Basic Hydraulics - Drilling Fluids - Formation Pressure –Bore Hole Problems - Coring –Objective of Coring and Core Analysis- Casing and Cementing – Fishing - Well Completion – Well Testing.										C	CO1	
п	Respons Collection Descript Fluoresco Hydroca Evaluati Chemist - QHSE	of Mudlogging –Surf ibilities - Geological Sur on, Examination – L ion–Calcimetry - Oil S ence – Thin Sections – C irbon Gas Analysis – Por on – Sample Examinati ry - Gases other than Hyc – Worksite Environmen Control.	rveillance - ithological Shows- Fl Chemical Te re Pressure ion Proced Irocarbons,	- Cu and uores ests - calc ure Con	itting d N sceno - Gas culati - W nmur	San Aine ce a San on - Vellsi nicat	npli ralog ind npli Cu te (ion 2	gical Cut ng – tting Geo- Skill		12	C	02	
III	Quality Control.MudloggingServices, Mudlogging Sensors –Operations – Maintenance - Inspection and calibrations–Trouble shooting - Technical Specification - Reporting - Final Well Reports - Mudlogging Unit Installation and 12 Maintenance.PracticalMudlogging, Lab Training on Rig up and Rig Down of Sensors, Equipment and Monitoring Realtime drilling followed by a Rig site Visit.									12	C	03	
IV	MWD P Sensor i Focused Electron Propaga MWD	ole Measurement - Meas Principle – Telemetry Type nformation – Natural Gar Current Resistivity (F nagnetic Wave Propag tion Resistivity (MPR) – Tools – Formation Des ance MWD.	es – Format ma ray – F (CR) – To ation Res Geo-Steer	ion E forma proid istiv ing-	Evalu ation lal H ity Neut	ation resi Resis – tron	n MV stivi tivit Mul Poro	WD- ity – y – tiple osity		12	C	04	

Semester-IV: Petroleum Exploration and Mud logging (II Year)

v	Down-hole Logging - Logging While Drilling (LWD) – Temperature Logs – Caliper Logs – Self Potential Logs (SP) – Resistivity & Conductivity Logs – Gama ray and Spectral Gama ray logs – Sonic Logs – Density and Photo Electric factor Logs – The Neutron Log – The dip meter – Imaging Logs –MDT Sampling - Lithology reconstruction from Logs- Facies Sequences and depositional environments from Logs – Sequence Stratigraphy and Stratigraphy.	12	CO5
	Text Books		
1.	Levorsen, A.J. (2004). <i>Geology of Petroleum</i> , CBS Publishers and I Chennai. 2 nd Edition.	Distributo	rs Pvt Ltd.,
2.	BhagwanSahay. (1997). <i>Petroleum Exploration and Exploitation</i> Publishers Limited, Chennai. 2 nd Edition.		
3.	Geology& Mineral Resources of the States of India. Misc Pub.No.30.0 India. Kolkota. (Several individual volumes available online at GSI port		
4.	The Mudlogging Handbook – Alun Whittaker		
5.	Brian Frehner. Finding Oil: The Nature of Petroleum Geology, 1859 Nebraska Press; 2011) 232 p	-1920 (U	niversity of
	References Books		
	(Latest editions, and the style as given below must be strictly ad	hered to)	
1.	Mudlogging Training Manuals – GEOLOG International B.V		
2.	The Mudlogging Handbook – Alun Whittaker		
3.	An Introduction in Stratigraphy, Stamp L.D, (1964), Thomas Murby London.	y, Museur	n St, WCI,
4.	Stratigraphic Principles and Practices, Weller, J.M, (1962), Harper &	Bros, Ne	w York
5.	Wadia, D.N, Geology of India, McMillan India Delhi(1953)		
	Web Resources		
1.	https://stratigraphy.org/		
2.	https://www.sepm.org/		
3.	https://www.geosocindia.org/		
4.	https://www.moes.gov.in/		
5.	https://isegindia.org/		

CO1: Students gain knowledge about the Petroleum Exploration

CO2 Students learn about theBasics of Mudlogging

CO4:Students know about the Down-hole Measurement

CO5: Students able to learn on Down-hole Logging

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1		<i>PO 3</i>	<i>PO 4</i>	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10
CO 1	2	3	3	3	3	3	3	3	2	3
<i>CO 2</i>	2	3	3	3	3	3	3	3	2	3
<i>CO 3</i>	2	3	3	3	3	3	3	3	2	3
<i>CO</i> 4	2	3	3	3	3	3	3	3	2	3
<i>CO</i> 5	2	3	3	3	3	3	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

SUPPORTIVE COURSES (NME-II)

			×						Inst. Hours		Mark	S
Subjec	et Code	Image: Subject Name Image: Subject Name Image: Subject Name Credits Credits										Total
23UPG	EO1N01	EARTH AND ENVIRONMENT	4	25	75	100						
Course	Objectiv											
CO1	To explo biospher			-								
CO2	contextu	it is designed to provi alizing studies of the e ment of resources.										
CO3	Describe	e the connections and fe	eedback betwe	en th	e Ea	rth's	sphe	eres.				
CO4	compon	understanding of the Ea ents of the Earth system	n and their inte	racti	ons							
CO5		eractions between biolo he Earth System.	ogical, chemic	al, a	ind p	ohysi	cal	proc				
UNIT]	Details							o. of ours		urse ctives
I	Solar Sy and M Compos Tectonic Volcano		th, Origin of S amics : Inte eismic waves hquake Engi	Solar erior , Se neer	syst of ismo ing,	the the grap La	Met E h, l ndsl	eors arth, Plate ides,		12	C	01
Π	ocean plains.Pl spatial v currents	cal Oceanography:Hy floor –continental hysical and chemical variations. Residence tin , waves and tides, impo on and the oceanic conv	shelf, slope, properties of mes of elemen ortant current	ris sea ts in	e a wat sea	and er a wate	aby nd r. O	yssal their cean		12	C	02
III	groundw types, E Petrolog batholith	eology: Water table- Ac vater composition, Hyd Different type of glaci gy - Geological bodies hs, dyke, sill, fold fault,	rological cycle ers, Landform and their strue joint, unconfo	e. Gl is fo cture ormit	aciol rmec s: Ro y.	logy: ł by ock,	Gla gla min	acier cier. eral,		12	C	03
IV	Earth's Atmosphere: Structure and composition of atmosphere, Atmospheric circulation, Geological work of wind, Greenhouse effect and global warming, Carbon dioxide sequestration. Steps to maintain clean and pollution free atmosphere with governing laws, precautionary measures against disasters.										C	04
v	Environmental Earth Sciences:Properties of water; hydrological cycle; water resources and management. Energy resources, uses, degradation, alternatives and management; Ecology and 12CO5biodiversity.Impact of use of energy and land on the environment.Exploitation and conservation of mineral and other12										O5	

