PERIYAR UNIVERSITY DEPARTMENT OF ZOOLOGY Salem-636011, Tamil Nadu

NAAC "A++" Grade - State University - NIRF Rank 59, NIRF Innovation Band of 11-50

M.Sc.,

BIOMEDICAL SCIENCE

SYLLABUS

FROM THE ACADEMIC YEAR 2023-2024 ONWARDS

M.Sc. BIOMEDICAL SCIENCE PROGRAMME [Choice Base Credit System (CBCS)] (For those admitted in the academic year 2023-2024 onwards) OBE REGULATIONS AND SYLLABUS (With effect from the academic year 2023-2024 onwards)

Introduction

The Master's programme in Biomedical Sciences provides a unique combination of fundamental research and clinical application, with a special focus on multidisciplinary aspect such as biochemical, molecular and patho-physiological mechanism of diseases. Investigating and understanding the diseases give the skill and knowledge to work towards discovery and development of preventive/ therapeutic drugs. There is an increasing prevalence of non-communicable diseases as a result of lifestyle changes and urbanization in India. Infectious diseases are also still persisting as major health problems in Indian population. These are the challenges that are to be tackled in the new millennium, so there is a need to understand the pathogenesis and to develop the new markers and diagnostic protocols with respect to the relevant field. The requirement for Biomedical Scientist is important because they are expected to bridge the gap between biomedical research, diagnostics and clinical applications.

Objectives

To improve the skills and critical thinking in the field of clinical research To understand the pathogenesis and to develop the new markers and diagnostic protocols with respect to the relevant field.

Learning Outcomes

Display a sound knowledge of the biology of disease and its clinical applications. Be able to discuss current knowledge in biomedical sciences, and the techniques used in their investigation. Possess skills in the selection, planning, performance and interpretation of a range of appropriate experimental techniques. Be able to analyse and interpret complex and sometimes contradictory scientific information. Be able to engage in professional and academic communication with other biomedical scientists. Develop an informed, critical and imaginative attitude to professional practice appropriate for those with responsibility in the field.

Job Opportunities

On successful completion of the course, the Biomedical Science graduates could contribute to the Private sector or National healthcare laboratories

- Testing and screening of life style disorders (Diagnostics)
- Investigating and understanding the disease mechanisms (Research fellow)
- Working towards discovery and development of treatments, which could be preventive (vaccines) and/or therapeutic (drugs and medicines-R & amp;D)
- Working in academic institutions (Higher education)

AS PER TANS CURRICUL IMP	CHE REGULATIONS ON LEARNING OUTCOMES-BASED UM FRAMEWORK FOR POSTGRADUATE EDUCATION LEMENTED IN PERIYAR UNIVERSITY, SALEM.
Programme	M.Sc., Biomedical Science
Programme Code	
Duration	PG-2 Years
Programme Outcomes (Pos)	PO1: Problem Solving Skill Demonstrate an in-depth knowledge of human biomedical sciences, from molecular to whole body systems with an interdisciplinary understanding of human function to design an experiment that functions well despite challenging parameters, or to create a new type of experiment should a first experiment fail
	PO2: Decision Making Skill
	Develop healthcare system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Foster analytical and critical thinking abilities for biomedical data-based decision-making.
	PO3: Ethical Value
	Apply rigorous academic integrity and ethical scholarly practices to their own learning, and understand their application and importance in biomedical science and health research.
	PO4: Communication Skill
	Communicate and advocate for evidence-based scientific ideas and knowledge in diverse expert, non-expert and inter- disciplinary settings
	PO5: Individual and Team Leadership Skill
	Ability can help them coordinate with their research teams to perform experiments correctly. Many experiments require

	precision and teamwork.
	PO6: Employability Skill
	To enhance their knowledge and to develop their practical, intellectual and key skills to assist them in their career development.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Respectfully engage with Indigenous perspectives and cultures, and incorporate Indigenous ways of knowing into a broad understanding of biomedical science and health contexts.
	PO 9 Multicultural competence
	Work effectively and respectfully, both individually and in groups to meet a shared goal with people from diverse disciplinary, community and cultural backgrounds
	PO 10: Moral and ethical awareness/reasoning
	Apply knowledge of human biomedical sciences to understand societal and environmental determinants of health and disease, and their impacts at an individual, community and population level
Programme	PSO1 – Placement
Specific Outcomes	Major employment areas include diagnostic pathology and clinical laboratories, NHS Blood and Transplant laboratories,
(PSOs)	private pathology laboratories,
	PSO 2 - Entrepreneur
	Apply knowledge acquired to the planning and implementation of research, development and innovation projects in a biomedical research laboratory, a clinical department laboratory or the biomedical industry.

PSO3 – Research a	nd Development
-------------------	----------------

Read and critically analyse original and review papers on biomedical issues and assess and choose the appropriate methodological descriptions for biomedical laboratory research work.

PSO4 – Contribution to Business World

Biomedical technologies to the description of phenomena or problems in human or animal biology, with regard to their causes, mechanisms and treatment.

PSO 5 – Contribution to the Society

Apply logical reasoning based on the knowledge, skills, designing solutions to assess societal, health, safety issues and the responsibilities that go along with the scientific practice.

Candidate's eligibility for admission

Candidates who have qualified B.Sc., Biomedical Science / Animal Science / Any other Degree related to Biomedical Science / Life Sciences (B.Sc., Microbiology, Biochemistry, Biotechnology, Functional Genomics, Plant Biology and Biotechnology, Animal Science, Zoology, Advances in Zoology, Medical Biotechnology, Applied Microbiology, Medical Microbiology, Paramedical Degrees like B.Sc., Biomedical Science, Anatomy, Physiology, Pharmacy, Human Genetics etc., approved by the Syndicate of Periyar University, Salem.

Duration of the programme

The duration of the M.Sc. Biomedical Science Course shall be over a period of **Two Years** from the commencement of the course. A student shall obtain the M.Sc. Degree in Biomedical Science if he/she has registered, undergone and secured the required minimum credits for all the Core and Elective courses and completed the Project Work / Dissertation within the stipulated time.

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme (For the students admitted in the academic year 2023-2024 onwards) ucture, course work, credit, contact hours and Distribution of Marks - C1-----

Programme	e Structure, course work, (creait, coi	ntact nours	s and D	ISTIDUT	on or
Course Code	Title of Course Work	Credit	Contact	Int. Mark	Ext. Mark	Total Mark
	SEME		III / WEEK	INIAI K	INIAI K	IVIAI K
23UPBMS1C01	Biochemistry	5	6	25	75	100
23UPBMS1C02	Cell and Molecular Biology	5	6	25	75	100
23UPBMS1C03	Medical Genetics	4	4	25	75	100
23UPBMS1L01	Core : Lab Course -I	3	6	40	60	100
23UPBMS1E01	Medical Microbiology	3	4	25	75	100
23UPBMS1E02	Biosafety and Bioethics	3	4	25	75	100
		23	30			600
	SEME	STER - II				
23UPBMS1C04	Human Anatomy	5	6	25	75	100
23UPBMS1C05	Human Physiology	5	6	25	75	100
23UPBMS1L02	Core : Lab Course -II	4	6	40	60	100
23UPBMS1E03	Bioinstrumentation and Bioimaging Technology	3	4	25	75	100
23UPBMS1E04	Stem Cell Biology	4	4	25	75	100
23UPBMS1N01	Swayam Course	2	Co	ompulsorv	Course	
23UPBMS1S01	Skill-Enhancement Course (SEC) Animal Cell Culture	2	2	25	75	100
23UPBMS1H01	Human Rights	1	2	25	75	100
		26	30			700
	*Students should undertake Interns	hip during the	first year vaca	tion for mir	nimum os '	15 days
	SEMES	STER - III	y			
23UPBMS1C06	Immunology	5	6	25	75	100
23UPBMS1C07	Pharmacology and Toxicology	5	6	25	75	100
23UPBMS1L03	Core : Lab Course - III	5	6	40	60	100
23UPBMS1C08	Core (Industry Module) – XI - Vaccinology	4	6	25	75	100
23UPBMS1E05	Organ on Chip	3	3	25	75	100
23UPBMS1N02	NME – II IVE Technology	2	3	25	75	100
23UPBMS1I01	*Internship / Industrial Activity	2	-			
		26	30			600
	SEMES	STER - IV				
23UPBMS1C09	Human Embryology and	5	6	25	75	100
23UPBMS1C10	Biomaterial and Tissue	5	6	40	60	100
23UPBMS1P01	Project Work & viva voce	7	10	100	50+50	200
23UPBMS1E06	(Industry Entrepreneurship) Nanomedicine and Drug	3	4	25	75	100
23UPBMS1S02	Skill Enhancement Course – II / Professional Competency Skill Molecular Diagnosis	2	4	25	75	100
23UPBMS1102	Industrial Visit	1	Compulsory Students in a academic ves	for All iny one ar	50	50
23UPBMS1X01	Extension Activity	1	-			
		24	30			650

Total Credits: 99

Value Added Courses (Certificate will be issued separately – Through Online Mode) *					
Course Code	Title of Course Work	Contact Hours	Marks	Credit	
23UPBMS1V01	Life Style Diseases	36 hrs per course	100	2	
23UPBMS1V02	Experimental	26 bre por course	100	2	
	Embryology	36 ms per course	100	2	
Add-on Courses (Certificate will be issued separately- Through Online Mode) *					
23UPBMS1A01	Cancer Therapeutics	36 hrs per course	100	2	
23UPBMS1A02	Lab-On-Chip	36 hrs per course	100	2	

Furthermore, The TANCHE, Govt. of Tamil Nadu, recommends the candidates to select one from value added courses and one from add-on courses and one from SWAYAM/MOOC plat form if the student desires. The fee for this course work will be prescribed by the Controller of Examinations in concurrence with the authorities of Periyar University. Separate certificate will be issued and these extra credits will be included in the Academic Bank of Credit (ABC) portal of the candidate.

Examinations

Examinations are conducted in semester pattern. The examination for the Semester I&III will be held in November/December and that for the Semester II & IV will be in the month of April/May in every academic year.

Candidate failing in any subject (both theory and practical) will be permitted to appear for such failed subjects in the same syllabus structure at subsequent examinations within next 5 years. Failing which, the candidate has to complete the course in the present existing syllabus structure.

Scheme for Evaluation and Attainment Rubrics

Evaluation will be done on a continuous basis and will be evaluated four times during the course work. The first evaluation will be in the 7th week, the second in the 11th week, third in the 16th week and the end – semester examination in the 19th week. Evaluation may be by objective type questions, short answers, essays or a combination of these, but the end semester examination is a University theory examination with prescribed question paper pattern.

Attainment Rubrics for Theory Courses

Internal (Max. Marks - 25)

S.No.	Approaches	Marks
1	Internal tests (Best two tests out of 3)	10
2	Attendance	5
3	Seminar	5
4	Assignment	5
	Total	25

External (Max. Marks - 75)

Sectio n	Approaches	Mark Pattern	K Level	CO Coverag e
А	Objective Type (Answer all questions)	20X1 = 20 (Multiple Choice Questions)	~	\checkmark
В	Descriptive Type (100 to 200 words) (Answer any three out of five questions)	3X5 = 15 (Analytical type questions)	~	~
С	Essay Type (500 to 1000 words) (Answer all questions)	5X8 = 40 (Essay type questions)	~	\checkmark

Attainment Rubrics for Lab Courses

Internal (Max. Marks-40)

S.No.	Approaches	Marks
1	Practical tests (Best two tests out of 3)	30
2	Attendance	5
3	Record Note Book	5
Total		40

External (Max. Marks - 60)

Section	Approaches	Mark Pattern	K Level	CO Coverage
А	Major practical	1X20 = 20	\checkmark	✓
В	Minor practical	1X10 = 10	\checkmark	✓
С	Spotters	4X5 = 20	\checkmark	✓
D	Viva-voce & Record Note Book	10	\checkmark	~
Total		60		

Attainment Rubrics for Research

Internal (Max. Marks - 100)

S.No.	Approaches	Marks
1	Manual involvements in experiments	30
2	Attendance	10
3	Submission of Dissertation	60
Total		100

External (Viva Voce) (Max. Marks - 100)

S.No.	Approaches	Marks
1	Viva Voce- Internal Examiner	50
2	Viva Voce- External Examiner	50
Total		100

Grading System

Evaluation of performance of students is based on ten-point scale grading system as given below.

Ten Point Scale				
Grade of Marks	Grade points	Letter Grade	Description	
90-100	9.0-10.0	0	Outstanding	
80-89	8.0-8.9	D+	Excellent	
75-79	7.5-7.9	D	Distinction	
70-74	7.0-7.4	A+	Very Good	
60-69	6.0-6.9	A	Good	
50-59	5.0-5.9	В	Average	
00-49	0.0	U	Re-appear	
ABSENT	0.0	AAA	ABSENT	

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology M.Sc., Biomedical Science Programme-SEMESTER-I

(For the students admitted in the academic year 2023-2024 onwards)

BIOCHEMISTRY

Core Paper-01

Paper Code: 23UPBMS1C01

Weekly Contact Hours: 6 Total Contact Hours: 108 Credits: 5

Course Obj	ectiv	es:					
The main ob	ojectiv	es of	this course are:				
1.	. To provide knowledge on the properties of water, acids, bases, and biological buffers.						
2.		To le chai	earn the concept of bioenergetics and mitochondrial n reactions	respiratory			
3.		To I path	know the chemistry of macromolecules, functions, aways and their control	metabolic			
4.		To k	now the functions of biomolecules.				
Course I	Course I : Core-01						
Course title)	:	BIOCHEMISTRY				
Credits		:	5				
Pre-requisit	quisite:						
Students s medicine	hould	uld know the biomolecules formation, metabolism, diseases and					
Expected C	xpected Course Outcome:						
On the succe	e successful completion of the course, student will be able to:						
1.	Com phys	Comprehend the structure and importance of water and K1 & K2 physiological buffer systems.					
2.	Describe principle of bioenergetics, exergonic and K2 & K4						

	endergonic reactions.	
3.	Elucidate the mechanism of electron transport chain and ATP generation in living cells.	K3 & K5
4.	Illustrate the chemistry, properties and biological functions of macromolecules including carbohydrates, proteins, nucleic acids and lipids.	K4 & K6
5.	Describe the biosynthesis (anabolism) of glucose, glycogen, amino acids and nucleic acids and lipids.	K5 & K6

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units
I	Atoms: Chemical Composition of living matter. Biological importance of water. Buffers and its Physiological properties. Carbohydrates : Classification, structure and function. Carbohydrate metabolism: Anabolism – Glycogenesis and Gluconeogenesis. Catabolism – Glycolysis, Kreb's cycle and Glycogenolysis. Electron transport chain. Metabolic disorder : Diabetes and their biomedical significance.
II	Amino acids: Structure and classification of amino acids. Essential amino acids and Non-essential amino acids, glycogenic and ketogenic amino acids. Proteins: Classification of proteins. Primary, Secondary, Tertiary and Quaternary structure of protein. Metabolism of amino acids-glucogenic and ketogenic amino acids. Transamination, deamination and decarboxylation reactions. Urea cycle and its regulation.
111	Lipids: Structure and Classification of Lipids. Types of fatty acid oxidation: Beta, alpha, omega and peroxysomal oxidation. Ketosis, biosynthesis of fatty acids. Triglycerides and Cholesterol: Sructure & function, Cholesterol biosynthesis. Biomedical importance of lipids in Obesity.
IV	Nucleic acids: Structure and functions of DNA and RNA. Synthesis and degradation of purine and pyrimidine (De novo and salvage pathways). Syndromes associated with nucleic acid metabolism: Aicardi-Goutières syndrome (AGS), Lesch-Nyhan syndrome and GOUT Disease.
V	Hormones – Peptide and Non-peptide mammalian hormones, receptors, feedback loops, signaling cascades, secondary messengers as hormones, steroid hormone receptor and gene action. Insect pheromones. The biochemistry of Learning, Memory and Thinking.

