PERIYAR UNIVERSITY

NAAC A++ Grade - State University - NIRF Rank 59, NIRF Innovation Band of 11 - 50 SALEM - 636 011

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF COMPUTER APPLICATIONS (MCA) (AICTE Approved)

CHOICE BASED CREDIT SYSTEM (CBCS)

TANSCHE Based OBE REGULATIONS AND SYLLABUS (Effective from the academic year 2023-2024 and thereafter)

CONTENTS

- i. PO and PSO Description
- ii. PG Template
- iii. Methods of Evaluation & Methods of Assessment
- iv. Semester Index.
- v. Subjects Core, Elective, Non Major, Skill Enhanced, Ability Enhanced, Extension Activity, Environment, Professional Competency
 - 1) Course Lesson Box
 - 2) Course Objectives
 - 3) Units
 - 4) Learning Outcome
 - 5) Reference and Text Books
 - 6) Web Sources
 - 7) PO & PSO Mapping Tables

TANSCHE REC	GULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
F	RAMEWORK FOR POSTGRADUATE EDUCATION
Programme	М.С.А.,
Programme Code	CSC01
Duration	PG - Two Years
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision- making.
	PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

Programme	PSO1 – Placement				
Specific Outcomes	To prepare the students who will demonstrate respectful engagement with				
(PSOs)	others' ideas, behaviors, beliefs and apply diverse frames of reference to				
	decisions and actions.				
	PSO2 - Entrepreneur				
	To create effective entrepreneurs by enhancing their critical thinking,				
	problem solving, decision making and leadership skill that will facilitate				
	startups and high potential organizations.				
	PSO3 – Research and Development Design and implement HR systems and practices grounded in research that				
	complies with employment laws, leading the organization towards growth				
	and development.				
	PSO4 – Contribution to Business World				
	To produce employable, ethical and innovative professionals to sustain in				
	the dynamic business world.				
	PSO 5 – Contribution to the Society				
	To contribute to the development of the society by collaborating with				
	stakeholders for mutual benefit.				

CURRICULUM STRUCTURE FOR EACH SEMESTER -M.C.A 2023-2024

SEMESTER - I

Course Code	Category	Course Name	Number of	Hours per
23UPCSC1C01	Core I	Linux and Shell Programming	4	4
23UPCSC1C02	Core II	Python Programming	4	4
23UPCSC1C03	Core III	Discrete Mathematics	5	5
23UPCSC1L01	Core IV - Lab	Linux and Shell Programming Lab	2	4
23UPCSC1L02	Core V - Lab	Python Programming Lab	2	4
23UPCSC1L03	Core VI - Lab	Industry Dynamics Technology (Data Visualization) - Lab	2	2
Discipline Centric Elective -I	Elective I	Elective Subject - Theory	3	3
Discipline Centric Elective - I Lab	Elective I - Lab	Elective Subject - Lab	1	2
Generic Elective- I 23UPCSC1S01	Elective II	Soft Skill Development Lab	1	2
		Total	24	30

SEMESTER - II

Course Code	Category	Course Name	Number of	Hours per
			Creans	vveek
23UPCSC1C04	Core VII	Data Structures and Algorithms	5	5
23UPCSC1C05	Core VIII	Big Data Analytics	4	4
23UPCSC1C06	Core IX	Soft Computing	4	4
23UPCSC1L04	Core X - Lab	Data Structures and Algorithms Lab	2	3
23UPCSC1L05	Core XI - Lab	Big Data Analytics Lab	2	3
23UPCSC1P01	Core XII	Professional Competency Skill - Mini Project	2	2
Discipline Centric Elective -II	Elective III	Elective Subject - Theory	3	3
Discipline Centric	Elective	Elective Subject - Lab	1	2

Elective –IILab	III - Lab			
-	NME - I	Non-Major Elective – I	2	2
		(Online Course)		
Generic	Elective-	Fundamentals of Human Rights	1	1
Elective - IV	IV			
23UPPGC1H01				
23UPCSC1X01	Core XIII	Extension Activity	1	-
		Total	27	29