EARTH AND ENVIRONMENT

	natural resources.Naturalhazards.Elements of Remote Sensing.
	Text / Reference Books
1.	Holme's Principles of Physical Geology. (1992). Chapman & Hall.
2.	Emiliani, C, (1992). Planet Earth, Cosmology, Geology and the Evolution of Life and Environment. Cambridge University Press

CO1 The interaction between the Earth's spheres, relevant processes and environmental changes.

CO2 Knowledge and understanding Recapitulate processes in the different spheres

CO3 Describe the connections and feedback between the Earth's spheres Explain the connection between Earth System processes and global environmental changes

CO4 A basic understanding of the Earth as an holistic system knowledge of the main components of the Earth system and their interactions

CO5 The interactions between biological, chemical, and physical processes that shape and define the Earth System

Outcome Mapping

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 2</i>	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO</i> 4	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding , K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Marks Inst. Hours Category Credits External Р 0 **Subject Code Subject Name** L Т Total CIA WATER Supportive Y 2 4 25 75 100 **23UPGEO1N02** RESOURCES _ MANAGEMENT **Course Objectives** To know about the nature and occurrence of water, its spatial and temporal variability, CO1 quantity and quality considerations and human influence. To define the water resources endowment on which development and use of water CO₂ resources must be planned. To develop a sound foundation on dynamics of water in the nature and human CO3 interferences. CO4 To develop wider perspectives on integrated water resources management. To Analyze the human interferences on hydrologic processes and the resulting CO5 consequences in terms of quantity and quality No. of Course UNIT Details Hours Objectives Introduction: Definition, concepts of watershed, major objectives of I watershed management, effects of watershed on community, 12 CO1 ecosystem, Monitoring and evaluation of watershed. Principles of watershed management: Delineating the watershed. naturalprocesses at work in watershed, common elements of watershed management, multidisciplinary approach in watershed Π 12 CO2 management, participatory resources mapping and appraisal, benefits of watershed approach. Degradation agents in watershed: Flood, drought, fire, wind storms, erosion anddeposition. Climate change.Glacial movement, Tectonic Ш 12 **CO3** activity.Volcaniceruption.Human-induced changes.Impact of the degradation of watersheds in hydrology. Engineering measures for soil conservation: Rainfall parameters. Types of soilerosion.contourbunding, Surplussing structures IV 12 CO4 contour and straggled trenching, gully control structures, graded bunding, bench terracing, land leveling and grading. Water Conservation and Harvesting: Water conservation methods for crop land, Treatment of catchments. Rainwater harvesting structures: Check dam, farm pond, percolation tank, basin, ditch and furrow, channel, flooding, irrigation, subsurface dyke, Nalla V CO5 12 bund and pit methods. Ecosystem assessments, Environmental flows, Future freshwater challenges, Eco tourism, Social and political issues of water use - Sustainable Ecosystems Environmental governance **Text Books** Rajora, R., (1998), Integrated Watershed Management, Rewat Publications, New Delhi. 1. Tideman.E.M., (1996), Watershed Management: Guideline for Indian Conditions, 2. Omega, Scientific Publishers, 372p. New Delhi Lal.S., (2004), Watershed, Development, Management and Technology, Mangal Deep 3.

WATER RESOURCES MANAGEMENT

Department of Geology Periyar University, Salem – 636011, Tamil Nadu, India

	Publications,358	3p.								
4	Paranjape,S.et.a	al.,(1998),	Watershed	Based	Development:	А	Source	Book,	Bharat	
4.	GyanVigyanSa	mathi, New	v Delhi.							
5	Kakade, B.K., (2	002), Soil	and Water C	Conserva	ation Structures	in V	Vatershe	d Devel	opment	
Э.	Programs ,BAIF Development Research Foundation, Pune.									

CO1 Appreciate the circulation of water in earth-atmosphere system and the hydrologic processes over a river basin and emerging quality and quantity concerns thereto.

CO2 Quantify the occurrence and variability of rainfall, runoff, flood and sediment transport processes.

CO3Quantify the occurrence and distribution of groundwater to plan potential groundwater usage.

CO4 Analyze the human interferences on hydrologic processes and the resulting consequences in terms of quantity and quality.