Reading list

- 1 Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W. (2017) Harper's Biochemistry. Prentice Hall International Inc.
- 2 Lehninger, A. L., Nelson, D. K., and Cox, M. M. (2015) Principles of Biochemistry. CBS Publishers and distributors, New Delhi.

Recommended texts

- 1. Stryer, L. (2016) Biochemistry. W. H. Freeman and Company, New York.
- 2. Voet.D. Judith, G. Voet, Charlotte W. Pratt. (2017) Fundamentals of Biochemistry, John Wiley& Sons Inc. New York.
- 3. Satyanarayanan, U (2015). Essentials of Biochemistry, Uppala Author Publisher Interlinks, Vijayawada.

		N	lapping	with Prog	ramme O	utcom	es*			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-I

(For the students admitted in the academic year 2023-2024 onwards)

CELL AND MOLECULAR BIOLOGY

Core Paper-02

Paper Code: 23UPBMS1C02

Weekly Contact Hours: 6

Total Contact Hours: 108 Credits: 5

Course Objectives: The main objectives of this course are: 1. To explain the concept of Chemical Basis of Life 2. Describe the internal and external structural organization of cell and its organelles To enlighten the functional role of the cellular organelles 3. 4. To know the functions of biomolecules. Course I Core-02 : Course title CELL AND MOLECULAR BIOLOGY : Credits 5 : Pre-requisite: Students should know fundamentals of cells, structure and function and signaling pathways. **Expected Course Outcome:** On the successful completion of the course, student will be able to: Understand the cell as a basic unit of life. K1 & K2 1. Understand the chemical basis of life. Understand about different types of cells. K2 & K4 2. Understand the components aiding cell –cell K3 & K5 in 3. communication. Understand the structural organization of genetic materials K4 & K6 4. in prokaryotic/ eukaryotic

F	Understand	the	detailed	structural	organization	of	K5 & K6
5.	prokaryotic a	nd eul	karyotic ce	lls.			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create

	Units
I	Discovery of cell: Cell theory, Basic structure of prokaryotic and eukaryotic cell, Cell Cycle, and regulations. Cell division: mitosis- Stages and Significance. Meiosis -Stages and their significance. Significance of 2020 Nobel Prize for Discovery of Hepatitis C Virus and 2021 Nobel Prize for Discoveries of membrane receptor for temperature and touch.
II	Ultra-structure and functions of Plasma membrane – Fluid Mosaic model theory- Transport mechanism- Exocytosis, Endocytosis, Simple Diffusion. Active Transport Mechanism: Structural Components of ion channels and their functions – ATPase Dependent Na/K ion transport, Ca2+ Transport mechanism in Insulin Secretion and Neurotransmitter secretion. Micro bodies peroxisomes and Glyoxysome.
III	Nucleus: ultrastructure of nuclear membrane, Nucleolus, Nucleoplasm and Chromatin fibers, Microtubules, microfilaments – Cilia and Flagella,Ribosome and Golgi bodies, Lysosome, Endoplasmic reticulum. Mitochondria. Cell Signaling: Types, organization of cell signals and their receptors. Functions of Ion channel coupled receptors – secondary messengers. Amplifiers, Integrators. 2016 Nobel Prize for discovery of Autophagy and 2013 Nobel Prize for the discoveries of machinery regulating Vesicle traffic, a major transport system in our cell.
IV	The Exosome: Exosome Research Importance, Extracellular Vesicles – Structure and Composition, Mechanism of formation of Exosomes in cells, Circulation of Exosomes, Heterogenicity of Exosomes, Signal Transduction. Immune response and exosomes. Current scenario of Circulating DNA Research. Mechanism of cell aging and senescence. Comparison of Cell death: Necrotic and apoptotic cells.
V	DNA replication – semi conservative and rolling circle models. Enzymes involved in DNA Replication: types and their functions. Transcription and Translation in eukaryotes: RNA polymerase – types, properties, and functions–Transcription process in Eukaryotes. DNA to Nascent RNA and to mature RNA mediated by splicing mechanism. Protein Synthesis: mRNA serve as Template, Interaction of mRNA and rRNA, mRNA and RNA Polymerase, Participation of tRNAs in

	Translation and post translational modifications and their biological importance.					
Re	eading list					
1.	Cooper, G.M. (2019). The Cell – Molecular Biological Approaches. ASM Press, Washington.					
2.	2. Lodish H, Kaiser CA, Brasher A, Amon A, Berk A, Kreger M, Ploegh H and Scott MP (2014) Molecular Cell Biology, 7 th edition, Garland Publishing, Inc. New York.					
Re	ecommended texts					
1.	Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P (2018) Essential Cell Biology, Garland Science, New York					
2.	De Robertis EDP and De Robertis EMF (2018) Cell and Molecular Biology.					
3. 4.	Gupta PK (2019) Cell and Molecular Biology. Rastogi Publications, Meerut. Karp G (2017) Cell and Molecular Biology: Concepts and Experiments. 6 th edition,					
5. 6.	Lewin B (2020) Genes XIII Oxford University Press, Oxford. Walker JM and Gingold EB (2013) Molecular Biology and Biotechnology. Panima University Press, Oxford Publishing Co., New Delhi.					
7. 8.	Thorpe NO (2000) Cell Biology, John Wiley and Sons, New York. Turner PC McLennan AG Bates AD and White MRH (2007) Instant Notes Molecular Biology, Viva Books Pvt, Ltd., New Delhi.					
9.	Thomas Pollard, William Earnshaw, Jennifer Lippincottt Schwartz,Graham Johnson, (2017) Cell Biology, 3 rd Edition,ElsevierPupblishing, USA,					

		N	lapping	with Prog	ramme O	utcom	es*			
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L – Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-I (For the students admitted in the academic year 2023-2024 onwards)

MEDICAL GENETICS

Core Paper-03

Paper Code: 23UPBMS1C03

Total Contact Hours: 72

Credits: 4

Weekly Contact Hours: 4

Course Obj	Course Objectives:				
The main ob	The main objectives of this course are:				
5.	To gain	knowledge on the laws and patterns of genetic inhe	ritance.		
6.	Understa	anding the methods involved in genetic analysis.			
7.	To gain i	insights on genetic abnormalities and their impact c	n diseases		
Course I	:	Core-03			
Course title	:	MEDICAL GENETICS			
Credits	:	: 3			
Pre-requisit	e:				
Students sh relation to th	ents should know the taxonomical classification of invertebrate animals in on to their functional morphology.				
Expected C	xpected Course Outcome:				
On the succe	ssful comp	letion of the course, student will be able to:			
6.	Comprehe	Comprehend the importance of Genetics. K1 & K2			
7.	Describe	Describe the principles of inheritance. K2 & K4			
8.	Illustrate t	lustrate the genetic abnormalities associated with diseases K3 & K5			
9.	Describe	escribe various methods of evaluating genetic diseases. K4 & K6			

10.	Know the therapeutic strategies for genetic disease and elucidate the mechanism underlying mutations	K5 & K6	
K1 - Remen	nber; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	e; K6 – Creat	e

	Units
I	Human Genetics - Principles - History and Impact of Genetics in Medicine - Gregor Mendel and the Laws of Inheritance - The Origins of Medical Genetics - Types of Genetic Disorders (single gene disorders, Chromosomal disorders, Polygenic disorders, Somatic cell genetics, mitochondrial disorders) - The Human Genome Project. Human Chromosomes - Cell Division- Mitosis, Meiosis, Gametogenesis - Chromosome Abnormalities- Numerical, Structural and Mosaicism - Patterns of Inheritance - Mendelian Inheritance- Autosomal dominant, Autosomal recessive, Sex linked recessive and dominant - Genomic Imprinting. Mitochondrial Inheritance - Polygenic and Multifactorial Inheritance. Polygenic Inheritance - Identifying Genes that Cause Multifactorial Disorders- Linkage analysis, Association studies, GWAS studies.
II	Molecular Genetics & Cytogenetics: DNA sequence polymorphisms- SNPs, VNTRs, Minisatellites, Microsatellites. Mapping and Identifying Genes for Monogenic Disorders - Position-Independent Identification of Human Disease Genes - Positional Cloning. The Human Genome Project and its Applications - Epigenetics - Microarray in research and clinical practices Cytogenetics - Methods of chromosome analysis- Karyotyping and chromosomal banding - Fluorescent In-Situ Hybridization - Comparative Genomic Hybridization - Chromosome Nomenclature - Prenatal cytogenetics - Cancer cytogenetics.
III	Population And Mathematical Genetics -Hardy-Weinberg Principle and its Applications - Factors that alter gene frequency- non-random mating, small populations, selection, Mutations,, Migration and gene flow. Consanguinity and its consequences - Genetic Polymorphism - Segregation Analysis - Genetic Linkage - Risk Calculation - Probability Theory - Use of Linked Markers -Bayesâ Theorem and Prenatal Screening - Empiric Risks
IV	Genetics in Medicine: Hemoglobin and the Hemoglobinopathies - Disorders of Hemoglobin – alpha, beta and gamma - Clinical Variation of the Hemoglobinopathies - Antenatal and Newborn Hemoglobinopathy

	Screening. Disorders of coagulation and bleeding - Factor VIII - Factor IX - Afibrinogenemia .Inborn Errors of Metabolism - Disorders of Amino Acid and Branched-Chain Amino Acid Metabolism - Urea Cycle Disorders - Disorders of Carbohydrate Metabolism -Disorders of Steroid Metabolism - Disorders of Lipid Metabolism - Disorders Affecting Mitochondrial Function. Prenatal Diagnosis of Inborn Errors of Metabolism				
V	 Clinical Genetics: Epigenetics and Cancer - Diabetes - Crohn Disease - Hypertension - Coronary Artery Disease - Schizophrenia - Alzheime Disease - Hemochromatosis - Venous Thrombosis - Age-Relate Macular Degeneration. Recurrent miscarriage - Xeroderma Pigmentos - X chromosome inactivation - X-linked mental retardation and Fragile 3 Single-Gene Disorders -Huntington Disease - Hemophilia Preimplantation Genetic Diagnosis - Non-Invasive Prenatal Diagnosi Stem Cell Therapy & Ethical and Legal Issues in Medical Genetics. 				
Reading list	t				
 Brooker, R.J. (2017) Genetics: analysis and principles, 6th edition. New York, NY: McGraw-Hill Education 					
 Hartwell, L. et al (2017) Genetics: from genes to genomes, 6th edition. New York, NY: McGraw-Hill Education 					
3. Emer Ellard	 Emery's Elements of Medical Genetics 12th edition, Peter Turnpeeny Sian Ellard, 				

Elsevier publications.

Recommended texts

- 4. Alberts, B. et al (2015) Molecular biology of the cell 6th edition. New York, NY: Garland Science
- 5. Lodish, H. et al (2016) Molecular Cell Biology 8th edition. W.H.Freeman
- 6. Alberts, B. (2014) Essential Cell Biology 4th edition. New York, NY: Garland Science
- 7. Hardin, J., Bertoni, G., Kleinsmith, L.J., Becker, W.M. (2012) Becker's world of the cell 8th edition. Boston, MA: Benjamin Cummings

- 8. Ridley, M. (2004) Evolution 3rd Edition. Malden, MA: Blackwell
- 9. Steams, S.C. & Hoekstra, R.F. (2005) Evolution: an Introduction, 2nd edition. Oxford: Oxford University Press.
- 10. Practical Biology Jones, A.M., Reed, R. & Weyers, J.D.B. (2016) Practical Skills in Biology, 6th edition. Harlow: Pearson Education
- 11. Physiology Moyes, C.D. & Schulte, P.M. (2016) Principles of animal physiology, 3rd edition. Toronto: Pearson
- 12. Boron, WF & Boulpaep E.L. (2012) Medical Physiology, 2nd Edition Elsevier Saunders

Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	М	М	М	S	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	М	S	S	
CO3	S	М	S	М	М	S	L	М	S	S	
CO4	L	М	S	S	L	S	М	S	М	М	
CO5	S	М	S	М	S	S	М	М	S	S	

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-I (For the students admitted in the academic year 2023-2024 onwards)

LAB COURSE -I

(Biochemistry, Cell and Molecular Biology, Medical Genetics)

Lab CourseS-01

Paper Code: 23UPBMS1L01

Total Contact Hours: 108

Credits: 3

Weekly Contact Hours: 6

Course Obje	ective	s:						
The main objectives of this course are:								
1		To impart knowledge of basic techniques such as genomic DNA						
		and plasmid DNA isolation						
2.	2. To gain hands on experience in gel-electrophoresis techniques.							
2		To develop 8 train students with the knowledge of DODS blatting						
5. To develop & train students with the knowledge of FCR& bi								
Course I : Lab Course-01								
Course title		:	LAB COURSE -I					
			(Biochemistry, Cell and Molecular Biology, Medica	iochemistry, Cell and Molecular Biology, Medical Genetics)				
Credits		:	3					
Pre-requisit	e:							
Ctudonto ob		<u></u>	riment to measure and identity the melecular of	hangaa via				
Students sh		expe	riment to measure and identity the molecular c	nanges via				
various tech	iniques	S.						
Expected Co	ourse	Out	come:					
On the succes	ssful c	ompl	etion of the course, student will be able to:					
1.	Know	/ the	basic concept and principles of molecular biology	K1 & K2				
	techniques							

2.	Gain hands on experience in extraction of genomic & plasmid DNA	K2 & K4					
3.	Gain the practical knowledge of agarose gel electophoresis	K3 & K5					
4.	Demonstrate practical skills in different molecular biology laboratory equipment's and their handling						
5.	Enable them to begin a career in academic research or R& D in Biotechnological& Pharmaceutical Industries.	K5 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units					
	Biochemistry					
	1. Determination of glucose level in Blood					
I	2. Effect of Temperature on salivary amylase activity					
	3. Identification of amino acids by paper chromatography					
	4. Spotters: Diabetes, Lesch-Nyhan syndrome and GOUT Disease					
	5. Molecular Weight Determination using SDS-PAGE					
	Cell & Molecular Biology					
	1. Micrometry for cell measurement					
II	2. Identification of different types of cells in blood					
	3. Differential leukocyte count using Leishman stain					
	4. Observation of Mitosis (onion root tip)					
	5. Identification of multinucleated cells in cancer biopsy					
	6. Cells of vital organs spotters (Slides: Kidney, Liver, Spleen,					
	Stomach, muscles, lung and colon)					
	Medical Genetics					
	1. Survey of Genetic Disorders in an around Periyar University					
	Hospitals					
	2. Survey of Lifestyle diseases in Salem (Data Collection at Govt.					
	Hospital)					
111	3. Observation of Mendelian traits Among Student Volunteers					
	4. Identification of Human Syndromes – Voucher Specimen					
	5. Study on polygenic inheritance – Voucher Specimen					
	6. Pedigree Analysis of Genetic Disorder (Hemophilia and Night					
	7. Genetic Counseling methods (Among Student Volunteers)					
	8. DNA Isolation and Agarose Gel Electrophoresis					

9. PCR based Diagnosis of Pathogenic/ infectious diseases.

REFERENCE BOOKS:

- 1. Plumer HT (2012) Practical : Biochemistry , Wiley Publication, India
- 2. Borah D (2012) Biotechnology Lab Practices, Global Academic Publisher, India.
- 3. Kannan S, Krishnan M, Thirumurugan R and Achiraman S (2012) Methods in Molecular Biology, UVN Publishers, India.
- 4. Kannan S and N. Kayalvizhi, 2022. Cell and Molecular Biology A Practical Approach.
- 5. Lal SS (2009) Practical Zoology, Rastogi Publications, New Delhi.

Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	М	М	М	S	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	М	S	S	
CO3	S	М	S	М	М	S	L	М	S	S	
CO4	L	М	S	S	L	S	М	S	М	М	
CO5	S	М	S	М	S	S	М	М	S	S	

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-I (For the students admitted in the academic year 2023-2024 onwards)

MEDICAL MICROBIOLOGY

Elective Course-01	Paper Code: 23UPBMS1E01	
Total Contact Hours: 72	Credits: 3	Weekly Contact Hours: 4

Course Objectives:										
The main objectives of this course are:										
1.		To acquire depth knowledge in medically important bacteria.								
2.		To gain information about the bacterial infection occurs i digestive, reproductive, urinary system.								
3.		To g	et information about the fungi and their toxins							
Course I		:	Elective Course -01							
Course title	Course title : Medical Microbiology									
Credits		:	3							
Pre-requisit	te:									
Students sh	ould l	know	the important of microbes and their related disease	es						
Expected C	ourse	e Out	come:							
On the succe	ssful (compl	letion of the course, student will be able to:							
1.	Understanding the basic knowledge on medically important K1 & K2 microbes.									
2.	Acqu and	Acquire the information on culture collection, transportation K2 & K4 and quality control.								
3.	Get pathe myce	Get a clear idea on Enterobacetriaceae family and its pathogenicity and acquire information on mycology, mycotoxins and medically important yeasts.								
4.	This micro	study obes i	/ helps in understanding the pathogenicity of the in nervous system.	K4 & K6						

5. Get information on Parasites and its pathogenicity and **K5 & K6** better understanding of laboratory techniques used in parasitology.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

		Units
	I	General properties of medically important bacteria. Recommendation for collection, transport of specimens, Isolation of bacteria from clinical specimens- Primary media for isolation and their quality control – Antibiotic sensitivity disc, testing procedure and their quality control.
	II	Bacteriology: Digestive system – Escherichia coli, Salmonella, Shigella and Vibrio. Urinary system – Leptospira sp., and proteus and Respiratory system – Mycobacterium tuberculosis
	III	Bacteriology: Reproductive system – Neisseria and Treponema and Nervous system – Clostridium tetani
	IV	Virology: General properties of viruses – Detection of viruses and antigens in clinical specimens – Serological diagnosis of virus infections. Hepatitis, Pox, Oncogenic and Human Immuno Deficiency (HIV) viruses. Viral vaccines – their preparation and Immunization schedules.
	V	Mycology and Parasitology: Introduction to Medical Mycology – morphology of fungi. Detection and recovery of fungi from clinical specimens. Yeast of medically importance – Candida and Cryptococcus. Introduction to Medical Parasitology – Protozoan – Entamoeba – Plasmodium, Trypanosoma. Laboratory techniques in parasitology-Examination of faeces for ova and cysts
Rea	ding lis	t
1.	Prescot - Brown	t, L.M., J.P. Harley and D.A.Klein.(1993). Microbiology.2nd edition. W.M.C publishers.
2.	David G Peuther	reenwood, Richard B Slack and John F. (2019). Medical Microbiology – er.Chirchill Livingstone (London) 16th edition.

- 3. Jawetz., E. J.L. Melnic and E.A. Adelberg (2000). Review of Medical Microbiology. 19th edition. Lange medical publications. U.S.A.
- 4. Ananthanarayan R. and C.K. Jeyaram Panikar.(1994). Text book of Microbiology. Orient Longman

	Mapping with Programme Outcomes*										
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	М	М	М	S	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	М	S	S	
CO3	S	М	S	М	М	S	L	М	S	S	
CO4	L	М	S	S	L	S	М	S	М	М	
CO5	S	М	S	М	S	S	М	М	S	S	

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-I

(For the students admitted in the academic year 2023-2024 onwards)

BIOSAFETY AND BIOETHICS

Paper Code: 23UPBMS1E02

Weekly Contact Hours: 4

Total Contact Hours: 72 Credits: 3

Course Objectives: The main objectives of this course are: 1. To introduce the various aspects of biosafety and levels of biosafety in laboratory. To study principles of bioethics and its guidelines. 2. 3. To understand Good manufacturing Practice (GMP) and Good lab practices (GLP) and enable students to understand Biosafety assessment of pharmaceutical products such as drugs/vaccines Course I **Elective Course -02** : **Course title** : **Biosafety and Bioethics** Credits 5 3 **Pre-requisite:** Students should know the significance of bioethics and biosafety **Expected Course Outcome:** On the successful completion of the course, student will be able to: 1. Understand the basic concepts in the laboratory biosafety. K1 & K2 K2 & K4 Analyze the basic principles of bioethics and its importance 2. in biological, biomedical, health care research.

3.Gain knowledge about biosafety regulations and bioethicsK3 & K5in the context of modern biotechnology microbes.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units
I	Biosafety: Introduction - Laboratory associated infections and other hazards, Introduction to Biological Safety Cabinets-Assessment of biological hazards and Biological Containment- Good manufacturing Practice and Good lab practices (GMP and GLP)
II	Bioethics: Principles of bioethics- Social and cultural issues of BioethicsAnimal ethics; Guidelines for use of lab animals - Licensing of animal house -IAEC & CPCSEA- Ethical concerns of gene cloning- Ethical clearance norms for conducting studies on human subjects, NECRBHR, ICMR- Ethical implications of human genome project-Ethical issues in Human Cloning and stem cell research - Biopiracy
III	Regulatory framework of Biosafety: Biosafety guidelines and regulations (National and International) for rDNA and other biological researches. Definition of GMOs & LMOs - GM Labeling-Ecological safety assessment of GMO's (Eg. Bt cotton) and mixing up with the gene-pool- Bioterrorism and convention on biological weapons-Cartagena protocol
IV	Pharma and Medical Sector: Biosafety assessment of pharmaceutical products such as drugs/vaccines etc. Biosafety issues in Clinical Trials.
v	Ethical concerns related to prenatal diagnosis, Gene therapy, Organ transplantation, Xenotransplantation, Ethics in patient care, Informed consent
References	
1. Flemin Ed).AS	ig, D.A., Hunt, D.L., (2000). Biological safety Principles and practices (3 rd SM Press, Washington.
2. Satees	sh MK (2010) Bioethics and Biosafety, I. K. International Pvt Ltd.
3. Sree I interna	Krishna V (2007) Bioethics and Biosafety in Biotechnology, New age ational publishers
4. Thoma	as. J.A., Fuch, R.L. (2002). Biotechnology and Safety Assessment (3rd

			• • • •	'(I		• • • •					
	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	М	М	М	S	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	М	S	S	
CO3	S	М	S	М	М	S	L	М	S	S	
CO4	L	М	S	S	L	S	М	S	М	М	
CO5	S	М	S	М	S	S	М	М	S	S	

*S - Strong; M – Medium; L-Low

Ed). Academic Press

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II (For the students admitted in the academic year 2023-2024 onwards)

HUMAN ANATOMY

Core Paper-04

Paper Code: 23UPBMS1C04

Total Contact Hours: 108

Credits: 5

Weekly Contact Hours: 6

Course Ob	ojectives:								
The main o	objectives c	of this	course are:						
1.		To le	earn the gross morphology, structure of various or	gans of the					
		human body.							
2.		То	Fo describe the various homeostatic mechanisms and their						
		imbalances.							
3.		To u	nderstand the various tissues and organs of differe	ent systems					
		of human body							
4.		To le	earn special senses and their tests.						
Course I		:	Core-04						
Course tit	le	:	HUMAN ANATOMY						
Credits		:	5						
Pre-requis	uisite:								
Students s	should know the anatomical terms and structure of different organs of each								
system									
Expected	Course Ou	utcom	e:						
On the succ	essful com	pletio	n of the course, student will be able to:						
1.	Introduction of anatomical terms and brief outline of various K1 & K2								
	systems of the body.								
2	Differentiate the levels of organization in the human body and K2 & K4								
۷.	the characteristics of each								
3.	Understand the homeostatic mechanisms and their imbalances K3 & K5								
4	Regional anatomy of gastrointestinal, respiratory Endocrine, K4 & K6								
4.	excretory systems.								
5.	Explain the Innovations and Breakthroughs in Human Anatomy K5 & K6								
			had a water of 1/2 A water 1/4 A water as 1/5 Evelvet						

K1 - Remember; **K2** - Understand; **K3** - Apply; **K4** - Analyze; **K5** - Evaluate; **K6** – Create

Units					
I	An Overview of Human Anatomy: Definition and scope of anatomy, levels of structural organization and human body systems, basic life processes, homeostasis, basic anatomical terminology. Tissue Level of Organization: Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues.				
11	Integumentary System: Structure and functions of skin. Skeletal System: Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system. Organization of skeletal muscle, Types and structure of muscles. Joints and bones: Structural and functional classification, types of joints movements and its articulation. Dental anatomy and formula of human.				
111	Digestive System: Anatomy of human digestive system. Blood: Composition and Function of blood and its components: WBC, RBC, platelets. Hematopoiesis, Hemoglobin structure and function. Hemostasis and blood coagulation mechanism, blood groups and blood bank. An overview of lymphoid tissues and Immune System.				
IV	Anatomy of Lungs: The Respiratory System-Organs and Structures of the Respiratory System, Lungs – Ultra structure of human lung. Nervous system: Neuro anatomy of peripheral nervous system: Structure of sympathetic and parasympathetic nervous system. Sensory organs: Structure and functions of eye, ear, nose and tongue and their anatomical disorders. Muscular System: Types of muscles, Ultra structure, Biochemical composition of muscles and muscle fibres. Anatomy of neuromuscular system and neuromuscular disorders.				
V	Gross Anatomy of Urinary system : Gross Anatomy of Urine tract. Gross Anatomy of the Kidney: Microscopic Anatomy of the Kidney, Physiology of Urine Formation, Tubular reabsorption, regulation of renal blood flow, endocrine regulation of Kidney function. The Urinary system and homeostasis. Reproductive system: Anatomical structure of reproductive organs.				
Reading Bo	ok list				
1. Cary	A. Thibodeau and Kevin T. Patton Anthony's Text Book of Anatomy				
&Phy	siology (7th Edition), Mosby Publications				

- 2. Inderbir singh, Human Anatomy, Jaypee Brothers Medical Publishers (P) Ltd.
- 3. Gray, Henry (1918). Anatomy of the Human Body. Philadelphia: Lea & Febiger

Recommended texts

- 1. Gerard, T. J., & Bryan, D. (2015). Anatomy & physiology. Indian edition, Wiley India Pvt. Ltd., New Delhi, 603-623.
- 2. Martini, F. H., Nath, J. L. & Bartholomew, E. F. (2015). Fundamentals of Anatomy and Physiology. 2001. Pentice Hall: New Jersey, 538-557.
- 3. VanPutte, C. (2016). Seeley's anatomy & physiology. McGraw-Hill Higher Education

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II

(For the students admitted in the academic year 2023-2024 onwards)

HUMAN PHYSIOLOGY

Core Paper-05

Paper Code: 23UPBMS1C05

Total Contact Hours: 108

Course Objectives: The main objectives of this course are: 1. To understand the function of major organ systems and its physiological relationship with each other. 2. Explain the functions of various organs of the human body. 3. To enable to find out the Nobel Prize winners in the concern subject. Appreciate coordinated working pattern of different organs of each 4. system. Course I : Core-05 Course title HUMAN PHYSIOLOGY : Credits : 5 **Pre-requisite:** Students should know the physiological relationship and working pattern of different organs of each system. **Expected Course Outcome:** On the successful completion of the course, student will be able to: Identify various organs of different systems of human body. K1 & K2 1. K2 & K4 Explain the interaction of organ system for the maintenance 2. of homeostasis Acquire knowledge about contribution of each organ system K3 & K5 3. to the maintenance of homeostasis. Understand the physiological processes accurately with K4 & K6 relevant scientific terminology and nomenclature leading to 4. develop more consciousness towards a healthy body. Explain the innovations and breakthroughs in human K5 & K6 5. physiology

K1 - Remember: K2 - Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate: K6 - Create

Credits: 5

Weekly Contact Hours: 6

Units					
1	Membrane Physiology, Nerve and Muscle: Membrane potentials and action potentials & Excitation and Contraction of muscles (Molecular mechanisms of muscle contraction). Blood Physiology: Hemostasis, Blood cells, Blood Clotting & Regulation of Blood pH. Blood groups, transfusion				
11	Cardio-vascular Physiology: Physiology of cardiac muscle, Rhythmical excitation of heart, Regulation of heart pumping, Cardiac cycle, Cardiac output and Venous Return, Microcirculation, Capillary fluid exchange. Circulatory regulation: Nervous, humoral and chemical regulation of circulation. Cardiac abnormalities: Normal electrocardiogram, Cardiac Arrhythmias, Heart sounds, Dynamics of valvular and congenital heart defects, Cardiac failure and circulatory shock				
111	Respiratory Physiology: Pulmonary ventilation: Mechanisms of pulmonary ventilation, Pulmonary volumes and capacities, Alveolar ventilation, Functions of respiratory passageways. External & Internal Respiration: Principle of Gas exchange, Diffusion of gases through respiratory membrane, Transport of O ₂ and CO ₂ in blood and body fluids. Bohr effect, Chloride Shift, Haldane effect. Regulation of respiration: Respiratory Control Center, Peripheral chemoreceptor system, Nervous and chemical regulation of respiration.				
IV	Gastrointestinal Physiology: General principles of gastrointestinal function: Ingestion of food, Motility, Nervous control, Transport and mixing of food in the alimentary tract. Secretary functions of alimentary tract: Secretion of saliva, Gastric secretion, Pancreatic Secretion, Bile secretion, Secretions of small and large intestine. Digestion and absorption in gastrointestinal tract: Digestion of various foods, Absorption in small intestine.				
V	Endocrine Physiology & Hormones: General Characteristic and classification of hormone. Synthesis, secretion, transport, metabolism and mechanism of action of Hypothalamus, Pituitary, Thyroid, Parathyroid, Adrenal, Pancreas glands. Reproductive Physiology: Structure and function of reproductive organs, hormones of testes and ovary, hormonal regulation of ovulation, fertilization, implantation, gestation, parturition and lactation, oogenesis, spermatogenesis.				
Reading Bo	ok list				
Guyton and Hall . Lextbook of Medical Physiology. Lettin Edition Anatomy					
and F	rnysiology for Nurses, Jaypee Brothers Medical Publishers (P) Ltd.				