SEMESTER - III

Course Code	Category	Course Name	Number of	Hours per
			Credits	Week
23UPCSC1C07	Core XIV	Advanced Java Programming	4	4
23UPCSC1C08	Core XV	Web Technologies	4	4
23UPCSC1C09	Core XVI	Advanced Machine Leaning Techniques	4	4
23UPCSC1L06	Core XVII - Lab	Advanced Java Programming Lab	2	3
23UPCSC1L07	Core XVIII-Lab	Web Technologies Lab	2	3
23UPCSC1L08	Core XIX - Lab	Integrated Technologies Lab (AML)	2	3
Discipline Centric Elective V	Elective V	Elective Subject - Theory	3	3
Discipline Centric Elective V- Lab	Elective V - Lab	Elective Subject - Lab	1	2
-	NME-II	Non Major Elective - II	2	3
23UPCSC1I01	Core XX	Internship / Industrial Activity	2	-
		Total	26	29

SEMESTER - IV

Course Code	Category	Course Name	Number of Credits	Hours per Week	
23UPCSC1P02	Core XXI	Project with Viva Voce	13	-	
Generic Elective - II 23UPCSC1I02	Elective VI	Credit Seminar (Industry / Entrepreneurship)	2	4	
		Total	15	4	
	Overall Credits				

LIST OF ELECTIVE SUBJECTS

GENERIC ELECTIVE SUBJECTS

23UPCSC1S01	-	Soft Skill Development Lab
23UPCSC1I02	-	Credit Seminar (Industry / Entrepreneurship)

DISCIPLINE CENTRIC ELECTIVE SUBJECTS

ELECTIVE – I		
23UPCSC1E01	-	Data Engineering and Management
23UPCSC1E02	-	Data Engineering and Management Lab
23UPCSC1E03	-	Architecture and Frameworks
23UPCSC1E04	-	Architecture and Frameworks lab
23UPCSC1E05	-	Network Protocols
23UPCSC1E06	-	Network Protocols Lab
23UPCSC1E07	-	Dot Net Technologies
23UPCSC1E08	-	Dot Net Technologies lab
23UPCSC1E09	-	Software Development Technologies
23UPCSC1E10	-	Software Development Technologies Lab
ELECTIVE - II		
23UPCSC1E11	-	Internet of Things
23UPCSC1E12	-	Internet of Things Lab
23UPCSC1E13	-	Cryptography and Network Security
23UPCSC1E14	-	Cryptography and Network Security Lab
23UPCSC1E15	-	Computer Vision
23UPCSC1E16	-	Computer Vision Lab
23UPCSC1E17	-	Social Networks
23UPCSC1E18	-	Social Networks Lab
ELECTIVE – III		
23UPCSC1E19	-	Cyber Security
23UPCSC1E20	-	Cyber Security Lab
23UPCSC1E21	-	Block chain Technologies
23UPCSC1E22	-	Block chain Technologies Lab

23UPCSC1E23	-	Optimization Techniques
23UPCSC1E24	-	Optimization Techniques Lab
23UPCSC1E25	-	Solution Architecture
23UPCSC1E26	-	Solution Architecture Lab
23UPCSC1E27	-	High Performance Computing
23UPCSC1E28	-	High Performance Computing Lab

NON MAJOR ELECTIVE - II

23UPCSC1N01	-	Advanced Microsoft Office Lab
23UPCSC1N02	-	Biopython Programming Lab

ACTUAL DISTRIBUTION OF CREDITS

Type of Courses	Component	Credits	No. of Courses	Total Credits
Core	Theory Courses	5	2	10
	Theory Courses	4	7	28
	Lab Courses	2	8	16
	Professional Competency Skill- Mini Project	2	1	2
	Major Project	13	1	13
Elective	Discipline Centric – Theory Courses	3	3	9
	Discipline Centric – Lab Courses	1	3	3
	Generic - Soft Skill Development Lab	1	1	1
	Generic - Fundamentals of Human Rights	1	1	1
Non Major	NME – I : Online Courses	2	1	2
Elective	NME – II : Supportive Courses	2	1	2
Internship / Industrial Activity	Internship	2	1	2
Industry / Entrepreneurship	Generic – Credit Seminar (Industry / Entrepreneurship)	2	1	2
Extension Activity		1	1	1
		Tot	tal Credits	92

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

List of Courses	Credits	No. of Hours
Core - Theory	13	13
Core - Lab	6	10
Discipline Centric Elective-Theory	3	3
Discipline Centric Elective -Lab	1	2
Generic Elective- Lab	1	2
Total	24	30
SEMESTER – II		
List of Courses	Credits	No. of Hours
Core - Theory	15	13
Core - Lab	5	10
Discipline Centric Elective–Theory	3	3
Discipline Centric Elective–Lab	1	2
NME	2	2
Generic Elective- Lab	1	2
Total	27	29
SEMESTER – III		
List of Courses	Credits	No. of Hours
Core - Theory	15	13
Core - Lab	5	10
Discipline Centric Elective – Theory	3	3
Discipline Centric Elective –Lab	1	2
NME - I	2	2
Generic Elective- Lab	1	2
Total	26	29
SEMESTER – IV		
List of Courses	Credits	No. of Hours
Core - Lab	13	-
Centric Elective – Theory	2	4
Total	15	4
Overall Credit	92	