Outcome Mapping

POs& PSOs/COs	<i>P01</i>	PO2	PO3	<i>PO4</i>	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 2</i>	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO 4</i>	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding , K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

GEMMOLOGY

									s		Mark	S			
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total			
23UPG	EO1N03	GEMMOLOGY	Supportive	Y	-	-	-	2	4	25	75	100			
Course	Objectiv	es	· • • •												
CO1	To learn	n and to examine the na	ture, quality, ra	arity	of ge	emsto	ones								
CO2		erstand the physical and			of ge	mstc	ones.								
CO3		marize the origin, class		ns.											
CO4	_	n idea about the gem testing	-												
CO5	To gain l	knowledge and to provid	e skills to becom	le a s	ucces	sful	gemo	ologis	_						
UNIT			Details							o. of ours		urse ctives			
	Introduc	rtion to Gems - Basic 1	properties of ge	ms l	Form	ation	ı of	gem	-	ours	Obje	cuves			
Ι	Introduction to Gems - Basic properties of gems.Formation of gem stones. Nature of gem material: quality necessary in gems-beauty, rarity, durability. Distinction between crystalline, amorphous and metamict materials. Crystal form and habit. Classification of gem stones. Observations with hand lens (10x)-importance and uses. Units of measurement: metric scale, carat, pearl and grain.									01					
II	Nature of crystals: distinction between crystalline and amorphous material, crystal symmetry, Twinning, parallel growth, crystal form, crystal habit, seven crystal system. Identification of rough stones.Imitation stones.12CO2										02				
III	limitation gemolog determin pycnom gemstor	nation by hydrostatic v	re, parting, and work.Specific weighing, heavy nd other	d the gra y liq	eir in avity- uids, feat	npor -utili floa tures	tanc ty tion	e in and and of		12	C	03			
IV	Optical importan asterism etc Lav design refractor Dichrose	properties: The electro nce in gemology-lustre n, luminescence, play o ws of refraction, refra of refractometer. meter.Polariscope-cons cope-construction, use let and x-rays in gem id	e, aventurescend of colors, labrad ctive index (R Construction struction and e of Chelsea c	ce, sl dores .I), to n use	heen scenc otal and in	, cha ce, in refle u gem	toya clus ctior ise imol	ncy, tions n- in of ogy.		12 CO4					
V	Enhance colourle Methods surface	ement and treatments- ess impregnation, dyei s of treatment – laser modifications, diffusi sites - types, classificat	enhancement m ng, bleaching drilling, irradi on treatment	and iation and catio	its i n, he its i on.	denti at tr	ifica eatn	tion. 1ent,		12	CO5				
	Karanth	K.V.(2000),Gem and				Mer	noir	45.0	Teolo	oical	Socie	ty of			
1.		angalore.,	genn muusu y	111 11.	iuia,	10101	IUII	- Ј,С		gical	SUCIE	<i>iy</i> 01			

2.	Anderson, B.W (1990). Gem testing (10th edition), Butterworth Scientific, London								
3.	Babu, T.M.(1998) Diamonds in India. Geological society of India, Bangalore								
4.	Hall,C.(1994).Gemstone, Dorling Kingsley, London.								
5.	Deer,W.A., Houre,R.AabdZussman.S.(1992). An introduction to rock forming minerals, ELBS,								
5.	London								
	References Books								
	(Latest editions, and the style as given below must be strictly adhered to)								
	Kerr, P.F.(1997).Optical mineralogy,4th Ed. McGraw Hill Book & Co New York.,								
1.	Gemmology 2nd EdPeter Read (1991) Butter worth-Heinemann Ltd.Lundu., Gems 5th								
	Ed. Peter Read. Butterworth, London								
2.	Richard Laddicoat (1987), Hand book of gem identification- G.I.A								
2	Santa Monica., Edward Gubelin (1986) Photo Atlas of Including in Gem Stones- ABC								
3.	Edition Zurich., Gem Testing 10th Ed								
4	B.W. Anderson (1990) Butterworth Scientific London., Gemstone Enhancement 2nd								
4.	Edition								
5	Nassan K. (1994)Butterworths London., Gems 5th Ed. Webster Butter worths London., Hall,								
5.	C. Gemstones. ISBN 1564584992.								

CO1 The course is focused on a comprehensive learning in gemology.

CO2 Understands the formation, classification to final grading and evaluation.

CO3 Apply Basic gemological techniques will be learned from this course

CO4 Knowledge and order to identify gemstones and simulants.

CO5 The students will acquire skills which will be useful to them in gem industry

Outcome Mapping

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 2</i>	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO</i> 4	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
<i>CO 4</i>	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

RAINWATER HARVESTING AND ARTIFICIAL GROUNDWATER RECHARGE

			*						LS	-	Mark	S
Subjec	ct Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPG	EO1N04	RAINWATER HARVESTING AND ARTIFICIAL GROUNDWATER RECHARGE	Supportive	Y	-	-	-	2	4	25	75	100
Course	Objectives											
CO1	To unde	ter s	uppl	y and	l will	learn						
		fferent types of rainwate										
CO2	-	amiliar with different po	otential uses o	f rair	iwate	er and	d un	derst	tand	the ad	lvanta	ges
	and limi			<u> </u>	1							
CO3		amiliar with different co							ient s	strateg	gy.	
CO4		stand and explain the mai				-			nd W		tondor	d.
CO5		*		1115 M	viui ic	espec	1 10 1			0. of		urse
UNIT		I	Details							ours		ctives
I	Hydrological cycle and its components.Surface water and groundwater.Vertical distribution of groundwater. Over- exploitation of groundwater - Need for artificial recharge and rainwater harvesting - types of wells - drilling technology - design, construction and development of water wells: dug, bore and tube wells.									01		
II	Types of ponds - and sub Rainwat	of pumps - various arti recharge pits - percolati osurface dykes - recha ter harvesting in urban	on ponds - ba arge wells -	sin sj rech	pread arge	ling bor	- sur e w	face vells.		12	CO2	
III	- mainte effects o Recyclin areas.Ac	on of probable runoff fire enance and monitoring on local groundwater of ng of domestic water - s quifer and its types.	g of RWH s environments ources of wate	truct - re er to	ures medi rech	- be al m arge	enef least in u	its - ures. rban		12	C	03
IV	WHO s intrusion India.Ind departm Approac	Recycling of domestic water - sources of water to recharge in urban areas.Aquifer and its types.Image: Sources of water to recharge in urban water table and its fluctuations.water quality parameters. BIS and WHO standards. watershed management strategy. Salt water intrusion and remedial measures.Interlinking of rivers in India.Indian monsoon pattern.Role of meteorological department.Integrated Water Resources Management (IWRM) Approach: IWRM Principles: Modern principles for water management and planning, definition, components, and critique of12CO4									O4	
V	sources	water management stra of water contaminatior ation on water resource	and remedia	l me	asure	es. Ir	npa	ct of		12	C	05