Recommended texts

- 1. Robert M. Berne and Matthew N. Levy Principles of Human Physiology (Third Edition)Mosby Publications
- Cary A. Thibodeau and Kevin T. Patton Anthony's Text Book of Anatomy &Physiology (7th Edition), Mosby Publications
- 3. Inderbir singh, Human Anatomy, Jaypee Brothers Medical Publishers (P) Ltd.
- 4. Gray, Henry (1918). Anatomy of the Human Body. Philadelphia: Lea & Febiger,
- 5. Hall. J.E. Guyton and Hall (2011) Textbook of Medical Physiology. 12th ed. Saunders, Elsevier Inc.

Mapping with Programme Outcomes*							1			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II (For the students admitted in the academic year 2023-2024 onwards)

LAB COURSE -II

(Human Anatomy and Human Physiology)

Lab Course -02

Paper Code: 23UPBMS1L02

Total Contact Hours: 108

Credits: 4

Weekly Contact Hours: 6

Course Objectives:								
The main objectives of this course are:								
1		Theoretical principles of each human anotomy should be supported						
••		and elevities using models Identifying information						
		demonstration and a anotter's identification						
2		demonstration, and a spotter's identification.						
2.		BIOO	a and other bodily fluids for physiological analysis.					
3.		A va	ariety of spotters related to physiology should be	e seen and				
		ic	lentified.					
Course I		:	Lab Course-02					
Course title	•	:	LAB COURSE -II					
			(Human Anatomy and Human Physiology)					
Credits		:	4					
Pre-requisite:								
Students should substantiate and clarify the theoretical concepts of each h				ach human				
anatomy through models Identification, demonstration and spotter's identification.				ication.				
Expected C	ourse	e Out	come:					
On the successful completion of the course, student will be able to:								
1.	Iden	ntify and locate anatomical terms of human body parts. K1 & K2						
techniques								
2.	Understand the components of various organ systems. K2 & K4							
3.	Examine blood group and Rh factor determination. K3 & K5							
4	Anal	K4 & K6						
4.	Measure complete blood count (CBC).							
	Perform various haematological experiments like, blood K5 & K6							
5.	sme	smear preparation, haemoglobin estimation and						
	blee	bleeding/clotting time determination.						
	· · ·							

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create

	Units
I	 Human Anatomy Human Anatomy Models Identification and Demonstration in Rat as voucher specimen 1. Skeletal system 2. Digestive system 3. Reproductive system 4. Nervous system (Brain) 5. Sensory system (Eye & Ear) 6. Circulatory system (Heart) 7. Renal system 8. Respiratory system
II	 Human Physiology Hematology 1. To determine the Total Leukocyte Count (TLC)/ cubic millimeter of blood. 2. To prepare a 'Stained blood smear to identify the different leukocytes in the blood smear and to do a Differential Leukocyte Count (DLC) 3. To determine the Total RBC Counts /cubic millimeter of blood 5. To determine the Bleeding Time by Duke Method. 6. To determine the Clotting Time by capillary Tube Method. 7. To determine the Osmotic Fragility of a given sample of blood 8. To estimate the Total Hemoglobin in human blood (Sahl's method) 9. To perform the Pulmonary Function Test 10. To perform the Blood Pressure
	Spotters: Skull, Brain, Teeth, Lungs, Heart, Bones, Spinal cord, Kidney, Pectoral and pelvic bones and joints. Histology of nerve, muscle, blood, cardiac and reproductive cells.
REFERENC	E BOOKS:
1. Amitrano	R., & Tortora, G. (2012). Update: anatomy & physiology laboratory
manual. Cer	ngage Learning.

S.R. Kale & R.R.Kale, Practical Human Anatomy and Physiology, NiraliPrakashan Publications.

2. S.K. Pandey, Varun Dutt Sharma (2014), Human Anatomy and Physiology: Practical Notebook For 1stYear Diploma in Pharmacy, CBS Publishers & Distributors Pvt. Ltd. (2014)

3. G.K.Pal& P. Pal. (2006). Textbook of Practical Physiology. 2ndEdn. Orient
Blackswan. http://www.bartleby.com/107/

4. Pal, G. K., & Pravati, P., (2010). Text Book of Practical Physiology, (3rd edn.).Universities Press (India) Private Limited.

5. Pal, G. K., Pal, P., Nanda. N. & Amudharaj. D. (2015). Atlas of Human Anatomy, (1st ed.). Jordi Vigue. Chambarlen Press.

6. Tortora, G. J., & Derrickson, B. (2014). Anatomy and Physiology-WorkBook. CBS publication.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II (For the students admitted in the academic year 2023-2024 onwards)

BIOINSTRUMENTATION AND BIOIMAGING TECHNOLOGY

Elective Course-03

Paper Code: 23UPBMS1E03

Total Contact Hours: 72 Credits: 3 Weekly Contact Hours: 4

Course Obj	ective	s:								
The main objectives of this course are:										
1.		To understand the concept of Bioinstrumentations in molecular								
		analy	sis and bioimaging techniques							
2.		To r	ealize the range of structure of metabolites. Und	erstand the						
		esse	ential principles of ultrasound, X-ray imaging (CT)							
3.		To /	Acquired knowledge of imaging system theory	and their						
		а	pplications							
Course I		:	Elective Course -03							
Course title	•	:	: BIOINSTRUMENTATION AND BIOIMAGING							
			TECHNOLOGY							
Cradita			2							
		•	5							
Pre-requisit		1								
Students s	nouid	know the important functional methodology of instruments in								
medical app	olicatio	ns.								
Expected C	ourse	Out	come:							
On the succe	ssful c	ompl	etion of the course, student will be able to:							
1.		То	comprehend the many techniques used in the	K1 & K2						
		cha	racterisation of biomolecules.							
To		create a variety of comprehension techniques for the K2 & K4								
۷.	∠. intricate biological processes.									
2	Unde	rstan	d the imaging concepts that characterize the	K3 & K5						
3. quality of imaging techniques										
Λ	Acqu	ired	knowledge about the principles of image	K4 & K6						
4.	forma	ation,	capture and display of ultrasound and X-ray							

5	Understand and describe the mechanisms of tomography,	K5 & K6
5.	MRI and NMR spectroscopy.	

K1 - Remember; **K2** - Understand; **K3** - Apply; **K4** - Analyze; **K5** - Evaluate; **K6** – Create

	Units
I	History, scope and advancement in biomedical instrumentation. Scales of biological organization. The needs for biomedical instrumentation: The scientific methods clinical diagnosis, feedback in measurement system. Common medical measurements and their applications. Bioelectronics, biosensor: Principle and applications. Impact of nanotechnology in development of Biomedical instruments.
II	Instrumentation for cardiovascular measurements: The heat and cardiovascular system, blood pressure, characteristics of blood flow, heart sounds. Principle, methods and applications of Electrocardiogram (ECG), plethysmography. Lungs: The physiology of respiratory system, instrumentation for the mechanics of breathing, respiratory therapy equipment. Principle of thermometer and Ultra-sonic measurements.
III	Neuronal sensory measurements-Psychophysiological measurement, Instruments for motor neuron responses, sensory neuron measurements. Equipment for behavioral analysis. Blood: Blood components, blood collection methods cell counts, Haemoglobinometer, Haemocytometer and Histological methods of WBC differential counts.
IV	Principles and applications of confocal microscope, fluorescence microscope, EM- scanning electron microscope(SEM), transmission electron microscope (TEM), Live and dead assay with dyes. Image acquisition: Principle and applications of Electromyography (EMG), Electro-Oculogram (EOG), Electroretinogram (ERG), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET).
V	Biomedical Instrumentation for testing kidney clearance, creatinine, kidney Imaging (Pyelogram). Types of dialysis-Haemodialysis, Peritorial dialysis, and kidney function test. Bone and Joints: Analysis of bone mineral density, stress and strain, strain gage, joint friction and bone position testing. Clinical temperature measurements. Calorimetry for bode heat study. Principle and functions of Goniometer and accelerometer for body movements. Current scenario of Biotechnology and Role of Artificial Intelligence and medical informatics in biomedical sciences.

Reading list

- 1. John G. Webster, 2004. Bioinstrumentation, Johnwiley and sons, Pvt.Ltd. Singapore.
- 2. L Cromwell, F.J.Welbell and E.A. Pfeiffer.1980. Biomedical instrumentation and measurements. Second Edition. PHI publisher, New Jersey, USA.

Recommended texts

- 1. Mandeep Singh. 2010. Introduction of Biomedical Instrumentation. PHI Learning Pvt. Ltd, New Delhi
- 2. Drexler, W., & Fujimoto, J. G. (Eds.). (2008). Optical coherence tomography: technology and applications. Springer Science & Business Media.
- 3. Hendee, W. R., & Ritenour, E. R. (2003). Medical imaging physics. John Wiley & Sons.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II

(For the students admitted in the academic year 2023-2024 onwards)

STEM CELL BIOLOGY

Paper Code: 23UPBMS1E04

Total Contact Hours: 72

Elective Course-04

Credits: 4

Weekly Contact Hours: 4

Course Obj	ective	es:						
The main objectives of this course are:								
1.		Infor	rmation about stem cells, their traits, and stem cell ma	arkers				
2.		Deta	ailed explanation of the characteristics of embryonic,	adult, and				
		indu	ced pluripotent stem cells.					
3.		Expla	lains the different kinds, characteristics, and uses of					
		biom	naterials.					
Course I		:	Elective Course -04					
Course title	9	:	Stem Cell Biology					
Credits		:	3					
Pre-requisit	e:							
Students sh	nould	know	w the important and the basics and principles of	stem cell				
technologie	S							
Expected C	ourse	e Outo	come:					
On the succe	ssful	compl	eletion of the course, student will be able to:					
1.	Con	nprehe	end the basics of stem cell biology. Describe the	K1 & K2				
	metl	nods f	for isolation					
0	То	illustr	rate the properties of stem cells biological	K2 & K4				
Ζ.	proc	esses	S.					
2	Des	cribe	various applications of stem cells. Know the	K3 & K5				
3.	thera	apeut	tic strategies using stem cells					
4	Eluc	idate	the mechanism underlying stem ness as well as	K4 & K6				
4.	the r	netho	ods involving isolation of different stem cells.					
5.	Unde	erstan	nding various limitations and challenges	K5 & K6				

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Units

I	Introduction to stem cell biology-Definition, classification and sources of stem cells, Properties- self-renewal, pluripotent and reprogramming, Maintenance of stem cell culture, sub cloning, spontaneous and controlled differentiation of embryonic stem cells, Stem cell niche.						
II	Regenerative and Stem cells: Role of stem cells in regeneration Stem cell lineage tracing, early development and embryonic stem cells, Model organisms in stem cell research. Stem cells in neurodegenerative and cardiovascular diseases.						
111	Cancer Stem Cell (CSC), cancer stem cells in solid tumors, Cytokines as survival factors in CSCs. Control of CSC migration and invasion. Exploiting CSC differentiation for tumor therapy. Targeting autocrine survival signals in CSCs. Implication of cancer stem cells for therapy. Stem cell for transplant therapy.						
IV	Embryonic stem cells (ESC) and haematopoietic stem cells (HSC): definition, isolation and clinical applications (transgenics and bone marrow transplantation (BMT)) BMT for autoimmune diseases.						
V	Ethical implications and National policies governing ES cell research for science and the scientist. Ethical issues associated with stem cell biology.						
Reading list							
1. Stem scient	cells (Bench to Bedside) Ariff Bongso, Eng Hin Lee (Editors)- 2005- tific publishing Co.						
2. Stem cells : Scientific facts and fiction - By Christine L. Mummery, Anja Van de							
Stolpe	e, Bernard Roelen, Hans Clevers.						
3. Tis	sue Engineering- Bernhard O, Palsson.						
Recommen	ded texts						

- 1. Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- 2. Progress in gene therapy, Volume 2, Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers.
- 3. 5 Human Embryonic Stem Cells: The Practical Handbook by Stephen

Sullivan and Chad A Cowan

- 4. J. J. Mao, G. Vunjak-Novakovic et al (Ed): Translational Approaches in Tissue Engineering & amp; Regenerative Medicine 2008, Artech House, INC Publications.
- 5. Robert Lanza et al. Principles of Tissue Engineering, 3rd Edition. Academic Press; 3 edition (August 21, 2007)
- Lanza et al. Handbook of Stem Cells, Two-Volume Set: Volume 1-Embryonic Stem Cells; Volume 2-Adult & amp; Fetal Stem Cells (v. 1).Academic Press (September 28, 2004)
- 7. "Stem cell basics and application" Ed. By K. D. Deb and S. M. Totey, Tata McGraw Hill Pvt. Ltd, 2011. 2. "Hand book of Stem Cells" Edited by RoberLanza, Elsevier, Academic Press, 2011.
- 8. "Stem Cells Handbook", Edited by Stewart Sell, Human Press, 2010.
- 9. Handbook of stem cells, Edited by Robert Lanza. Elsevier academic press.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-II (For the students admitted in the academic year 2023-2024 onwards)

ANIMAL CELL CULTURE

23UPBMS1S01

Total Contact Hours: 36 Credits: 2 Weekly Contact Hours: 2

Course Obj	ective	es:						
The main objectives of this course are:								
1.		lod	evelop an understanding of current techniques used	d in				
		biote	chnology and their applications to animal sciences	and the				
		biom	edical field.					
2.		To u	nderstand basic cell culture and preservation techni	iques				
3.		To u	nderstand the applications of Animal cell culture.					
Course I			Skill Enhancement Course (SEC)-01					
Course title	•	:	Animal Cell Culture					
Credits			2					
Pre-requisit	e:							
Students s	hould	kno	w the important and the basics and principl	es of and				
applications	of ar	nimal (cell culture					
Expected C	ourse	e Oute	come:					
On the succe	ssful	compl	etion of the course, student will be able to:					
1.	Acq	uaint	fundamentals of Animal cell culture.	K1 & K2				
0	Utiliz	ze skills of cell culture for development of biomolecules K2 & K4						
۷.	of cli	nical	importance					
0	desc	cribe t	he relevance of cell cycle regulations in reference	K3 & K5				
3.	to ce	ellular	metabolism					
4.	Unde	erstar	d the mechanism of cellular cytotoxicity.	K4 & K6				
5.	Unde	erstar	iding various limitations and challenges.	K5 & K6				
K1 Domon	ahari	K 2	Inderstand: K2 Apply: K4 Applyza: K5 Evaluate					

K1 - Remember; **K2** - Understand; **K3** - Apply; **K4** - Analyze; **K5** - Evaluate; **K6** – Create

	Units
I	Cell Culture Laboratory Design and Equipments: Guideline for Planning, construction and services to establish cell culture room. Principle, method and applications of Laminar flow, CO ₂ incubator, Centrifuge, Inverted stage microscope and Liquid nitrogen freezers. Biological significance of Washing, packing and sterilization of different materials used in animal cell culture, Aseptic concepts, Maintenance of sterility.
II	Cell Culture Media and Reagents: Types of cell culture media, Ingredients of media and their physiochemical properties. Importance of Balance salt solutions, Antibiotics, growth supplements, Foetal bovine serum, Serum-free media and Trypsin solution.
111	Cell Culture Techniques: History of animal cell culture, Types: Primary culture; Chicken embryo fibroblast culture, Chicken liver and kidney culture. Secondary culture: Trypsinization, Cell separation, Continuous cell lines, Suspension culture, Organ culture etc., Development of cell lines, Characterization and maintenance of cell lines, stem cells, Cryopreservation, importance of Common cell culture contaminants.
IV	Applications of Cell Culture: Application of animal cell culture for in vitro testing of drugs, Testing of toxicity of environmental pollutants in cell culture, Application of cell culture technology in production of human and animal viral vaccines and recombinant proteins.
v	Scale up Technique: Cell culture reactors, Scale-up in suspension, Fluidized bed reactors for suspension culture, Scale-up in monolayers, Multi-surface propagators, Multi-array disks, spirals and tubes, Microencapsulation, Growth monitoring.
Reading lis	t
1. Culture	of Animal Cells(2005) 5th Edition, Freshney Wiley-Liss,
2. Pörtner NJ: Hur	, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, nana Press.
Recom	mended texts
1. Animal	Cell Culture - Practical Approach (2000), 3rd Edition, Ed. John R.W.