SEMESTER - I

	METHODS OF EVALUATION	
Internal	Continuous Internal Assessment Test	
Evaluation	Assignments / Snap Test / Quiz	25 Marks
	Seminars	
	Attendance and Class Participation	
External	End Semester Examination	75 Marks
Evaluation		

	Total	100 Marks
	METHODS OF ASSESSMENT	
Remembering (K1)	 The lowest level of questions require student information from the course content Knowledge questions usually require students information in the text book. 	s to recall to identify
Understanding (K2)	 Understanding off acts and ideas by comporganizing, comparing, translating, interpol interpreting in their own words. The questions go beyond simple recall ar students to combined at a together. 	prehending ating and nd require
Application (K3)	 Students have to solve problems by using/a concept learned in the class room. Students must use their knowledge to determine response. 	applying a ane a exact
Analyze (K4)	 Analyzing the question is one that asks the s break down something in to its component par Analyzing requires students to identify reaso or motives and reach conclusions or generalization 	students to ts. ons causes ations.
Evaluate (K5)	 Evaluation requires an individual to make ton something. Questions to be asked to judge the value of character, a work of art, or a solution to a prob Students are engaged in decision-making and solving. Evaluation questions do not have single right a 	e judgment E an idea, a blem. d problem– answers.
Create (K6)	 The questions of this category challenge stud engaged in creative and original thinking. Developing original ideas and problem solving solvi	ents to get skills

PROGRAMME OUTCOMES (PO) – PROGRAMME SPECIFIC OUTCOMES (PSO) MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
PSO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
PSO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
PSO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
PSO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
PSO5	Н	Н	Н	Н	H	Н	H	Η	Н	Н

LEVEL OF CORRELATION BETWEEN PO'S AND PSO'S

(Suggested by UGC as per Six Sigma Tool – Cause and Effect Matrix)

Assign the value : 1 – Low ; 2 – Medium ; 3 – High ; 0 – No Correlation

CANDIDATE ELIGIBILITY FOR M.C.A. PROGRAMME ADMISSION

Candidates who have passed in any one of the following or equivalent are eligible to apply:

- (i) BCA/Bachelor Degree in Computer Science stream (or) equivalent Degree.(OR)
- (ii) B.Sc., /B.Com. / B.A. with Mathematics at 10th, +2 level or at Graduation Level (with additional bridge Courses as per the norms of the concerned University).

Obtained at least 50% marks (45% marks in case of candidates belonging to reserved category) in the qualifying Examination.

Bridge Course on Basics in Computer Science

Course duration : 30Hours

Course Modules:

Module1	:	Computer Organization and Architecture
Module2	:	Data Structures and Algorithms
Module3	:	Problem Solving Techniques
Module4	:	Operating Systems
Module5	:	Object oriented programming
Module6	:	Database Management System
Module 7	:	Software Engineering
Module 8	:	Computer Networks

DURATION OF THE PROGRAMME AND MEDIUM

The programme shall be of two years duration spread over four semesters under choice based credit system. The Maximum duration to complete the course shall be two academic years after normal completion of the programme. The medium of instruction/study is English.

SCHEME OF EXAMINATION FOR EACH SEMESTER

Course Code	Course Name	Credits	Hou	irs		Marks	5	Examina-
			Т	Р	CIA	ESE	Total	tion
								Duration
23UPCSC1C01	Linux and Shell	4	4		25	75	100	3
	Programming				_			_
23UPCSC1C02	Python Programming	4	4		25	75	100	3
		~	-					
23UPCSCIC03	Discrete Mathematics	5	5		25	75	100	3
23UPCSC1L01	Linux and Shell	2		4	40	60	100	3
	Programming Lab				10	00	100	5
23UPCSC1L02	Python Programming	2		4	40	60	100	3
	Lab				10	00	100	5
23UPCSC1L03	Industry Dynamics	2		2	1.0	- 0		
	Technology (Data				40	60	100	3
	Visualization) - Lab							
Discipline	Elective Subject -	3	3		25	75	100	2
Centric	Theory				25	15	100	3
Elective -I								
Discipline	Elective Subject - Lab	1		2	40	(0)	100	2
Centric					40	60	100	3
Elective - I Lab								
Generic	Soft Skill Development	1		2	100		100	2
Elective-I	Lab				100	-	100	3
23UPCSC1S01								
	Total	24	16	14	360	540	900	-