	basin, watershed and micro watershed. Role of public in watershed management practices at village level.Sustainable Water Resources Management: Concept of sustainable development, sustainability principles for water management, goals for guiding sustainable water resource management.						
	Text Books						
1.	Rajora, R., (1998), Integrated Watershed Management, Rewat Publications, New Delhi.						
2.	.Lal.S., (2004), Watershed, Development, Management and Technology, Mangal Deep Publications, 358p.						
3.	Paranjape, S. et. al., (1998), Watershed Based Development: A Source Book, Bharat Gyan Vigyan Samathi, New Delhi.						
4.	Suresh.R.,(2002), Soil and Water Conservation Engineering, Standard Publishers and Distributers, Delhi.						
5.	Kakade,B.K.,(2002), Soil and Water Conservation Structures in Watershed Development Programmes ,BAIF Development Research Foundation, Pune						

CO1 Understands different potential uses of rainwater advantages and limitations.

CO2 Students get a exposure of different components of Groundwater management strategy

CO3 Learned about the potential of rainwater harvesting under different circumstances

CO4 To have preliminary ideas pertaining to watershed development and management strategies.

CO5 Enhance the distribution and movements of groundwater resources on global scenario

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	<i>P05</i>	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	3	2	3	2	1	3	2	1	1
<i>CO 2</i>	3	1	2	3	2	3	1	1	2	2	2	1
<i>CO 3</i>	3	2	1	3	2	3	1	3	3	1	1	1
<i>CO</i> 4	3	2	1	3	2	3	2	2	3	2	1	1
<i>CO</i> 5	3	2	1	3	2	3	2	2	2	2	1	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

GEOHAZARDS

									s		Mark	S	
Subjec	t Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total	
23UPG	EO1N05	GEOHAZARDS	Supportive	Y	-	-	-	2	4	25	75	100	
Course	Objectiv	es											
CO1	-	ain students about the pl	· ·	-	-	proce	esses	cau	sing	geoha	zards	•	
CO2	To discu	uss the methods for quar	ntifying geoha	zard	S								
CO3		erstand the possible cons											
CO4		e them aware about lan cal and physical process				nis ai	nd e	arthq	uake	es, foi	whic	h the	
CO5	To discuss potential interlinkages between different types of geohazards, disaster prevention and management and quantification and communication of uncertainties.												
UNIT			Details						Ν	o. of		urse	
									H	ours	Obje	ctives	
I	Natural Hazard – definition -Earth's processes: catastrophi geological hazards: study of floods, tsunamis, Landslide Earthquakes, Volcanism and avalanches – with a view to assess the magnitude of the problem, prediction and perception of the hazard Laws and regulations towards hazard management										C	CO1	
Ш	Laws and regulations towards hazard managementEarthquakes-Definition –focus -epicenter-seismic waves-intensity and magnitude- Richter scales – Tsunami -Seismograph- seismogram-seismicity in Indian region - Seismic gaps - mitigation measures and management. Preparation of seismic hazard map Seismic Gap.CO2									02			
ш	mitigatio types – 1 India-M predictio	-	agement. Aval nition - causes ad manageme erm, long term	anch - vi ent. . Co	ne – ilner Moi	Defi able nitor	initio zono ing	on – es in and		12	C	03	
IV	prediction of eruptions: short term, long term. Coastal erosion – its causes-mitigation measures and management.Landslides- types -slow flowage, rapid flowage, sliding and subsidence – causes and mechanism - Vulnerable zones in India - mitigation measures and management. Deforestation and land degradation-Cyclone- Definition -causes - vulnerable zones in India-mitigation measures and management. Weather, temperature and pressure differences, trade and westerly winds, adiabatic								04				
V	cooling, cold and warm fronts. Mass movement – factor influencing slope stability – types of mass movement – hazards of mass movement – strategies for their reduction and the role of geology. Soil erosion – Soil formation – soil classification – factor influencing soil erosion – hazards of soil 12 coastal erosion: wave characteristics, summer and winter beaches, wave refraction and longshore drift; sand supply and cliff erosion.									05			

	Text/ Reference Books
1.	Geology, environment, Society K.S.Valdiya (2004) Universities Press (India) Private Limited, Hyderabad,India
2.	Coping with natural hazards: Indian context K.S.Valdiya (2004) Orient Longman Private Limited, Hyderabad,India.
3.	Engineering and General Geology, Parbin Singh (2003) S.K.Kataria and sons Delhi India
4.	General Geology V.Radhakrishnan (1996) V.V.P.Publishers, Tuticorin, India.
5.	Lundgren (1986). Environment Geology, Prentice Hall Publishers, New Jersey.

CO1 Explain the physical and geological processes causing geohazards such as landslides, floods, tsunamis and earthquakes.

CO2 Describe methods for quantifying hazard for the individual geohazards and factors controlling their uncertainty.

CO3 Explain possible consequences of geohazards as well as risk and disaster management.

CO4 Complete a basic hazard assessment for selected geohazards.