MastersOxford University Press

- 2. Animal Cell Culture Techniques. (1998). Ed. Martin ClynesSpringer, Handbook of stem cells, Edited by Robert Lanza. Elsevier academic press.
- 3. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants, Wiley 2002

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-III (For the students admitted in the academic year 2023-2024 onwards)

IMMUNOLOGY

Core Paper-06

Paper Code: 23UPBMS1C06

Total Contact Hours: 108

Credits: 5

Weekly Contact Hours: 6

Course Objectives:							
The main objectives of this course are:							
1.	To u	nderstand cells and organs of Immunology.					
2.	To study basics of antigen, antibody and MHC molecules.						
3.	To s	tudy clinical immunology with respect to various dis	eases.				
4.	To s	tudy various immune-techniques of immunology.					
Course	:	Core-06					
Course title	:	IMMUNOLOGY					
Credits	:	5					
Pre-requisite:							
Students shoul	d know the	e immune-techniques of immunology with respect	t to various				
diseases							
Expected Course Outcome:							
On the successfu	u complotio	n of the course, student will be able to:					
	Demember	It of the course, student will be able to.					
1.	Remembe	er the general concepts understand the working of	NI & NZ				
	Cells and C	brans of Infinunciogy					
2.	Explain the properties of antigen, antibody and MHC K2 & K4 molecules.						
0	A To er	A To ensure understanding about the immunological K3 & K5					
3.	techniques in the diagnosis of diseases.						
4	Describe	various antigen-antibody reactions and their	K4 & K6				
4.	Significan	ce					
5.	Evaluate a	and discuss the clinical aspects of Immunology.	K5 & K6				
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create							

	Units
I	History of Immunology-Jenner, Pasteur, Metchnikoff, Kitasato – Types of immunity – Innate immunity- organs involved- Acquired Immunity – Cells involved- Hematopoietic stem cells – Cells of immune system, T and B cell activation and maturation, Antigens-The molecular basis of antigen and antibody interactions. Organs of Immunity- Primary- Bone marrow, Bursa- Thymus- Secondary lymphoid Organs- Lymph nodes, MALT- Spleen.
II	Immunoglobulins- General Structure- Types- IgG, IgA, IgM, IgE, IgD- Class switching- Hybridoma technology- Monoclonal antibody production and application. Immunologic messenger molecules- Cytokines, Chemokines, interferons interleukins- Complement system: Classical, Alternate, MBL pathway.
111	Transplantation Immunology- Tissue typing and organ transplantation – MHC gene in human and mouse, MHC class I and class II molecules – Autoimmune diseases: Type-1 Diabetes- Addison's disease and Graves, disease. Immunostimulation and Immunosuppression and their clinical significance.
IV	Immunity against diseases- HIV- Structure- spread and control- Covid- 19- Stages of infection- spread and control measures- quarantine. Molecular interaction between T cell and Corona virus-2 - Covid19 Vaccines and their effectiveness - booster dose. Cancer and Tumour immunology – Nobel Prize 2020 for discovery of Immunotherapy for Cancer – 2019 Nobel Prize for discovery concerns the impact of Hepatitis C virus and Cancer.
V	Techniques in Immunology: Radio Immuno Assay, ELISA, Western Blotting, Immunofluorescence technique, immunohistochemistry. Vaccines– whole organism vaccine, synthetic peptide vaccine, multivalent subunit-anti idotype vaccine, designer vaccine, edible vaccine, DNA vaccine, recombinant vector vaccine; Abzymes, Current scenario of vaccines and vaccination
Reading Bo	ok list
1. Abbas First-S	s,A.K., and A.H.Lichtman (2020) Cellular and molecular immunology, South Asia Edition, Elsevier.
2. Delve	es,P.,S. Martin,D. Burtonand I.M.Roitt, (2017), Roitt's Essential
3. Murp	hy,K.M., and Weaver,C (2017) Janeway's Immunology, 9 th edition,
W.W. 4. Paul,	Norton & Company, USA W.E. (2012) Fundamental Immunology, 7 th Edition, Lippincott
Willia 5 Duct	msand Wilkins, USA
5. Punt. <u>8thEd</u>	ition,W.H. Freeman & Company, NewYork.

6. Tizard,I.R.(1995)Immunology- An introduction IV Ed. Saunders College Publications, Philadelphia, USA.

Recommended texts

- 1. Kuby, Judy Owen, Jenni Punt, Sharon Stanford. (2007). Immunology, 8th EditionWH Freeman Publishers.
- 2. Kuby, Judy Owen, Jenni Punt, Sharon Stanford., (2003). Immunology, WHFreeman Publishers,5th Edition
- 3. Tizard, Ian R. (1995). Immunology- An Introduction, 4th edition, SaundersCollege Publishing, New Delhi.
- 4. Roitt I.(2017). Essential Immunology, 13 th edition, Blackwell ScientificPublications,
- 5. Abbas, Lichtman, Pillai (2017). Cellular & Molecular Immunology, Pillai. 6th ed. Elsevier publications.
- 6. Butterwort & Heinemann (1993). Cellular interactions & ImmunobiologyBIOTOL series.
- Warren Levinson (2018). Review of Medical Microbiology & Immunology9 thed.Mac Graw Hill publications.
- 8. B. Hannigan.(2009).Immunology Viva books Pvt. Ltd.
- 9. K.R.Joshi, N.O. Osamo (2013). Immunology & Serology. Student edition.

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-III (For the students admitted in the academic year 2023-2024 onwards)

PHARMACOLOGY AND TOXICOLOGY

Core Paper-07

Paper Code: 23UPBMS1C07

Total Contact Hours: 108

Credits: 5

Weekly Contact Hours: 6

Course Objecti	ves:					
The main object	ives of this	course are:				
1.	1 . The course aims to reinforce students' fundamental pharmacology					
	knov	vledge	5,			
2. Learn various drug action on the nervous system, respirato						
	syste	em and digestive system				
3.	Help	students comprehend the ideas behind how pharm	maceuticals			
	work	and the mechanisms at play.				
Course I	:	Core-07				
Course title	:	PHARMACOLOGY AND TOXICOLOGY				
Credits	:	5				
Pre-requisite:						
Students should know the An introduction to cancer biology, Enhanced the imaging						
techniques and cancer therapy.						
Expected Cours	se Outcom	e:				
On the successfu	I completio	n of the course, student will be able to:				
4	Discuss the	ne pharmacotherapy of certain diseases. Explain	K1 & K2			
1.	the mech	anism of drug actions at cellular and molecular				
	level					
	To under	stand the pharmacological actions of different	K2 & K4			
2. categories of drugs. And concepts of drug action and						
mechanism involved.						
•	Apply the	Apply the basic pharmacological knowledge in the K3 & K5				
3. prevention and treatment of diseases.						
	Appreciat	e correlation of pharmacology with other bio	K4 & K6			
	medical s	ciences. Further, to understand what drugs do to				
4.	the living	organisms and how their effects can be applied to				
	therapeut	ics?				
5.	Understar	nd the therapy and prevention	K5 & K6			
			1			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create

	Units				
I	Introduction to pharmacology: Scope of pharmacology: Introductory class to define pharmacology, historical background and limitations Pharmacokinetics: Absorption- Routes of administration of drugs, their advantages and disadvantages. Various processes of absorption of drugs and the factors affecting them. Adsoption, metabolism, distribution and excretion of drugs. Pharmacodynamics: General mechanism of drug action and the factors, which modify drug action.				
II	Pharmacological classification of drugs; the discussion of drugs should emphasize the following aspects: Drugs acting on the central nervous system: Anesthetics, pshychopharmacological agents. Drugs acting on the autonomic nervous system: Cholinergic drugs, anticholinergic drugs, anticholinesterase drugs, Adrenergic drugs and adrenergic receptor blockers, Neuron blockers and ganglion blockers, Neuromuscular blockers, drugs used in myasthenia gravis.				
III	Pharmacology of Central Nervous System: General anesthetics, sedatives, hypnotics, opioid Analgesics, Anti-Anxiety, Cognition enhancers. Pharmacology of drugs acting on ANS: Adrenergic and cholinergic drugs Pharmacology of Peripheral Nervous System: Local Anaesthetics, Skeletal Muscle Relaxants, Anti-inflammatory drugs.				
IV	Hormones and hormone antagonists, Drugs acting on the respiratory system- bronchodilators, expectorants and antitussive agents, Drugs acting on the digestive system, Cardiovascular drugs, cardiotonics, antianginal agents, antihypertensive agents, peripheral vasodilators and drugs used in atherosclerosis, coaogulants and anticoaogulants.				
V	Toxicology: Principles of toxicology. Acute, sub-acute and chronic toxicity, ICH Guidelines on Safety Studies, Reproductive Toxicology-Risk Assessment in Reproductive Toxicity, Mutagenicity- Mechanism of Mutagenesis, Carcinogenicity, Toxicokinetics. Abnormal action of drugs such as tolerance, addiction, habituation, idiosyncracy, allergy, hypersensitivity, antagonism, synergism, potentiation, tachyphylaxis, adverse drug reactions.				
Reading list					
1. Satos and p	kar, R. S., Bhandarkar, S. D., & Ainapure, S. S. (1997). Pharmacology harmacotherapeutics. Indian Journal of Pharmacology, 29(5), 330.				
2. Katzu Hill E	ing, B.G., Trevor AJ (2015) Basic and Clinical Pharmacology, McGraw- ducation, 13th Edition.				

Recommended texts

- 1. August, J.T., Anders, M.W., Murad, F., & Coyle, J.C (eds.) (1994). Advances in Pharmacology (1st ed.). Academic Press
- 2. Barile, F. A. (2013). Principles of Toxicology Testing (2nd ed.). CRC Press.
- 3. H. L. Sharma, K. K. Sharma, (2017). Principles of Pharmacology, Paras Medical Publishers, 3rd Edition,
- 4. Regulatory Toxicology, Second Edition, Christopher P Changelis, Shayne Cox Gad, Joseph F Holson, Publisher: Informa Healthcare
- 5. Laurence L. Brunton, Bjorn C. Knollmann, Randa Hilal-Dandan, "Goodman and Gilman's.
- 6. "The Pharmacological Basis of Therapeutics", 13th edition, McGraw-Hill Education / Medical, 2017.
- 7. Klaassen, Curtis D., and John B. Watkins. Casarett & Doull's essentials of toxicology. McGraw Hill Professional, 2015.

		Ν	lapping	with Prog	ramme O	utcom	es*			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology M.Sc., Biomedical Science Programme-SEMESTER-III (For the students admitted in the academic year 2023-2024 onwards)

LAB COURSE -III

Lab Course-03

5.

Paper Code: 23UPBMS1L03

K5 & K6

Total Contact Hours: 108 Credits: 5

Weekly Contact Hours: 6

Course Objectives: The main objectives of this course are: 1. Learn the routes of administration in animal model. 2. Understand the effect of drugs action and general anesthesia. 3. Learn the acute toxicity in given drugs. Understand the specific activity of enzymes in rat brain homogenate. Core III Course I 2 **Course title** : LAB COURSE -III (Immunology, pharmacology and toxicology) Credits : 5 **Pre-requisite:** Students should experiment to measure and identity the molecular changes via various techniques. **Expected Course Outcome:** On the successful completion of the course, student will be able to: 1. Know about animal model studies. K1 & K2 2. Understand the Effect of drugs. K2 & K4 3. K3 & K5 Examine detection of pesticides. K4 & K6 4. Understand about the acute toxicity.

Understand the therapy and prevention

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Units]		
1	1.	1. Animal handling and precautions.								
•	2.	Study th	e routes	of adminis	tration.					
	3.	 Study the routes of administration. Analgesic effect of diclofenac on mice or rat. Study, the effects of acetyleheline (Ach) and plot the dece 								
	4.	Study t respons	he effec e curve.	ts of ace	tylcholine	(Ach)	and p	olot the	dose-	
	5.	5. Study the effect of general anesthesia with ketamine								
	6.	Determine the effect of promethazine on phenobarbitone induced sleeping time in mice.								
I	7.	Determir	he the ac	ute toxicity	of a give	n drug.				
	8.	Calculate	e the LD	50 value.						
	9.	Detectio	n of orga	nophospho	orous pes	ticides i	n biolog	gical sa	mple.	
	10	.Test the	presence	ce of parace	etamol in	the give	en biolo	gical sa	mple.	
	11	11. Study the effect of organophosphate malathion on the specific								
	activity of the enzyme acetylcholinestrase in rat brain									
	nomogenate								_	
	Spotters:									
REFERENCE BOOKS:								-		
1. Chisl	nolm-Bu	irns, M. <i>I</i>	A., Wells	, B. G., & S	chwingha	ammer,	I. L. (2	016).		
Pharmacotherapy principles and practice. McGraw-Hill.										
2. Sharma, R. K. (2008). Practical and viva in Forensic Medical Toxicology. (1st										
ed.).'	Vitasta I	Publishin	g Pvt. Lt	d.					•	
							*			
<u> </u>	DO1								DOO	DO40
	PUI	PU2	PU3	PU4	FU5	rub c	PU/	ruð c	FU9	PU10
		IVI S		3 M	3 0	о С		3 M	о С	3 0
CO2	<u> </u>	S M	1VI Q	IVI M	3 M	3 9			3 9	3 9
005	3	111	3	171	IVI	3		171	3	3

*S - Strong; M - Medium; L – Low

L

S

S

S

Μ

Μ

S

Μ

Μ

S

Μ

S

S

Μ

CO4

CO5

L

S

Μ

Μ

S

S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-III

(For the students admitted in the academic year 2023-2024 onwards)

VACCINOLOGY

Core-Industrial Module-08

Paper Code: 23UPBMS1C08

Total Contact Hours: 108

Credits: 4

Weekly Contact Hours: 6

Course Objectives:

The main objectives of this course are:

1.	The	emphasis of the course is on the development o	f molecular							
	diagnostic technologies and the molecular underpinnings									
	disea	diseases.								
2.	It pro	ovides a succinct explanation of signal transductio	n, including							
	its fu	nction in human diseases and therapeutic approach	nes.							
3.	The course will also focus on the problems associated with									
	antib	iotic resistance as well as the molecular mec	hanisms of							
	num	erous diseases, including HIV, HCC, Tuberculosi	s, Dengue,							
	and	SARS.								
Course I	:	Industrial Module-Core-08								
Course title	:	VACCINOLOGY								
Credits	:	4								
Pre-requisite:										
Students should	d know the	e An introduction to cancer biology, Enhanced t	he imaging							
techniques and	cancer the	rapy.								
Expected Course Outcome:										
On the successful completion of the course, student will be able to:										
1	Aware of	the strategies available for developing an	K1 & K2							
1.	innovative	vative vaccine technology with different mode of								
vaccine delivery.										
	Able to	explain the significance of critical antigens,	K2 & K4							
2.	immunogens and adjuvants in developing effective									
vaccines.										
0	Understan	d the process of the function and development of	K3 & K5							
3.	vaccine									
	Describe	the fundamental ideas behind the vaccine	K4 & K6							
4.	research a	and design								
5.	Aware of	f the regulatory issues, guidelines for the	K5 & K6							
÷.										