SEMESTER - I

SEMESTER - II

Course Code	Course Name	Credits	Но	urs		Mark	Examination	
			Т	Р	CIA	ESE	Total	Duration
23UPCSC1C04	Data Structures and Algorithms	5	5		25	75	100	3
23UPCSC1C05	Big Data Analytics	4	4		25	75	100	3
23UPCSC1C06	Soft Computing	4	4		25	75	100	3
23UPCSC1L04	Data Structures and Algorithms Lab	2		3	40	60	100	3
23UPCSC1L05	Big Data Analytics Lab	2		3	40	60	100	3
23UPCSC1P01	Professional Competency Skill - Mini Project	2		2	40	60	100	3
Elective – III	Elective Subject - Theory	3	3		25	75	100	3
Elective – III Lab	Elective Subject - Lab	1		2	40	60	100	3
NME - I	Non Major Elective - I (Online Course)	2	2		-	-	100	3
Generic Elective - IV 23UPPGC1H01	Fundamentals of Human Rights	1	1		25	75	100	3
23UPCSC1X01	Extension Activity	1	-		100		100	3
	Total	27	19	10	385	615	1100	-

SEMESTER - III

Course Code	Course Name	Credits	Hours		Hours Marks			Examination
			Т	Р	CIA	ESE	Total	Duration
23UPCSC1C07	Advanced Java Programming	4	4		25	75	100	3
23UPCSC1C08	Web Technologies	4	4		25	75	100	3
23UPCSC1C09	Advanced Machine Leaning Techniques	4	4		25	75	100	3
23UPCSC1L06	Advanced Java Programming Lab	2		3	40	60	100	3

23UPCSC1L07	Web Technologies Lab	2		3	40	60	100	3
23UPCSC1L08	Integrated Technologies Lab (AML)	2		3	40	60	100	3
Discipline Centric Elective V	Elective Subject - Theory	3	3		25	75	100	3
Discipline Centric Elective V- Lab	Elective Subject - Lab	1		2	40	60	100	3
NME - II	Non Major Elective - II	2	3		25	75	100	3
23UPCSC1I01	Internship/Industrial Activity	2	-		100		100	3
		26	20	11	385	615	1000	-

SEMESTER - IV

Course Code	Course Name	Credits	Ho	urs	s Marks			Examination
			Т	Р	CIA	ESE	Total	Duration
23UPCSC1P02	Project with Viva Voce	13	-		50	150	200	3
23UPCSC1I02	Credit Seminar (Industry / Entrepreneurship)	2	4		100		100	3
	Total	15	4		150	150	300	-
	Overall Credit	92	59	35	1305	1995	3300	

CREDIT CALCULATION

Method of Teaching	Hours	Credits
Lecture	1	1
Tutorial/Demonstration	1	1
Practical/Internship/Self-Learning	2/1	1

ATTAINMENT RUBRICS FOR THEORY COURSES

THEORY EXAMINATION EVALUATION OF INTERNAL ASSESSMENT

Test	:	5 Marks (Best one out of Two Tests)
Model Examination	:	5 Marks
Seminar	:	5 Marks
Assignment	:	5 Marks
Attendance	:	5 Marks
Total	:	25Marks

*** No Internal Minimum

EVALUATION OF END SEMESTER EXAMINATIONS

QUESTION PAPER PATTERN (THEORY)

Section	Approaches	Mark Pattern	K Level	CO Coverage
А	One word (Answer all questions)	20X1 = 20 (Multiple Choice Questions)	K1-K2	Coverage
В	100 to 200 words (Answer any three out of five questions)	3X5 = 15 (Analytical type questions)	K4-K6	CO1 – CO5
С	500 to 1000 words	5X8 = 40 (Essay type questions)	K2-K6	

ATTAINMENT RUBRICS FOR LAB COURSES

PRACTICAL / MINI PROJECTEXAMINATION

EVALUATION OF INTERNAL ASSESSMENT

- Test : 20 Marks (Best one out of Two Tests)
- Model Exam : 20Marks
 - Total : 40 Marks