CO5 Gain an additional knowledge on possible interactions between geohazards and their consequences

Outcome Mapping

POs& PSOs/COs	P01	PO2	PO3	<i>P04</i>	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
CO 2	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO</i> 4	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding , K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1. Program Specific Outcomes

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

VALUE ADDED COURSES (CERTIFICATE COURSE – EXTRA CREDITS)

		HYDROLOGY AND	WATER MA	NAC	τEM	ENI	Ľ				N /1-	_
Subjec	t Code	Subject Name	Category	L	Т	Р	ο	Credits	Inst. Hours	CIA	External Aug	Total
23UPGI	EO1VA1	HYDROLOGY AND WATER MANAGEMENT	VALUE ADDED COURSES	Y	-	-	-	2	30	25	75	100
Course	Objective	es		L		l				L		
CO1	To learn	the fundamental comper of the Earth	ponents of hydr	rolog	gical	cycle	e an	d dis	tribu	tion o	f fres	h and
CO2	domain	rt theoretical, practical			-							
CO3	emphasi	To understand the physical, chemical and biological characteristics of water with speenbasis on pollution and contamination. To understand the relationship in between water and rock interaction and salt water intrusion and										
CO4	remedial 1				usion a	and its						
CO5 UNIT	An abilit	ater 1	N	o. of		urse ctives						
Ι	Introduction to Groundwater, Hydro meteorology, Groundwater in Hydrologic Cycle, Occurrence of groundwater, zone of Aeration and Saturation, Hydrogeology, Types of aquifers soil sample analysis - Water bearing materials, Aquifer parameters and its determination. Evaporation and its measurement- Evapotranspiration and its measurement- Penman Monteith method-Infiltration- Factors affection infiltration-Hyetograph- Runoff- drainage basin characteristics- Hydrograph concepts								C	01		
II	assumptions and limitations of unit hydrograph.Occurrence and movement of groundwater- Darcy's law-governing ground water flow equations-Factors governing ground water flow- Types of aquifers- porosity- specific yield specificretention - storage coefficient-permeability- hydraulic conductivity- hydraulic transmissibility-Conjunctive use and it's necessity. Types of Investigations- Site selection- Zones of storage - Safe yield- Reservoir capacity- Reservoir sedimentation and control.								C	02		
III	Indian rivers and floods- Causes of flooding- Alleviation- Leeves and flood walls Floodways-Channel improvement- Flood damage analysis-Design flood- Flood estimation- Frequency analysis- Flood routing through reservoirs and open channels- Storm drainage design.											
IV	Definition conservation harvestin	on of drought- Cause ation an augmentation- ng: rainwater collection ollection- ponds- tanks	drought contin on-small dams	genc -runo	y pla off e	nnin nhar	ig-W	Vater		12	C	O4

HYDROLOGY AND WATER MANAGEMENT

	recharge methods							
v	Introduction - Components of Hydroelectric Power Plant-Levels in planning-Functional requirements of water resources projects-steps in water resources planning- Environmental aspects in water resources planning	12	CO5					
	Text / Reference Books							
1.	Garg S.K., Hydrology and Water Resources Engineering							
2.	Subramanya, K., Engineering Hydrology, Tata McGraw Hill, New Delhi.							
3.	Raghunath, H.M., Groundwater, 1987, Wiley Eastern Ltd., New Delhi.							
4.	Modi, P.N., Irrigation Water Resources and Water Power Engineer House, New Delhi	ring, Stan	dard Book					
5.	Todd, D.K., Groundwater Hydrology, 1993 John Wiley & Sons							
	References Books							
	(Latest editions, and the style as given below must be strictly ad	hered to)						
1.	Raghunath, H.M., Hydrology – Principles, Analysis and Design, 1986, Wiley							
2.	Dr. P.Jaya Rami Reddy, A Textbook of Hydrology, University Science	ce Press.						

CO1 Capable of understanding the impact of water conservation methods in regional and national context.

CO2 An ability to understand the importance of groundwater augmentation strategies. CO3 To perform socio economic analysis to evaluate the intangible benefits of artificial structures.

CO4 Formulate and solve deterministic and optimization models for water resources. CO5 To get familiarization of principles and applications of various groundwater exploration techniques

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	<i>P05</i>	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 2</i>	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO 4</i>	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1
Note: POs Program Outcomes PSOs Program Specific Outcomes and CO Course Objective &												

Outcome Mapping

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

									s		Mark	S
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total
23UPGI	EO1VA2	ENVIRONMENTAL STUDIES AND EARTH SCIENCES	VALUE ADDED COURSES	Y	-	-	-	2	30	25	75	100
Course	Objective											
CO1	salt wate	the fundamental comp er of the Earth.	-	-		-						h and
CO2	To impart theoretical, practical and field knowledge pertaining to Hydrogeological domain.											
CO3	To understand the physical, chemical and biological characteristic emphasis on pollution and contaminationTo understand the relationship in between water and rock interaction and											
CO4	remedial i	measures in the coastal aquif	ers.								usion a	and its
CO5 UNIT		An ability to ethical, social, health and sustainable consumption of water Details										urse ctives
Ι	Renewable and non-renewable resources: Natural resources and associated problems-Forest resources: deforestation- Timber extraction, mining, dams and their effects on forest -Water resources - Use and over-utilization of surface and groundwater- floods- Energy resources - Growing energy needs-renewable and nonrenewable-energy sources- use of alternate energy sources- man induced landslides- desertification- Human Settlements and their impact on Environment.								r - 1 1 r	12	CO1	
Π	Compos successi Introduc the For	e and function of an sition and various Ty on-Food chains-food ction-types- characterist rest ecosystem-Grassla ecosystems	ypes of Eco webs and ic features- str	syste ecolo uctu	em - ogica re an	Ec Ec D Ec Ec Ec Ec Ec Ec Ec Ec Ec Ec Ec Ec Ec	colog yran nctic	gica nids on o	1 - f	12	C	02
III	Aquatic ecosystem Orassiand "ecosystem Desert "ecosystemAquatic ecosystemsDefinition-Cause effects and control measures of Air pollution- Water pollution-Noise pollution- Thermal pollution-Nuclear hazards-Solid waste Management – Causes- effects and control measures of urban and Industrial wastes-Disaster Management -floods- earthquake- cyclone and landslides.National and Global Environmental Issues.12CO3Environmental Impact Assessment (EIA), general guidelines for the preparation of environmental impact statement (EIS), scope and types of environmental audit, cost benefit analysis, environmental management plan (EMP), international organization for standardization (ISO).							03				
IV	Mechani mantle a	ical layering of the and core-Earthquake ar ernal constitution of th	nd earthquake	belt	s: se	ismi	c w	aves	5	12	C	04