	management of production of vaccine.	
 K1 - Remer	nber; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	e; K6 – Create

	Units				
I	Immunological concepts in Vaccinology: Short history of vaccination, requirements for induction of immunity, Epitopes, linear and conformational epitopes, characterization and location of APC, MHC and immunogenicity, Rationale vaccine design based on clinical requirements: Hypersensitivity, Immunity to Infection, Autoimmunity, immunodeficiency, mechanism of adjuvant action, Scope of future vaccine strategies.				
II	Classification of vaccines and its preparations: Active and passive immunization; Viral/bacterial/parasite vaccine differences, methods of vaccine preparation – Live, killed, attenuated, sub unit vaccines; Vaccine technology- Role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, edible vaccines, reverse vaccinology, combination vaccines, therapeutic vaccines; Peptide vaccines, conjugate vaccines; Cell based vaccines.				
II	Vaccine research and design: Fundamental research to rational vaccine design. Antigen identification and delivery, T-Cell expression cloning for identification of vaccine targets for intracellular pathogens, Fundamentals of Immune recognition, implications for manipulating the T-Cell repertoire, Targeting Dendritic cells; a rational approach for Vaccine development, Cellular basis of T- Cell memory, Rational design of new vectors, CpG adjuvant activity, Transcutaneous immunisation, Vaccination studies and recent advances in Malaria, Tuberculosis, HIV.				
IV	Computational tools for vaccine design: Antigen Sequence analysis, Epitope Mapping, Predictions of Immunogenic peptides of T-Cell and B- Cells. Prediction of HLA binding peptides, Comparative Genomics as a tool for vaccine design, introduction to online epitope databases.				
V	Animal testing, commercialization, quality control: Quality control and regulations in vaccine research, In-vitro experimental validations for predictions of vaccines by software, Animal testing, Rational design to clinical trials, Large scale production, Commercialization, ethics.				
Reading list					
 Ronald W. Ellis, "New Vaccine Technologies", Landes Bioscience, 2001. Cheryl Barton, "Advances in Vaccine Technology and Delivery", Espicom Business Intelligence, 2009. Male, David et al., "Immunology", 7th Edition, Mosby Publication, 2007. 					
Recommen	αθα τεχτς				
1. Coico, R.	etal., "Immunology: A Short Course", 5th Edition, Wiley – Liss, 2003.				

Parham, Peter "The Immune System", 2nd Edition, Garland Science, 2005.
 Abbas, A.K. etal., "The Cellular and Molecular Immunology", 6th Edition, Sanders / Elsevier, 2007.

4. Weir, D.M. and Stewart, John "Immunology", 8th Edition, Churchill Pvt. Ltd., 2000

		Ν	lapping	with Prog	ramme O	utcom	es*			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-III

(For the students admitted in the academic year 2023-2024 onwards)

ORGAN ON CHIP

Elective Course-05

Paper Code: 23UPBMS1E05

Total Contact Hours: 54

Credits: 3

Weekly Contact Hours: 3

The main objectives of this course are: 1. To provides the potential informations at multiple stages of the drug discovery and development process using Organs-on-chips 2. It delivers a succinct explanation of structure and function of human vital organs and related cell lines. 3. The course will also focus on the developer's Guide to an Organ-on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: : 3 Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: 0n the successful completion of the course, student will be able to: K1 & K2 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
1. To provides the potential informations at multiple stages of the drug discovery and development process using Organs-on-chips 2. It delivers a succinct explanation of structure and function of human vital organs and related cell lines. 3. The course will also focus on the developer's Guide to an Organ-on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: : 3 Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. and their applications in biomedical research. Expected Course Outcome: . K1 & K2 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function K1 & K2					
1. To provides the potential informations at multiple stages of the drug discovery and development process using Organs-on-chips 2. It delivers a succinct explanation of structure and function of human vital organs and related cell lines. 3. The course will also focus on the developer's Guide to an Organ-on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices course function					
discovery and development process using Organs-on-chips 2. It delivers a succinct explanation of structure and function of human vital organs and related cell lines. 3. The course will also focus on the developer's Guide to an Organ-on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
2. It delivers a succinct explanation of structure and function of human vital organs and related cell lines. 3. The course will also focus on the developer's Guide to an Organ-on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: : 3 Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: K1 & K2 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function K1 & K2					
human vital organs and related cell lines.3.The course will also focus on the developer's Guide to an Organ- on-Chip as well as current scenario of Organ on chip technologies.Course I:Elective Paper-05Course title:ORGAN ON CHIPCredits:3Pre-requisite:					
3. The course will also focus on the developer's Guide to an Organ- on-Chip as well as current scenario of Organ on chip technologies. Course I : Elective Paper-05 Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
on-Chip as well as current scenario of Organ on chip technologies.Course I:Elective Paper-05Course title:ORGAN ON CHIPCredits:3Pre-requisite:Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research.Expected Course Outcome:On the successful completion of the course, student will be able to:1.Aware of the strategies available for innovative devices could provide insights into normal human organ function					
Course I:Elective Paper-05Course title:ORGAN ON CHIPCredits:3Pre-requisite:Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research.Expected Course Outcome:On the successful completion of the course, student will be able to:1.Aware of the strategies available for innovative devices could provide insights into normal human organ function					
Course title : ORGAN ON CHIP Credits : 3 Pre-requisite: Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
Credits : 3 Pre-requisite:					
Pre-requisite: Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
Students should know the Developer's guidelines of Organ on chip and their applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
applications in biomedical research. Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function					
Expected Course Outcome: On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices could provide insights into normal human organ function K1 & K2					
On the successful completion of the course, student will be able to: 1. Aware of the strategies available for innovative devices K1 & K2 could provide insights into normal human organ function					
1. Aware of the strategies available for innovative devices K1 & K2					
could provide insights into normal human organ function					
could provide insighte into hermal ruman organ function					
and disease pathophysiology					
Able to explain the significance of development of organ-on- K2 & K4					
2. chip models requires an integrated interdisciplinary					
approach merging technologies and concepts					
Understand the process of the function and development of K3 & K5					
Organ On Chip					
Describe the fundamental ideas behind the concepts and K4 & K6					
Λ					
4. applications of Organ on a chip model					
Aware of the regulatory issues, implementation, and offers K5 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units
I	Structure and functions of Vital organs of human – Liver, Kidney, Gastrointestinal tract, Brain, spleen, Pancreas. Histology of vital organs.
II	Commercially available Cell lines of Liver: Properties and culture of HepG2, Hep3B, HBG, and HepaRG. Kidney: Properties and culture of HEK-293 (Human Embryonic Kidney cell line), COS (African green monkey kidney cell line), CTR (pig kidney cell line), Gastrointestine: Properties and culture of HCT116, HT-29 cells, Caco ₂ cells.
111	Brain : Properties and culture of neural progenitor cells (NPCs) and hTERT NF1 ipNF05.5 (Mixed clones). Spleen: Properties and culture of Human Spleen Endothelial Cells (HSEC), Human Spleen Fibroblasts, Human Spleen Epithelial Cells Pancreas: Properties and culture of Immortalized Mouse Pancreas Epithelial Cells-Conditionally (IMPE), PANC-1, HuP-T3, CFPAC-1, HuP-T4, PSN-1
IV	Developer's Guide to an Organ-on-Chip: Model Organs-on-a-chip design concept and key components- Principle and structural components of Microfluidic system, Tissue sources of organ on chip, Design concept, Fluid shear force, Concentration gradient, Dynamic mechanical stress, Cell patterning. Comparison of 2D and 3D Cell Culture.
v	Current scenario of Organ on chip technologies. Sources of Cells- human tissue, biopsy samples, stem cells, induced pleuripotent cells (IPC), Liver on a chip, Lung on a chip, kidney on a chip, Heart on a chip, Intestine on a chip, multy-organ on a chip. Applications of Organ on Chip in Pharma industry, Medicine and Biomedical Research.
Reading lis	t
1. Yu-su Micro 978-3 2. Lucie challe	ike Torisawa and Yi-Chung Tung.2020. Organs-on-chips. Published in machine. CC BY licence, ISBN 978-3-03928-917-2 (paperback); ISBN 8-03928-918-9 (PDF). A Low and Danilo A Tagle. 2017. Organs-on-chips: Progress, enges, and future directions. Exp Biol Med (Maywood). 242(16): 1573–
1578. 3. Cho Biome	S, Lee S, Ahn SI.2023. Design and engineering of organ-on-a-chip. ed Eng Lett. 13 (2):97-109.
Recommen	ded texts
Julia Rogal, Organ-on-Cl	Katharina Schlünder, and Peter Loskill.2022. Developer's Guide to an hip Model. ACS Biomater Sci Eng. 8(11): 4643–4647.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10

CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-III (For the students admitted in the academic year 2023-2024 onwards)

IVF TECHNOLOGY

Non Major Elective Paper -02

Paper Code: 23UPBMS1N02

Total Contact Hours: 54

Credits: 2

Weekly Contact Hours: 3

Course Objecti	ves:						
The main object	ives of this	course are:					
1.	The	emphasic of the source is on the headling and may	sinulation of				
	am	emphasis of the course is on the handling and mar	lipulation of				
2.	The	course aims to reinforce students' fundamental of e	thical				
	and	national legal issues involved in reproductive medic	ine				
3.	The	course will also focus on the Gamete and embr	yo culturing				
	tech	nique					
Course I	:	Non Major Elective Paper-02					
Course title	:	IVF TECHNOLOGY					
Credits	:	2					
Pre-requisite:							
Students shoul	d know th	e An introduction to evolution of different tech	nologies in				
Artificial Reproc	luctive Tec	hnologies					
Expected Cour	se Outcom	e:					
On the successfu	I completio	n of the course, student will be able to:					
1.	Aware of technolog	the strategies available for developing innovative ies in artificial reproductive.	K1 & K2				
	To provid	e the candidate with every opportunity to gain	K2 & K4				
2.	proficiency	y in clinical workup, diagnosis and evidence					
	based ma	ased management of infertile couple.					
3	Understar	d the process of infertile couple with combined	K3 & K5				
	factor						
Δ	Understar	nd the actions of third party reproduction like	K4 & K6				
4. oocyte donation, sperm donation, surrogacy etc.							
	To work	independently as a consultant / clinician in	K5 & K6				
5.	Reproduct	tive					
	Medicine.						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

				Units								
I	The reproc and C	The regional anatomy and physiology of the female and male reproductive organs and hormonal regulations. The sexual differentiation and Chromosomal abnormalities involved in reproduction.										
II	Game Devel with it	etogenesi opment c . Significa	s, fertiliz of the rep ance of f	ation, impla productive o oetal malfo	antation a organs an ormations.	nd emb d abno	oryo dev rmalities	elopme s assoc	nt. iated			
III	Seme intrau epidyo	emen analysis, processing of semen for various procedures – ntrauterine insemination, IVF/ICSI. Processing samples of testicular / pidydymal sperms for ICSI and sperm function tests.										
IV	Evolu Techr embry	volution of different technologies in Artificial Reproductive echnologies. Controlled ovarian stimulation, oocyte retrieval and mbryo transfer techniques - IUI, IVF, ICSI, PESA, TESA, TESE.										
v	The e and m reproc	The epidemiology, etiology, investigations and management of female and male infertility. Ethical and national legal issues involved in reproductive medicine and ART.										
1. Rea	ding list	t										
1. Text Wei 2. Prin Asp	book of ssman, (ciples a ects of I	f Assiste Colin M. I nd Pract /F &	ed Repr Howles, 2 ice of A : Androlo	oductive T Zeev Shoh ssisted Ro	Technique am eproductiv ni Rao.	es Dav ve Tec	id K. (Gardne v, Vol. :	r, Ariel 2, Lab.			
Recomme	nded te	xts	,	5,								
 Infertility Diagnosis, Management & amp; IVF – Dr. Anil Dubey. A Practical Guide to Setting Up an IVF Lab, Embryo Culture Systems and Running the Unit Alex 									-			
3. C V	argnese,	N	lapping	with Prog	ramme O	utcom	es*					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	М	М	М	S	S	S	М	S	S	S		
CO2	S	S	М	М	S	S	М	М	S	S		
CO3	S	Μ	S	Μ	М	S	L	М	S	S		
CO4	L	М	S	S	L	S	М	S	М	М		
CO5	S	М	S	M	S	S	М	М	S	S		

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

HUMAN EMBRYOLOGY AND ENDOCRINOLOGY

Core Paper-09

Paper Code: 23UPBMS1C09

Total Contact Hours: 108Credits: 5

Weekly Contact Hours: 6

Course Objectives:								
The main objectives of	The main objectives of this course are:							
	1							
1.	To become familiar with comprehend normal anatomy and							
	phys	physiology of the male and female reproductive system.						
2.	To a	able to process spermatozoa obtained from S	permatozoa					
	Retri	eval Techniques.						
3.	The	student will become familiar with assess viability	of embryos					
	and	and their developmental competence with fair accuracy.						
Course I	:	Core-09						
Course title	:	HUMAN EMBRYOLOGY AND ENDOCRI	NOLOGY					
Credits	:	5						
Pre-requisite:								
Basic knowledge	of m	olecular biology, recombinant DNA technol	ogies and					
bioinformatics.								
Expected Course Ou	utcom	e:						
On the successful com	pletio	n of the course, student will be able to:						
1 Knc	w abc	out basics of development: cleavage pattern,	K1 & K2					
l. blas	blastula and gastrula formation.							
, Kno	wledg	e about morphogenesis, organogenesis in animal	K2 & K4					
Z. emb	embryo and sex determination.							
3. Und	erstar	iding the basic concept of hormones.	K3 & K5					
Und	erstar	d the structure and function of endocrine glands	K4 & K6					
4. in hu	in human.							
Kno	e about the endocrine disorders and related	K5 & K6						
5. path	ophys	siology in human beings.						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units
I	Basic concepts of development : Types of eggs and their Polarity, biological symmetry and chemo-differentiation of eggs. Gametogenesis: Spermatogenesis, Oogenesis and vitellogenesis. Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; Genes contributing to gonad development – Role of SF1, WT1, SRY, SOX 9 and other genes.
II	Role of maternal contribution in early embryogenesis – masked RNA. Molecular perspectives of fertilization: Recognition of egg and sperm, Egg and sperm interaction, fertilization, species – specific recognition, cortical reaction, activation of egg metabolism, fusion of genetic material. Artificial insemination: IUI, IVF
Ξ	Cleavage and its patters, biochemical changes during cleavage, influence of male and female pronuclei during early development, blastula and gastrula and morphogenetic movements. Nuclear transplantation experiments in amphibians – Embryonic stem cell and its application. Genes that pattern <i>Drosophila</i> body plan: morphogenetic gradients, cascades and signaling pathways in <i>Drosophila</i> development – Homeo box concept and its role.
IV	Role of hormones in male reproductive physiology: Endocrine control of testicular functionGnRH and Pituitary Gonadotropins, inhibin and prolactin. Physiological roles of Androgens – Spermatogenesis, secondary sex characteristics, anabolic actions and ageing. Mechanism of Androgen action-Androgen receptors. Physiological roles of estrogens- fertility, male behavior, Epiphyseal fusion. Role of hormones in female reproductive physiology: Ovarian steroid hormones (OSH)- Estrogen, Progesterone, Androgens and their mechanism of action -Estrogen receptors. Physiological roles of OSH, prostaglandins, oxytocin and vasopressin. Mammalian reproductive cycle –Primate menstrual cycle, induced and spontaneous ovulators, delayed implantation Menopause and hormone replacement therapy
V	Disorders of Reproductive system: Infertility : Causes - Male factors and female factors, Couple Dependent Factors, Toxic Exposures. Methods of IVF - ICSI, ZIFT, GIFT and PGD, disadvantages of IVF. Embryo cryopreservation and sperm bank. Recurrent pregnancy loss: Causes and treatment– Genetic, Hormonal, Metabolic and other factors; Rh incompatibilityoverview. Pathophysiology - Dysmeorrhoea, Amenorrhea, Polycystic Ovary Syndrome, premature ovarian failure, premenstrual syndrome, Infections in Pregnancy, High risk pregnancyCauses, Diagnosis and prevention.
Reading lis	t