*** No Internal Minimum

QUESTIONPAPERPATTERN

Time duration	:	3Hours
Max. Marks	:	60 Marks

Two Questions may be taken from the list of practical problems: 60 Marks

Distribution of the Marks

(i) Practical/Mini Project

I	Industrial Training						
0	For correct output and viva	-	10				
0	Debugging and Modification	-	10				
0	Implementation	-	20				
0	Problem Understanding	-	10				
0	Record Note Book	-	10				

(ii) <u>Industrial Training</u>

0	Internal Assessment	-	40
0	Joint Viva-Voce	-	60

(Internal Examiner 30 and External Examiner 30)

(iii) <u>Dissertation</u>

0	Internal Assessment	-	50
0	Report Evaluation by External Examiner	-	50
0	Joint Viva-Voce	-	100

(Internal Examiner 50 and External Examiner 50)

REGULATIONS FOR DISSERTATION WORK

- Students should attach themselves with well reputed Industry/Company/Institutions to do their five months dissertation work.
- The Candidate should submit the filled in format to the department for approval during the First week of December during the even semester.
- The review of the dissertation will be carried out periodically.
- The student should submit three copies of their dissertation work.
- The students may use Power Point Presentation during their Dissertation Viva-Voce Examinations.

PASSING MINIMUM

The candidate shall be declared to have passed in the Theory/Practical/Dissertation Examination if the candidate secures:

- i. 50% marks in the ESE and
- ii. 50% in ESE and IA put together

GRADING SYSTEM

Evaluation of performance of students is based on ten-point scale grading system as given below.

Ten Point Scale								
Grade of Marks	Grade points	Letter Grade	Description					
90-100	9.0-10.0	0	Outstanding					
80-89	8.0-8.9	D+	Excellent					
75-79	7.5-7.9	D	Distinction					
70-74	7.0-7.4	A+	Very Good					
60-69	6.0-6.9	А	Good					
50-59	5.0-5.9	В	Average					
00-49	0.0	U	Re-appear					
ABSENT	0.0	AAA	ABSENT					

LINUX AND SHELL PROGRAMMING

COURSE OBJECTIVE

- To teach principles of operating system including File handling utilities, Basic Linux commands, Scripts and filters.
- To familiarize fundamentals of shell (bash), shell programming, pipes, Control structures, arithmetic in shell interrupt processing, functions, debugging shell scripts.
- To impart fundamentals of file concepts kernel support for file, File structure related system calls (file API's).
- To facilitate students in understanding Inter process communication, semaphore and shared memory.
- To explore real-time problem solution skills in Shell programming.

UNIT -I

Basic bash Shell Commands: Interacting with the shell-Traversing the file system-Listing files and directories-Managing files and directories-Viewing file contents.

Basic Script Building: Using multiple commands-Creating a script file-Displaying messages-Using variables-Redirecting input and output-Pipes-Performing math-Exiting the script.

Using Structured Commands: Working with the if-then statement-Nesting ifs-Understanding the test command-Testing compound conditions-Using double brackets and parentheses-Looking at case.

(Book-1, Chapters: 3, 11, and 12)

UNIT-II

More Structured Commands: Looping with for statement-Iterating with the until statement-Using the while statement-Combining loops-Redirecting loop output.

Handling User Input: Passing parameters-Tracking parameters-Being shifty-Working with options-Standardizing options-Getting user input.

Script Control: Handling signals-Running scripts in the background-Forbidding hang-ups - Controlling a Job-Modifying script priority-Automating script execution.

(Book-1, Chapters: 13, 14, and 16)

UNIT-III

Creating Functions: Basic script functions-Returning a value-Using variables in functions-Array and variable functions-Function recursion-Creating a library-Using functions on the command line.

Writing Scripts for Graphical Desktops: Creating text menus-Building text window widgets-Adding X Window graphics.

Introducing Sed and Gawk: Learning about the sed Editor-Getting introduced to the gawk Editor-Exploring sed Editor basics.

(Book-1, Chapters: 17, 18, and 19)

UNIT-IV

Regular Expressions: Defining regular expressions-Looking at the basics-Extending our patterns-Creating expressions.

Advanced Sed: Using multiline commands-Understanding the hold space-Negating a command-Changing the flow-Replacing via a pattern-Using sed in scripts-Creating sed utilities.

Advanced gawk: Reexamining gawk-Using variables in gawk-Using structured commands-Formatting the printing-Working with functions.

(Book-1, Chapters: 20, 21, and 22)

UNIT-V

Working with Alternative Shells: Understanding the dash shell-Programming in the dash shell-Introducing the zsh shell-Writing scripts for zsh.