ENVIRONMENTAL STUDIES AND EARTH SCIENCES

	distribution of volcanoes-Concept of Isostasy, Formation of core-								
	mantle- crust- atmosphere-hydrosphere and biosphere-Convection								
	in Earth's core.								
	Origin and Age of the Earth, Historical development of the concept								
	of continental drift and plate tectonics-Plates and plate boundaries-								
V	Geodynamic elements of Earth- mid oceanic ridges- trenches-	12	CO5						
	transform faults and island arcs-Plate tectonics- mountain belts and								
	rift valleys								
	Text Books								
1.	Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikar	ner. Bhar	uchaErach,						
1.	The Biodiversity of India, Map in Publishing Pvt. Ltd., Ahmedabad -	- 380 013	, India.						
2	Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill In	nc. 480p	Clark R.S.,						
2.	Marine Pollution, Clanderson Press Oxford (TB).								
3.	Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001,								
5.	Encyclopedia, Jaico Publ. House, Mumbai, 1196p								
4.	Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment &								
4.	Security. Stockholm Env. Institute Oxford Univ. Press. 473p								
5.	Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Nat	ural Histo	ry Society,						
5.	Bombay (R)								
	References Books								
	(Latest editions, and the style as given below must be strictly ad	hered to)							
1	Heywood, V.H &Waston, R.T. 1995. Global Biodiversity Assessme	ent Cambr	ridge Univ.						
1.	Press 1140p.								
2.	Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)								
3.	Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (7	TB)							
	Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. US		0. Duff, P.						
4.	M. D. and Duff, D. (Eds.) (1993). Holmes' principles of physical								
	Francis.		-						
~	Emiliani, C. (1992). Planet Earth: cosmology, geology, and the e	volution	of life and						
5.	environment. Cambridge University Press.								
L									

CO1 Capable of understanding the impact of water conservation methods in regional and national context.

CO2 An ability to understand the importance of groundwater augmentation strategies.

CO3 To perform socio economic analysis to evaluate the intangible benefits of artificial structures.

CO4 Formulate and solve deterministic and optimization models for water resources. CO5 To get familiarization of principles and applications of various groundwater exploration techniques.

Outcome Mapping

	11	0										
POs& PSOs/COs	P01	<i>PO2</i>	<i>PO3</i>	<i>PO4</i>	<i>P05</i>	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 2</i>	3	2	1	1	2	3	2	1	2	2	1	1
<i>CO 3</i>	3	2	1	1	2	3	2	2	3	2	2	1
<i>CO 4</i>	3	2	1	1	2	3	1	2	2	2	1	1
<i>CO</i> 5	3	2	1	1	2	3	2	2	2	1	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
<i>CO</i> 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

ADD ON COURSES

MEDICAL GEOLOGY

			~						S		Mark	S
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	nistry o - ructures Cou Objec CC CC	Total
23UPGH	EO1AO1	MEDICAL GEOLOGY	ADD ON COURSES	Y	-	-	-	2	30	25	75	100
Course	Objectiv	es	·									
CO1	to diseas	chemistry of the environ ses that affect millions of	f people.									
CO2	earth en	ose the students on the ir vironment.					s wit	h th	e geo	ochem	istry (of the
CO3		To learn the fundamental components of Medical Geology										
CO4	_	able of understanding the	-									
CO5	To perfor	rm socio economic analysi	s to evaluate the	inta	ngib	le be	enefi	ts of				
UNIT		D	etails							o. of ours		urse
I	General characteristics of tropical, subtropical environments, arid zone, seasonally dry tropics and sub-tropics, humid tropics, and sub-tropics zone and mountainous zone. Rock weathering and soil formation, weathering of mineralized terrains, weathering profiles.Weathering and formation of secondary minerals.Chemistry of weathering of ultra-basic rocks.									C	CO1	
Ш	Geologi Relation Abundan Element	Geology- Perspectives cal Processes: An aship. Environmental nce of Elements, An ts on Chemical and Biolo cal Impacts on Nutrition	Overview of Biology-Natura thropogenic S ogical Perspecti	f a al E ouro	a Disti ces,	Func ibut Up	lamo ion otake	ental anc e of	1	12	C	02
III	Geological Impacts on Nutrition.Geological Impacts on Nutrition.Pathways and Exposure- Volcanic Emissions and Health, Radon in Air and Water, Arsenic in Groundwater and the Environment.WHO and BIS Standards for drinking water. Fluoride in Natural Waters, soils, sediments, plants. Fluorides and health: Bioavailability of fluoride, Dental fluorosis, Skeletal fluorosis, Dental fluorosis in India, source, nature, cause and extent. Water Hardness and Health Effects, Geochemical basis for tropical endomyocardial fibrosis (EMF), Effect of water hardness on urinary stone formation. Types of stones: Calcium oxalate, Calcium phosphate, Uric acid, Magnesium ammonium phosphate stones, Cysteine12CO3							03				
IV	Iodine a drinking Endemic fertilizer from hu	and health: The iodine c g water, Iodine in food, l c cretinism, Goitrogens rs and environment, Nitr man and animal wastes toglobinemia, Nitrates	cycle in the env lodine Deficien s. The nitroge rogen loading in s, Nitrates and	viron cy I n c n ric hea	nme Disc ycle e fie lth,	order e, Ni elds, Nitr	s (II itrat Nit ates	DD) e as rates and	, ; ; ;	12	C	04