1.	Fred	erick R	Bailev (2	018). Te	xt-Book of	Embrvolo	gy, For	aotten E	Books.		7
2.	Datta	a A. K. ()	2017). Es	ssentials	of Human	Embrvolo	av (7 th	Ed.). C	urrent B	looks	
	Inter	national	,			,	37 (*	, _			
3.	Subh	adra De	evi V (20	17), Inde	rbir Singh'	s Human	Embryc	ology (1	1 th Revi	sed	
	Ed.).	Javpee	Brothers	s Medica	l Publisher	S	,	0, (
4.	Vishram Singh (2017) Textbook of Clinical Embryology, Elsevier										
5.	Scott	t F. Gilb	ert (2016), Develo	opmental B	biology (1	1 th editio	on), Sin	auer.		
6.	Sadle	er (2016	s), Langr	nan's Me	dical Embr	yology (1	3 th Ed.)	, Wolter	s Kluwe	er.	
7.	Tickl	e, Martii	nez Arias	Wolper	t (2015), Pi	rinciples c	of Devel	opment	: 5 th Ed)		
	Oxfo	rd Unive	ersity Pre	ess.		-		-	-		
Reco	mmer	nded tex	ĸts								1
1.	Carls	son (201	3), Huma	an Embr	yology and	Develop	mental	Biology	(5 th Ed)),	1
	Elsev	vier Hea	lth – US								
2.	Balin	sky B.I.	(2012), /	An Introd	luction to E	mbryolog	y (5 Ed	.),Ceng	age Lea	arning	
	India										
3.	Das	N (2012), Funda	mental C	concepts of	Develop	mental	Biology	, Affiliat	ed	
	East	-West P	ress Pvt.	Ltd. Nev	v Delhi.						
4.	Gera	ld P. Sc	hatten (2	2006) Cu	rrent Topic	s in Deve	lopmen	tal Biol	ogy (1 st	Ed.),	
	Acad	lemic Pr	ess.								
5.	Jona	than M.	W. Slacl	k (2005),	Essential	Developm	nental B	siology,	(2 ^{na} Ed)),	
	Wiley	/-Blackv	vell								
6.	Lewi	s Wolpe	ert, Rosa	Bedding	ton, Thoma	as Jessell	, Peter	Lawren	ce, Ellic	ot	
	Meye	erowitz,	Jim Smit	:h (2001)	, Principles	s of Devel	opment	$(2^{nu} Ec$	dition), C	DUP	
_	Oxfo	rd	- .		_						
7.	Text	book of	Gynecolo	ogy; D.C	Dutta						
8.	Endo	crinolog	gy (5th eo	dition); M	lac E. Hadi	ey					
9.	Obst	etrics ar	nd Gynae	ecology-2	2 –For post	graduate	s and P	ractition	ners.		
00-		DO 4	IV DOO	lapping	With Prog		utcome		DOO	DOO	DOIO
COS		P01	PO2	P03	P04	P05	P06	P07	804	P09	PO10
001			IVI O	IVI	5	5	5	IVI	5	5	5
002		<u> </u>	5		IVI	5	5			3	5
003		5	IVI	5	M	IM	5		IVI	S	S
CO4		L	IVI	5	S	L	S	IVI	S	IVI	IVI

*S - Strong; M - Medium; L – Low

Μ

S

S

Μ

S

Μ

S

S

CO5

Μ

S

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

BIOMATERIAL AND TISSUE ENGINEERING

Core Paper-10

Paper Code: 23UPBMS1C10

Total Contact Hours: 108 Credits: 5

Weekly Contact Hours: 6

Course Objectives:								
The main objectives of this course are:								
1.	Unde	erstand the basic concepts of biomaterials implant actions.	and tissue					
2.	Lear	n applications of biomaterials in various body parts.						
3.	Desc	cribe the Biological response of implanted materials						
Course I	:	Core -10						
Course title	:	HUMAN EMBRYOLOGY AND ENDOCRI	NOLOGY					
Credits	:	5						
Pre-requisite:								
Basic knowled bioinformatics.	lge of m	nolecular biology, recombinant DNA technol	ogies and					
Expected Cours	se Outcom	le:						
On the successfu	l completio	n of the course, student will be able to:						
1.	Know abo polymers	out applications of natural and degradable for tissue engineering	K1 & K2					
2.	Acquire ki engineerir	nowledge on the biomaterials, implant and tissue ng.	K2 & K4					
3.	Understan body with	Understand the desirable and undesirable reactions of the K3 & K5 body with implanted materials.						
4.	Know the	therapeutic strategies using biomaterials	K4 & K6					
5.	Acquire ki scaffold.	nowledge about tissue engineering and bioactive	K5 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Units								
I	Introduction of biomaterial, types of biomaterials, advantages and disadvantages., Bio ceramics for implant coating, calcium phosphates, hydroxy epilates Ti6Al4V and other biomedical alloys, implant and tissue interaction.							
II	Advantages of nanomaterials use as implants, biological response of implanted materials, desirable and undesirable reactions of the body with implanted materials. Materials used for orthopaedic implants, bioceramics, modes of failure.							
111	Materials used for dental, modes of dental implant failure, wear debris, materials used for cartilage and vascular, bladder, modes of cartilage implant, vascular implant, implant failure study, modes of bladder implant failure.							
IV	Protein interactions with implanted materials, cellular recognition of proteins adsorbed on material surfaces, adhesion, migration, differentiation, cellular extra cellular matrix deposition leading to tissue regeneration, foreign-body response, inflammatory response. Tissue engineering introduction, stem cells, morphogenesis, generation of tissue in the embryo, tissue homeostasis, cellular signaling, extracellular matrix as a biologic scaffold for tissue engineering, scaffold fabrication, bioactive scaffold, natural polymers in tissue engineering applications, degradable polymers for tissue engineering.							
V	Biocompatibility & Toxicological screening of biomaterials: Definition of biocompatibility, blood compatibility and tissue compatibility. Toxicity tests: acute and chronic toxicity studies (in situ implantation, tissue culture, haemolysis, thrombogenic potential test, systemic toxicity, intracutaneous irritation test), sensitization, carcinogenicity, mutagenicity and special tests.							
Reading lis	t							
 Biomaterial Science: An Introduction to Materials in Medicine, By Buddy D. Ratner, et.al. Academic Press, San Diego,1996 Sujata V. Bhat, Biomaterials, Narosa Publishing House , 2002. J B Park, Biomaterials-Science and Engineering, Plenum Press, 1984. Vishram Singh (2017) Textbook of Clinical Embryology, Elsevier . 								
Recommen	ded texts							
1. Basu	, B. (2017). Biomaterials science and tissue engineering: principles and							
meine	Jus. Camphuge University Fless.							

- 2. Miller, E. G. (2006). Artificial Organs. Morgan & claypool publishers.
- 3. Ong, J. L., Appleford, M. R., & Mani, G. (2014). Introduction to biomaterials: basic theory with engineering applications. Cambridge University Press.
- 4. Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press.

Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	М	М	М	S	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	М	S	S	
CO3	S	М	S	М	М	S	L	М	S	S	
CO4	L	М	S	S	L	S	М	S	М	М	
CO5	S	М	S	М	S	S	М	М	S	S	

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

PROJECT WORK AND VIVA VOCE

Project-01

Paper Code: 23PUBMS1P01

Total Contact Hours: 180

Credits: 7

Weekly Contact Hours: 10

Course Objectives:									
The m	nain object	ives of th	nis course are:						
	1.	To gair	research knowledge.						
	2.	To kno	w how to execute independent research.						
Cours	se l	:	Project-01						
Cours	se title	:	PROJECT WORK AND VIVA VOCE						
Credi	ts	:	: 7						
Pre-r	equisite:								
To ga	in research	n knowle	dge and to know how to execute independent res	earch.					
Expe	cted Cours	se Outc	ome:						
Upon	Upon completion of this lab course, the students								
1.	At the cor	npletion	of this course, students will be able to do	K3, K4, K5,					
	independent research at national and international standard. K6								

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

NANOMEDICINE AND DRUG DESIGNING

Elective Course -06

Paper Code: 23UPBMS1E06

Total Contact Hours: 72

Credits: 3 Weekly

Weekly Contact Hours: 4

Course Objecti	ves:							
The main object	ives of this	course are:						
1.	To a	To acquire knowledge about nanomaterials and its applications in						
	the	he field of nanomedicine.						
2.	Und	Understanding methods of drug delivery to the targets using						
	nano	oparticles.						
3.	Und	erstanding treatment strategies for human diseas	es, through					
	nano	otherapeutics.						
Course I	:	Elective Course -06						
Course title	:	NANOMEDICINE AND DRUG DESIGNING						
Credits	:	3						
Pre-requisite:								
Basic knowledg	e in Diagn	ostics						
Expected Cours	se Outcon	ne:						
On the successfu	I completic	n of the course, student will be able to:						
1.	Compreh	end the importance and principle of Nanostructure	K1 & K2					
	Illustrate	he chemical, physical and biological properties of	K2 & K4					
2.	nanomate	rials. And describe various methods of						
	synthesizing nanomaterials.							
	Know the	characterization methods of nanoparticles.	K3 & K5					
3.	Elucidate	the mechanism of transporting nanomaterials						
	across liv	cross living cells.						
4.	Explain va	arious applications of Nanomaterials	K4 & K6					
_	Knowledg	e pertaining to challenges, toxicity and future of	K5 & K6					
5.	nanotech	nology.						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Units

	Introduction to Nanotechnology, Nano-scaling, Various Structures and							
	synthesis of Nanomaterials: Top-down (Nanolithography, CVD), Bottom-							
I	up (Sol-gel processing, chemical synthesis). Wet deposition techniques.							
	Properties of nanoscale materials (optical, electronic and magnetic).							
	Rationale for designing of nanomedicines.							
	Characterization of Nanomaterials, Spectroscopic techniques – UV							
II	visible and infrared spectroscopy, Raman spectroscopy, X-ray							
	diffraction. Microscopy - SEM, TEM, AFM, etc. Characteristics and							
	Biocompatibility of nanoparticles.							
	Basics of drug delivery, Types - polymer, lipid, metal-based drug							
111	delivery system and miscellaneous. Targeted delivery- Active and							
	passive targeting - Enhanced permeability and retention effect.							
	multifunctional property of nanoparticles. Nanomedicines for various							
	disease conditions: infectious diseases, neurological diseases:							
	(challenges of blood brain barrier), pulmonary disorders, cardiovascular							
	diseases, cancer: nano-chemotherapy, radiation therapy,							
	immunotherapy, nuclear medicine therapy, photodynamic therapy,							
	photothermal and RF hyperthermia therapy, scintillation therapy, gene-							
	therapy: DNA, RNA delivery. Theranostic nanomedicines: Basic							
	concept, multifunctional nanomedicines for theranosis.							
	A general introduction and historical perspective on drug							
	discovery and development: General introduction to drug discovery							
	research and development, history of drug discovery research and							
	development. In-silico drug designing: Basics of structural							
IV	bioinformatics, Role of Bioinformatics in drug design, Target							
	understanding at molecular level, lead optimization and in-silico							
	validation, Structure- and ligand-based drug design, Molecular docking							
	and docking algorithms, de-novo ligand design and molecular dynamics							
	simulation.							
	Drug Screening: Understanding protein-protein, protein-small molecule							
	interaction study, Role of Structural Biology in Drug Discovery, Cell-free							
V	and cell-based assays, exploiting cell biology to design assay platforms,							
	High-throughput screening, Introduction to High Content Screening,							
	Designing and development of disease model. Medicinal Chemistry,							
	Pharmacology and Drug Development: Small molecules as drugs,							
	Lipinski rule five, hit identification to lead development process. Drug							
	Repurposing: Drug discovery via drug repurposing, Strategies of drug							
	repurposing, Approaches and methodologies of drug repurposing							
Reading lis	Reading list							
Nanomedici	Nanomedicine for Cancer Therapy: From Chemotherapeutic to Hyperthermia-Based							

Therapy,

Springer, Piyush Kumar, RohitSrivastava, 2017

2. Nanotoxicology, Materials, Methodologies, and Assessments, Editors: Durán, Nelson, Guterres, Silvia S., Alves, OswaldoLuiz (Eds.),

Recommended texts

- 1. Nanomedicine P.K.Sharma.
- 2. Medical Nanotechnology and Nanomedicine (Perspectives in Nanotechnology)by Harry F.Tibbals and H.F. Tibbals (2010)
- 3. The Handbook of NanomedicinebyK. K. Jain (2010)

Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	М	М	М	S	S	S	М	S	S	S		
CO2	S	S	М	М	S	S	М	М	S	S		
CO3	S	М	S	М	М	S	L	М	S	S		
CO4	L	М	S	S	L	S	М	S	М	М		
CO5	S	М	S	М	S	S	М	М	S	S		
PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV (For the students admitted in the academic year 2023-2024 onwards)

MOLECULAR DIAGNOSIS

Skill Enhancement Course-02

Paper Code: 23UPBMS1S02

Total Contact Hours: 72 Credits: 2 Weekly Contact Hours: 4

Course Objectives:						
The main objectives of this course are:						
1.	Lear	n about cutting-edge methods used in clinical d	liagnosis of			
	dise	ases, as well as the advantages of molecular dia	agnostics in			
2	prec	ISION diagnosis.	that will be			
Ζ.	USEC	to create new tests for better diagnosis.	that will be			
3.	Acqu	ire knowledge of current examples, which fos	ters critical			
	thou	ght and can aid in the creation of examinations	. Thorough			
	unde	erstanding of the ethical and legal implications	of handling			
	clinic	al samples and running tests on them.				
Course I	:	Skill Enhancement Course -01				
Course title		MOLECULAR DIAGNOSIS				
Credits	:	2				
Pre-requisite:						
Basic knowledg	ge in Diagnostics					
Expected Cours	Irse Outcome:					
On the successfu	the successful completion of the course, student will be able to:					
1	Knowledg	e of disease classification and diagnosis. Learn	K1 & K2			
	about the	e legal and moral considerations that go into				
	conducting diagnostic tests.					
	Learn the technical details of numerous diagnostic K2 & K4					
2.	approaches so that you can use these strategies to create					
	Learn in-c	lepth information about the many biotechnological	K3 & K5			
	onducted to track changes occurring at various					
3.	levels. Io analyse and use biological assays to					
	construct	clinical tests, one must be aware of their				
	particulari	ties and potential problems.				