Writing Simple Script Utilities: Automating backups-Managing user accounts-Watching disk space

Producing Scripts for Database, Web, and E-Mail: Writing database shell scripts-Using the Internet from your scripts-Emailing reports from scripts

Using Python as a Bash Scripting Alternative: Technical requirements-Python Language-Hello World the Python way-Pythonic arguments-Supplying arguments-Counting arguments-Significant whitespace-Reading user input-Using Python to write to files-String manipulation.

(Book-1, Chapters: 23, 24, 25, and Book-2, Chapter: 14)

TEXT BOOKS:

 Richard Blum, Christine Bresnahan, "Linux Command Line and Shell Scripting BIBLE", Wiley Publishing, 3rd Edition 2015. Chapters: 3, 11 to 14, 16 to 25. Mokhtar Ebrahim, Andrew Mallett, "Mastering Linux Shell Scripting", Packt Publishing, 2nd Edition, 2018. Chapter: 14.

REFERENCE BOOKS:

- ClifFlynt, Sarath Lakshman, Shantanu Tushar, "Linux Shell Scripting Cookbook", Packt Publishing, 3rd Edition, 2017.
- Stephen G.Kochan, Patrick Wood, "Shell Programming in Unix, Linux, and OS X", Addison Wesley Professional, 4th Edition, 2016.
- 3. Robert Love, "Linux System Programming", O'Reilly Media, Inc, 2013
- 4. W.R. Stevens, "Advanced Programming in the UNIX environment", 2nd Edition, Pearson Education, 2013
- 5. Graham Glass, King Ables, "UNIX for Programmers and Users", 3rd Edition, Pearson Education, 2003

COURSE OUTCOMES

On the successful completion of the course, students will be able

CO1:	To understand, apply and analyze the concepts and methodology of Linux shell programming	
CO2:	To comprehend, impart and apply fundamentals of control structure and script controls	
CO3:	To understand, analyses and evaluate the functions, graphical desktop interface and editors	K1-K6
CO4:	To collaborate, apply and review the concepts and methodology of regular expression and advanced gawk	
CO5:	To comprehend, use and illustrate the advance concepts such as alternate shell script, data connectivity and bash scripting using python	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6-Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	L	Н	L	L	М	Μ	М
CO2	Н	Н	М	L	Н	L	L	М	Μ	М
CO3	Н	Н	М	L	Н	L	L	М	Μ	Н
CO4	Н	Н	М	L	Н	L	L	М	Μ	М
CO5	Н	Н	М	L	Н	L	L	М	М	М

Subject Code: 23UPCSC1C02

PYTHON PROGRAMMING

COURSE OBJECTIVES:

- To acquire programming skills in core Python
- To learn Strings and function
- To develop object oriented skills in Python
- To comprehend various Python Packages
- To develop web applications using Django

UNIT I

Introduction : Fundamental ideas of Computer Science - Strings, Assignment and Comments -Numeric Data types and Character sets - Expressions - Loops and Selection Statements: Definite iteration: the for Loop - selection: if and if-else statements - Conditional iteration: the while Loop

UNIT II

Strings and Text Files: Accessing Characters and substrings in strings - Data encryption-Strings and Number systems- String methods - Text - Lists and Dictionaries: Lists - Dictionaries - Design with Functions: A Quick review - Problem Solving with top-Down Design - Design with recursive Functions - Managing a Program's namespace - Higher-Order Functions

UNIT III

Design with Classes: Getting inside Objects and Classes - Data-Modeling Examples - Building a New Data Structure - The Two - Dimensional Grid - Structuring Classes with Inheritance and Polymorphism-GraphicalUserInterfaces-The Behavior of terminal-Based programs and GUI-Based programs - Coding Simple GUI-Based programs - Windows and Window Components - Command Buttons and responding to events

UNIT IV

Working with Python Packages: NumPy Library-Ndarray- Basic Operations - Indexing, Slicing and Iteration - Array manipulation - Pandas - The Series - The DataFrame - The Index Objects - Data Vizualization with Matplotlib- The Matplotlib Architecture -Pyplot- The Plotting Window - Adding Elements to the Chart - Line Charts - Bar Charts - Pie charts

UNIT V

Django: Installing Django- Building an Application - Project Creation - Designing the Data Schema - Creating an administration site for models - Working with QuerySets and Managers -Retrieving Objects - Building List and Detail Views

TEXT BOOKS:

- 1. K.A. Lambert, "Fundamentals of Python: first programs", Second Edition, Cengage Learning, 2018 (Unit I, II and III)
- 2. Fabio Nelli, "Python Data Analytics: With Pandas, NumPy, and Matplotlib", Second Edition, Kindle Edition, 2018 (**Unit IV**)
- 3. Antonio Mele, "Django 3 By Example", Third Edition, 2020 (Unit V)

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	Comprehend the programming skills in python and develop applications using conditional branches and loop	
CO2	Create python applications with strings and functions	
CO3	Understand and implement the Object Oriented Programming paradigm with the concept of objects and classes, Inheritance and polymorphism	K1- K6
CO4	Evaluate the use of Python packages to perform numerical computations and data vizualization	
CO5	Design interactive web applications using Django	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	Н	М	Н	Н	Н	Н	Μ
CO2	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO3	Н	Μ	Н	Н	М	Н	М	Н	Н	Μ
CO4	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	Н	М

DISCRETE MATHEMATICS

(Theorems and Proofs are not expected)

COURSE OBJECTIVE

- To know the concepts of relations and functions
- To distinguish among different normal forms and quantifiers
- To solve recurrence relations, permutations and combinations
- To know and solve matrices, rank of matrix and characteristic equations
- To study the graphs and its types

UNIT-I

Relations- Binary relations-Operations on relations- Properties of binary relations in a set - Equivalence relations - Representation of a relation by a matrix -Representation of a relation by a digraph.

Functions-Definition and examples-Classification of functions-Composition of functions-Inverse function

UNIT-II

Mathematical Logic-Logical connectives-Well formed formulas- Truth table of well formed formula - Algebra of proposition - Quine's method- Normal forms of well formed formulas-Disjunctive normal form-Principal Disjunctive normal form-Conjunctive normal form-Principal conjunctive normal form-Rules of Inference for propositional calculus–Quantifiers- Universal Quantifiers- Existential Quantifiers

UNIT-III

Recurrence Relations- Formulation - Solving recurrence Relation by Iteration- Solving Recurrence Relations- Solving Linear Homogeneous Recurrence Relations of Order Two-Solving Linear Non homogeneous Recurrence Relations. **Permutations**-Cyclic permutation-Permutations with repetitions- Permutations of sets with indistinguishable objects – **Combinations**- Combinations with repetition.

UNIT-IV

Matrices- Special types of matrices–Determinants-Inverse of a square matrix-Cramer's rule for solving linear equations-Elementary operations-Rank of a matrix- Solving a system of linear equations- Characteristic roots and Characteristic vectors–Cayley-Hamilton Theorem-Problems

UNIT-V

Graphs -Connected Graphs -Euler Graphs- Euler line-Hamiltonian circuits and paths - planar graphs - Complete graph-Bipartite graph-Hyper cube graph-Matrix representation of graphs.

TEXT BOOK:

1. N.Chandrasekaran and M.Umaparvathi, "Discrete Mathematics", PHI Learning Private Limited, New Delhi, 2010.

REFERENCE BOOKS

- 1. Kimmo Eriksson & Hillevi Gavel, "Discrete Mathematics & Discrete Models", Student literature AB, 2015.
- 2. Kenneth H. Rosen, "Discrete Mathematics and applications", McGraw Hill, 2012

COURSE OUTCOMES

On the successful completion of the course, students will be able

CO1:	To understand the concepts of relations and functions distinguish among normal forms	
CO2:	To analyze and evaluate the recurrence relations	
CO3:	To distinguish among various normal forms and predicate calculus	K1 – K6
CO4:	To solve and know various types of matrices	
CO5:	To evaluate and solve various types of graphs	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6 -Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	Н	М	Н	Н	Н	М	L	М
CO2	L	М	М	М	L	М	L	М	Μ	М
CO3	Н	Н	Н	Н	L	М	Н	Н	Μ	L
CO4	М	М	L	L	М	М	Н	М	Н	М
CO5	Н	Н	Н	М	М	L	L	Н	Н	Н

MAPPING WITH PROGRAMME OUTCOMES

Subject Code: 23UPCSC1L01

Credits: 02

LINUX AND SHELL PROGRAMMING - LAB

COURSE OBJECTIVES

- To enable the students to study and understand the efficiency of Linux shell script.
- To demonstrate the File Backup process.
- To develop and implement the shell script for GUI processing.
- To develop and implement the shell script for IPC and Networking.
- To demonstrate PostgreSQL.