	Elements in Soil, Selenium Deficiency and Toxicity in the						
	Environment, Soils and Iodine Deficiency, Natural Aerosolic Mineral Dusts and Human Health, Animals and Medical						
	Geology. The Impact of Micronutrient Deficiencies in Agricultural						
	Soils and Crops on the Nutritional Health of Humans.						
	Environmental Toxicology, Environmental Epidemiology,						
	Environmental Medicine, Environmental Pathology, Speciation of						
	Trace Elements. Techniques and Tools GIS in Human Health						
V	Studies, Investigating Vector-Borne and Zoonotic Diseases with	12	CO5				
	Remote Sensing and GIS. Mineralogy of Bones, Inorganic and						
	Organic Geochemistry Techniques, Histochemical and Microprobe						
	Analysis in Medical Geology.						
	Text / Reference Books						
1.	C.B. Dissanayake and R.Chandrajith (2009). Introduction to Medical Geology, Springer,						
1.	London						
2.	H.Catherine, W.Skinner, Antony R. Berger(2003). Geology and Health: Closing gap,						
2.	Oxford Univ. press, New York.						
3.	IosifF.Volfson (2010). Medical Geology: Current Status and Perspectives, 2010. Russian						
5.	Geological Society (ROSGEO) Publisher. Moscow.						
4.	K.S. Valdiya (2004). Geology, environment, Society, Univer	sity pres	ss (India),				
4.	Hyderabad						
5.	Lawrence K. Wang, Jiaping Paul Chen, Yung-Tse Hung, Nazih K. Shammas (2009).						
5.	Heavy Metals in the Environment, CRS Press, Taylor & Francis Gro	up, Boca	Raton, FL				

CO1 Capable of understanding the impact of health due to water borne diseases.

CO2 An ability to understand the importance of Pathways and Exposure.

CO3 To perform socio economic analysis to evaluate the intangible benefits of artificial structures.

CO4 The study of the Agricultural, Soil and Crops on the Nutritional Health of Humans. CO5 To get familiarization of principles and applications of Microprobe Analysis in Medical Geology

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	2	3	3	3	1	2	3	2	2	1
CO 2	3	3	2	2	3	3	3	2	2	2	1	1
<i>CO 3</i>	3	2	2	2	3	3	2	2	3	1	1	1
<i>CO</i> 4	3	3	2	2	3	3	2	2	2	1	2	2
<i>CO</i> 5	3	2	2	1	3	3	2	2	3	2	2	1

Outcome Mapping

Note: POs-Program Outcomes , PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding , K3- Applying.

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
<i>CO 3</i>	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

PETROLEUM GEOLOGY

									s		Mark	s		
Subjec	et Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hours	CIA	External	Total		
23UPGI	EO1AO2	PETROLEUM GEOLOGY	ADD ON COURSES	Y	-	_	-	2	30	25	75	100		
Course	Objectiv													
CO1	hydroca	ing technical challenges rbon reservoirs on a reg	gional to reserv	voir s	cale.	_								
CO2	Petroleum is one of the most important resources of energy therefore the basic understanding of petroleum is important.													
CO3		erstand the concept of p		m.										
CO4		erstand the Geographic			istrib	ution	ns of	f oil	and g	gas.				
CO5		ty to infer the Petroleur							omer	nt				
UNIT]	Details							o. of ours		urse ectives		
I	Physical and Chemical Properties of Petroleum Origin and composition of petroleum and natural gas, source rocks, reservoi rocks and traps.Migration and accumulation of oil and gas Introduction to Petroleum Geology, History of Petroleum, Energy Resources, Renewable Energy, Non-Renewable Energy, fossi Fuels.										12 CO1			
П	clastic r rocks. C their rel Migratic	t of petroleum system eservoir rocks, develop Controls of permeability lation to hydrocarbon on of Petroleum: pr eristics: Porosity and pe	oment and type y. Types of pe potential Gen rimary and s	es of etroli erati	poro ferou on o	osity 1s ba f Pe	in t isins trole	hese and eum,	-	12	CO2			
III	Geograp and tech direct do Rock O traps, h	bhic and stratigraphic of iniques for petroleum etection of hydrocarbor rigins, Hydrocarbon T ydrodynamic traps; C tion of microfossils in p	distributions of exploration, Sons Subsurface raps: Structura combination tr	urfac Envi al Tr	e ind ronn aps,	dicat nents Strat	ions 5. So tigra	and ource phic	-	12	C	03		
IV	Sub-sur interpret equipme Reservo Sedimer Gamma	face geological metho tations of seismic ents, drilling fluids, irs, Traps and Seals No ntary Basins and Petrol Log, Sonic log, gas dri	ods and brief data. Drilling well-logs. I onconventional eum Systems ve, gas cap dri	g n Explo I Petr Well ve, g	netho oratio roleu l logg gas hy	ods, on m R ging: ydrat	dri Met esot SP te.	lling hods trces log,		12 CO4				
V	producti (seals). hydroca world C	ion of reserves and ion and development g Occurrence, surface i rbons.Petroleum habita Dil producing basins o 7, Cambay, and Rajasth	ndications and ts. An outline of India: Assa	eum d di of tl	trap rect he oi	s. Ca dete l bel	ap r ctio ts o	ocks n of f the		12	C	05		

	Text / Reference Books
1.	Tissot, B.P. and Welte, D.H. Petroleum Formation and Occurrence, 2nd Edition,
	Springer- Verlag, Berlin, 1984
2.	North, F.K. Petroleum Geology, Allen & Unwin, London, 1985
3.	Hunt, J.M. Petroleum Geochemistry and Geology, 2nd Edition, W.H. Freeman, San
5.	Fransisco, 1996
4.	Sahay, B., Rai, A. and Ghosh, M. Wellsite Geological Techniques for Petroleum
4.	Exploration, Oxford & IBH, New Delhi, 1984
5	Selley, R.C. Elements of Petroleum Geology, 2nd Edition, Academic Press, London,
5.	1997

CO1 Capable of understanding the Renewable and Non-Renewable Energy.