4.	When using molecular techniques in practice, learn how to evaluate the data.	K4 & K6
5.	Learn about the significant disorders that can be detected utilising molecular diagnostic techniques. Discover how to	K5 & K6
	use precision diagnostics in managing diseases.	

	Units
I	Introduction and History of diagnostics, Diseases- infectious, physiological and metabolic errors, genetic basis of diseases, inherited diseases. Infection – mode of transmission in infections, factors predisposing to microbial pathogenicity, types of infectious diseases-bacterial, viral, fungal, protozoans and other parasites. Philosophy and general approach to clinical specimens, Sample collection- method of collection, transport and processing of samples, Interpretation of results, Normal microbial flora of the human body, Host - Parasite relationships.
II	Cytogenetics - Karyotype analysis, blood, bone marrow, amniotic fluid, chorionic villus samples, products of conception Fluorescent in situ hybridization, Cytogenetic studies using microarrays. Molecular DNA isolation and quantification, Probe and primer designing, PCR -standard and various modifications, Real time PCR, Multiplex Ligation-dependent Probe Amplification (MLPA) analysis, SNP, Single-strand conformation polymorphism (SSCP).
III	PCR based assays: Real-time PCR, ARMS, allele specific, multiplex, methylation analysis, MLPA, single-stranded conformational polymorphism analysis, heteroduplex analysis, competitive oligonucleotide priming, DHPLC, DGGE, CSCE. Mutation screening panels (xTAG, Luminex) Micro arrays: SNP chromosomal microarrays,EST, SAGE.
IV	Applications of Molecular Diagnostics: Major Histocompatibility Complex (MHC), HLA typingRFLP, PCR based methods, SSO, SSP and SBT methods. Role of Molecular diagnostics in bone marrow transplantation and organ transplantation. Bone marrow transplant engrafment analysis. Diagnosis of inherited diseases- Thalassemia, Cystic Fibrosis. Neonatal and Prenatal disease diagnosticsPrenatal and pre-implantation diagnosis. Noninvasive: Triple test, Ultrasonography (USG), Invasive: Amniocentesis (AC), chorionic villi sampling. Molecular diagnosis for early detection of cerebral palsy, Down syndrome. Fragile X syndrome.
V	Applications In Molecular Oncology And Microbial Diseases: Molecular oncology testing in malignant disease- Acute and Chronic leukemias, Melanoma, colon, lung and breast cancers. Circulating

tumour cell testing (CTC). Molecular diagnosis of various viral diseases: Dengue, Chikungunya and SARS. Direct detection & identification of pathogenic-organisms that are slow growing or currently lacking a system of in vitro cultivation as well as genotypic markers of microbial resistance to specific antibiotics- 16s rRNA typing.

Reading list

Recommended texts

- 1. Tietz textbook of clinical chemistry and molecular diagnostics. Carl Burtis, Edward Ashwood, David Bruns, Elsevier Press. 5th Edition 2012.
- 2. Principles and Techniques of Biochemistry and Molecular Biology. Keith Wilson and John Walker. 2010
- 3. Molecular Diagnostics: Fundamentals, Methods and Clinical Applications. Lela Buckingham and Maribeth L. Flaws. 2011
- 4. Modern Blood Banking & Transfusion Practices. Denise M. Harmening. 2018 5.
- 5. Fundamentals of Molecular Diagnostics. David E. Bruns MD (Author), Edward R. Ashwood MD (Author), Carl A. Burtis PhD. 2007
- 6. Proteomics in Diagnostics. Veenstra, T.D. 2004.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S -	Strong;	М-	Medium;	L –	Low
------	---------	----	---------	-----	-----

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology M.Sc., Biomedical Science Programme-SEMESTER-IV (For the students admitted in the academic year 2023-2024 onwards)

EXTENSION ACTIVITY

Extension Activity-01

Paper Code: 23UPBMS1X01

Credits: 1

Course Objectives:							
The main object	ives of th	nis course are:					
1.	To awa	reness general public, and school children on dis	eases.				
2.	To brin	g social awareness on life style diseases.					
Course I	:	Extension Activity-01	Extension Activity-01				
Course title	:	Extension Activity					
Credits	: 1						
Pre-requisite:							
To gain professi	onal lear	ming experience and develop new skills in life sci	ence field.				
Expected Cours	se Outc	ome:					
Upon completion of this lab course, the students							
1.At the completion of this course, students will be able to know understanding of health, nutrition and other lifestyle and associated diseasesK3, K4, K5, K6							

VALUE-ADDED COURSES

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

LIFE STYLE DISEASES

Value added Course-01	Paper Code: 23UPBMS1V01	
Total Contact Hours: 36	Credits: 2	Weekly Contact Hours: 2

Course Objectives: The main objectives of this course are: 1. To create awareness among students about the various diseases arising from the day-to-day activities of people which could be prevented or managed by controlling the life style. 2. The course also covers the general aspects of diagnosis, methods of prevention and pharmaceutical intervention. Course I Value Added Course [VAC] - 01 2 Course title LIFE STYLE DISEASES : Credits : 2 **Pre-requisite:** Basic knowledge in Diagnostics **Expected Course Outcome:** On the successful completion of the course, student will be able to: Obtain knowledge and understanding of health, nutrition K1 & K2, 1. and other lifestyle and associated diseases K4 Develop own thinking, opinions and studies to global health K3 & K5 2. issues.

	Units
I	Concept of lifestyle diseases - importance of lifestyle factors in preventing disease development: diet, exercise, smoking, alcohol etc.
II	Diabetes- Type 1 and type2, characteristics, causes, diagnosis, prevention and management.
III	Cancer: Characteristics, Causes, Diagnosis, Prevention, Management, basics of treatment modalities.
IV	Atherosclerosis and cardiovascular diseases- Myocardial infarction, congestive heart failure, ischemic diseases- Causes, diagnosis and

	management.			
V	Obesity- causes, prevention and management. Importance of diet and exercise in health- balanced diet, BMR, calorific value, reducing cholesterol and risk of heart attack through life style changes, use of medication to treat disorders.			
Reading list				
Recommended texts				

- 1. Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W. (2017) Harper's Biochemistry. Prentice Hall International Inc.
- 2. Lehninger, A. L., Nelson, D. K., and Cox, M. M. (2015) Principles of Biochemistry. CBS Publishers and distributors, New Delhi.
- 3. Tannock IF and Hill RP (1998) The Basic Science of Oncology, Third edition, McGraw- Hill, New York.
- 4. Hall. J.E. Guyton and Hall (2011) Textbook of Medical Physiology. 12th ed. Saunders, Elsevier Inc.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L - Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

EXPERIMENTAL EMBRYOLOGY

Value added Course-02

Paper Code: 23UPBMS1V02

Weekly Contact Hours: 2

Total Contact Hours: 36 Credits: 2

Course Objectives:						
The main objective	es of this	course are:				
1. To motivate the students to learn the basic conce						
	Expe	erimental Embryology.				
2.	To	facilitate students to learn the molecular perspective of				
	fertili	zation.				
Course I	:	Value Added Course [VAC] - 02				
Course title	: EXPERIMENTAL EMBRYOLOGY					
Credits	:	2				
Pre-requisite:						
Basic knowledge	in Experi	mental Embryology				
Expected Cours	Expected Course Outcome:					
On the successful	completio	n of the course, student will be able to:				
	On successful completion of this course, the student will be K1 & K2 ,					
1.	Able to get an opportunity to work as a Lab Technician in K3, K4 &					
	fertility clinics and gaining knowledge to fit them to					
	do research in the topic of interest					

	Units
I	History and scope of embryology, Meiosis- A cell Division to generate germ cells. Morphogenetic movements: Process in morphogenesis and associated adhesion molecules-cadherins, Immunoglobulin like CAMS, selectins, Integrins and Role of CAMS and SAMS in morphogenesis. Cell migration-Route selection tug-of War between migratory cells and surrounding. Importance of western blot to identify proteins of embryo
II	Differentiations and classes of differentiations. Potency of cells-Uni, pleury, toti potency of embryonic cell. Gene control in differentiations. A molecular view of differentiations and role of cytoplasm in differentiations. Oogenesis and typrs of eggs. Spermatogenesis and cytoplasmic bridges of spermiogenesis and spermatogenesis

III	Fertilization: A multi-step process. Fertilization in mammals, calcification of sperm. Determination of sperm quality and counts. Reproductive cycle in women. Assessment of egg quality and hormone level in women. Formation of zygote and process of cleavage in human. Importance of fate map.
IV	Morulla formation, Fate of germ layers. Early development in mammals. Fertilization-cleavage-Gastrulation-Extra embryonic membrane-Axis formation-Determination of dorsal and ventral axis and determination of left and right axis. Neurulation-Placenta in man: Implantation, Hormonal control of implantation. Estimation of Hormones during pregnancy.
V	Semen Analysis, Monitoring embryo and selection of quality embryo. Embryo transfer, fertilization and embryo evaluation methods, Egg retrieval, oocyte microinjection and ICSI (Intra-cytoplasmic Sperm injection). Evaluation of Antifertility and infertility in male and female (Human). Principle and applications of IVF technique.
Reading list	

Recommended texts

- 1. Inderbir Singh and G.P. Pal 2013. Human Embryology, 9th Edition, Macmillan Publisher, India Ltd.
- 2. Veer Bala Rastogi: 2019.Chordata Embryology, Kadhar Nath Ramnath Publisher, India.
- 3. Lewis Wolpert.2008. The Triumph of the embryo. Dover Publications Inc. New York, USA.
- 4. William E. Kelleott 2023. A text Book of general Embryology, Maven Book Publisher, india
- 5. Sanjib chattopadhyay 2019.An Introduction to Developmental Biology. Books and Allied Pvt.Ltd Publisher, India.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L – Low

ADD-ON COURSES

PERIYAR UNIVERSITY SALEM -636 011

Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

CANCER THERAPEUTICS

Add-on Course-01

Course Objectives:

Paper Code: 23UPBMS1A01

٦

Total Contact Hours: 36 Credits: 2

Weekly Contact Hours: 2

The main objectives of this course are:										
1.	Stud	Students will gain knowledge of tumorigenesis, learn techniques								
	comi	commonly used in cancer biology								
2.	The	fundamental principles behind cancer prevention, a	nd							
	thera	apeutic management.								
Course I	:	Add-on Course - 01								
Course title	:	CANCER THERAPEUTICS								
Credits	:	2								
Pre-requisite:										
Basic knowledge	e in Cance	r biology and choice of treatment								
Expected Cours	Expected Course Outcome:									
On the successful	On the successful completion of the course, student will be able to:									
	This cours	se work provides chance to work in stem cells and K1 & K	(2,							
1.	cancer stem cells. There is a chance for the students to K3. K4 &									
	enter into the modern cancer and stem cell laboratories as									
	scientist									

Units									
I	Properties and characterization of cancer, comparison of cancer and normal cell, Types of cancers-Classification of cancer. Genetic basis of cancer: Oncogene and tumour suppressor gene.								
II	Principles and methods of surgical oncology . Merits and demerits of cancer surgery. Cancer post-operative wound healing.								
111	Mode of action of chemotherapeutic agent: Doxorubicin, cisplatin and tamoxifen. Development of multi drug resistance capacity against frequently used drugs. Need of combined therapy. The significance of radiation and chemotherapy in cancer management.								
IV	Radiation therapy - Radiological Examination. Importance of radiotherapy, side effect of radiation therapy. Cancer immune-therapy:								

	Monoclonal antibody for cancer. Vaccine as immunotherapeutic agent
١	Nanotherapeutics- Principles of drug delivery systems, Nanodrugs for diagnosis and treatment of cancer; RNAi technology and Single molecule therapy for cancer.
Readin	g list
Baaam	mandad taxta
Recom	mended texts
1. T N	annock IF and Hill RP (1998) The Basic Science of Oncology, Third edition, AcGraw- Hill, New York.
2. E c	Bronchud MH, Foote M, Giaccone G, olopade O and Workman P(2017) Principles of Molecular Oncology, Fifth edition, Humana Press, New Jersey.
3. E \	Depatin KM and Fulda S (2015) Apoptosis and Cancer Therapy, WILEY- /CHVerlag GmbH and Co., New York.
4. H S	Hayatt MA (2016) Methods of Cancer Diagnosis, Therapy, and Prognosis, Vol-7; Springer, Netherlands.
5. N	Aissailidis S (2012) Anticancer Therapeutics, John Wiley and Sons, Ltd., USA.
6. L N	odish H, Kaiser CA, Brasher A, Amon A, Berk A, Kreger M, Ploegh H and Scott MP (2012). Molecular Cell Biology, 7th edition, Garland Publishing, Inc. New York.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L – Low

PERIYAR UNIVERSITY SALEM -636 011 Department of Zoology

M.Sc., Biomedical Science Programme-SEMESTER-IV

(For the students admitted in the academic year 2023-2024 onwards)

LAB ON CHIP

Add-on Course-02

Paper Code: 23UPBMS1A02

Total Contact Hours: 36

Credits: 2

Weekly Contact Hours: 2

Course Objectiv	ves:							
The main objectives of this course are:								
1.	Fι	uno	damentals and fabrication techniques of Lab on chip	Э.				
2.	Th	he	fundamental principles, technical issues and app	lications of				
	bio	om	edical microdevices; lab-on-a-chip technologies.					
Course I	:		Add-on Course - 02					
Course title	Course title : LAB ON CHIP							
Credits	:		2					
Pre-requisite:								
Basic knowledge	e in Lab	on	chip and vital organ and Human on chip.					
Expected Cours	se Outco	om	e:					
On the successfu	I complet	tio	n of the course, student will be able to:					
1.This course will offer students an opportunity to study fundamentals and basic concepts to explore applications of state-of-the-art of biomedical devices and lab-on-a-chipK1 & K K3, K4 K5								

	Units
I	Scope and applications of biomedical devices. Lab on chip: a multi- disciplinary approach. Mechano biology significance in Lab on Chip. Fluidics in Living System
II	Principles of microfluidics and microfluidic devices Sensing technologies in BioMEMS. Polymer microfabrication for BioMEMS and lab-on-a-chip.
111	Micro array Technology for Biological Macromolecules- DNA, protein, and cell based biosensors. Lab-on-a-chip miniaturized chemical/ biological analysers.
IV	Development of Smart Drug delivery system: Bio-availability, Bioaccumulation and Biocompatibility of drugs for <i>in vitro</i> , <i>in vivo</i> and <i>ex</i>

	<i>vivo</i> experiments.
V	Method of Case study Report preparation using BioMEMS and Recent developments in lab-on-a-chip technologies
Reading list	

Recommended texts

- 1. S. S. Saliterman, 2006. "Fundamentals of BioMEMS and Medical Microdevices," SPIE Press.
- 2. M. Madou, 2011. "Fundamentals of Microfabrication and Nanotechnology," 3rd ed., CRC Press.
- 3. E. Meng, 2011 "Biomedical Microsystems," CRC Press.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	М	S	S	S	М	S	S	S
CO2	S	S	М	М	S	S	М	М	S	S
CO3	S	М	S	М	М	S	L	М	S	S
CO4	L	М	S	S	L	S	М	S	М	М
CO5	S	М	S	М	S	S	М	М	S	S

*S - Strong; M - Medium; L – Low