CO2 An ability to understand the importance of hydrocarbon potential generation of Petroleum.

CO3 To perform Petroleum source rock origins, Hydrocarbon Traps.

CO4 Formulate and solve deterministic and optimization models of Petroleum Resources Sedimentary Basins.

CO5 To get familiarization of principles and applications of estimation of reserves and resources.

Outcome Mapping

POs& PSOs/COs	PO1	<i>PO2</i>	PO3	<i>PO4</i>	<i>P05</i>	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	2	3	3	3	1	2	3	2	2	1
<i>CO</i> 2	3	3	2	2	3	3	3	2	2	2	1	1
<i>CO 3</i>	3	2	2	2	3	3	2	2	3	1	1	1
<i>CO</i> 4	3	3	2	2	3	3	2	2	2	1	2	2
<i>CO</i> 5	3	2	2	1	3	3	2	2	3	2	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying.

S-Strong-3 ; M-Medium -2 ; L-Low-1. Program Specific Outcomes

PSO 4 **PSO 1** CO/PSO **PSO 2** PSO 3 *PSO* 5 3 3 3 3 3 *CO* 1 *CO 2* 3 3 3 3 3 3 3 3 3 *CO3* 3 *CO* 4 3 3 3 3 3 3 3 3 3 3 *CO* 5 Weightage 15 15 15 15 15 Weighted percentage of Course 3.0 3.0 3.0 3.0 3.0 contribution to Pos

GROUNDWATER EXPLORATION

			~						S		Mark	S	
Subjec	et Code	Subject Name	Category	L	T	Р	0	Credits	Inst. Hours	CIA	External	Total	
23UPGI	EO1AO3	GROUNDWATER EXPLORATION	ADD ON COURSES	Y	-	-	-	2	30	25	75	75 100	
Course	Objectiv	es											
CO1		the fundamental comp		_	-								
CO2	To impart theoretical, practical and field knowledge pertaining to Hydrogeological domain												
CO3		erstand the subsurface m											
CO4		pret the conditions of w					som	e are	eas w	here t	he		
	-	vater is being exploited	-			6							
CO5	To critic	cally assess different fac	ctors/aspects in	nvolv	ve .								
UNIT		I	Details							o. of ours		Course Objectives	
Ι	Renewable resourceRenewable resource, Hydrology and basi characteristics, run-off and stream flow, aquifer characteristics geology of groundwater occurrence, trans-boundary aquifers groundwater quality, saline water intrusion.										C	CO1	
II		method: Water div s Biophysical.	ining, Soil a	and	Mic	ro-B	iolo	gica	1	12	CO2		
III	Surface investigation: Geologic method, geomorphological method, hydrogeological method, electrical resistivity method, Vertical electrical sounding. Profiling, Wenner array, Schlumberger array, Dipole-dipole array, Interpretation of data, electromagnetic method, seismic method, gravity and magnetic method, geobotanical									12	C	03	
IV	Subsurfa Applicat	s, geochemical methods ace methods: test dr tion of Geophysical lo chniques.	illing, water							12	C	04	
V	tracer techniques.Aerial method, Photogeology, Landsat / IRS Infrared imagery,Electromagnetic techniques.Remote sensing methods, artificialrecharge, groundwater modeling, groundwater law, watershedmanagement.									12	C	05	
			Text / Refere	ence	Boo	ks							
1.	Davies, York, 40	S.N. and De Wiest, D 63p.	.R., (1966), H	lydro	geol	ogy-	Johi	n W	iley&	z sons	, Inc,	New	
2.		C.W., (1990), Applied H	lydrogeology-	McG	raw	Hill,	Put	olish	er, N	ew De	elhi.		
3.		D.P (1984), Groundwate											
4.		K,K.,(2005), Hydrogeolo									ing,38	39p.	
5.	Karanth	, K.R., (1987), Ground v Hill New Delhi 720p											

CO1 Capable of understanding the impact of water conservation methods.

CO2 An ability to understand the importance of groundwater augmentation strategies.

CO3 To get familiarization of principles and applications of various groundwater exploration techniques

CO4: Occurrence and movement of Groundwater

CO5: Groundwater wells, types and methods

Outcome Mapping

POs& PSOs/COs	P01	PO2	PO3	<i>PO4</i>	<i>P05</i>	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO 1	3	2	2	3	3	3	1	2	3	2	2	1
<i>CO</i> 2	3	3	2	2	3	3	3	2	2	2	1	1
<i>CO 3</i>	3	2	2	2	3	3	2	2	3	1	1	1
<i>CO</i> 4	3	3	2	2	3	3	2	2	2	1	2	2
<i>CO</i> 5	3	2	2	1	3	3	2	2	3	2	2	1

Note: POs-Program Outcomes, PSOs -Program Specific Outcomes and CO-Course Objective & Cognitive level: K1- Remembering, K2- Understanding, K3- Applying.

S-Strong-3 ; M-Medium -2 ; L-Low-1.

Program Specific Outcomes

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
<i>CO</i> 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0