LIST OF EXPERIMENTS

- 1. Write a Shell Script program to calculate the number of days between two dates.
- 2. Write a Shell Script program to check systems on local network using control structures with user input.
- 3. Write a Shell Script program to check systems on local network using control structures with file input.
- 4. Write a Shell Script program to demonstrate the script control commands.
- 5. Write a Shell Script program to demonstrate the Shell script function.
- 6. Write a Shell Script program to demonstrate the Regular Expressions.
- 7. Write a Shell Script program to demonstrate the sed and awk Commands.
- 8. Write a Shell Script program to demonstrate the File Backup process through creating a daily archive location.
- 9. Write a Shell Script program to create a following GUI tools.
 - a) Creating text menus
 - b) Building text window widgets

10. Write a Shell Script program to demonstrate to connect a PostgreSQL database and performing CRUD operations.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1:	To understand, apply and analyze the concepts and methodology of Linux shell programming	
CO2:	To comprehend, impart and apply fundamentals of control structure and script controls	
CO3:	To understand, analyses and evaluate the functions, graphical desktop interface and editors	K1-K6
CO4:	To collaborate, apply and review the concepts and methodology of regular expression and advanced gawk	
CO5	To comprehend, use and analyze the advance concepts such as alternate	
005.	shell script, dy and bash scripting using PostgreSQL	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	L	Н	L	L	L	Μ	L
CO2	Н	Н	Н	L	Н	L	L	L	Μ	L
CO3	Н	Н	Н	L	Н	L	L	L	М	Н
CO4	Н	Н	Н	L	Н	L	L	L	М	L
CO5	Н	Н	Н	L	Н	L	L	L	М	Н

Subject Code: 23UPCSC1L02

PYTHON PROGRAMMING LAB

COURSE OBJECTIVES:

This course enables the students:

- To master the fundamentals of writing python scripts
- To create program using elementary data items
- To implement Python programs with conditionals and loops
- To use functions for structuring Python programs
- To develop web programming with Django

IMPLEMENT THE FOLLOWING IN PYTHON:

LIST OF EXPERIMENTS

- 1. Program using elementary data items, lists, dictionaries and tuples
- 2. Program using conditional branches, loops
- 3. Program using functions
- 4. Program using classes and objects
- 5. Program using inheritance
- 6. Program using polymorphism
- 7. Program using Numpy
- 8. Program using Pandas
- 9. Program using Matplotlib
- 10. Program for creating dynamic and interactive web pages using forms

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	Comprehend the programming skills in python and write scripts	
CO2	Create python applications with elementary data items, lists, dictionaries and tuples	
CO3	Implement the Object Oriented Programming programming concepts such as objects and classes, Inheritance and polymorphism	K1- K6
CO4	Assess the use of Python packages to perform numerical computations and perform data visualization	
CO5	Create interactive web applications using Django	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	Н	Н	Н	Н	Н	Н	Μ
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	М	Н	Н	М
CO4	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO5	Н	Н	Н	Н	L	Н	Μ	Н	Н	Μ

Subject Code: 23UPCSC1L03

INDUSTRY DYNAMICS TECHNOLOGY (DATA VISUALIZATIONS) LAB

COURSE OBJECTIVES

- To learn the basic functions and operations of Excel and tableau
- To explore to design, build, and deploy various charts for applications,
- To comprehend, design and deploy the label and heat map
- To understand and deploy dashboard
- To understand the functions of tableau for data process.

Note: Use the global-superstore from tableau dataset http://www.tableau.com/sites/default/files/training/global_superstore.zip

IMPLEMENT THE FOLLOWING USING EXCEL

LIST OF EXPERIMENTS

- 1. Create Pie chart for Sales and Sales % by Country (sorted in descending order)
- 2. Create Bar chart for Sales by Country by Year (rounded to nearest thousand and sorted by Grand Total)
- 3. Create Line char for Sales by Ship Mode (First Class, Same Day, Second Class and Standard Class)
- 4. Create Scatter chart for Sales by Ship Mode by Country (rounded to the nearest dollar and sorted by First Class)
- 5. Create heat map for Sales by Category by Sub-Category (in thousands and sorted by sales value in descending order)
- 6. Design and create the label for vendor list
- 7. Design and create the dash board

IMPLEMENT THE FOLLOWING USING TABLEAU

- 8. Sales by Ship Mode (First Class, Same Day, Second Class and Standard Class)
- 9. Sales by Ship Mode by Country (rounded to the nearest dollar and sorted by First Class)
- 10. Sales by Category by Sub-Category (in thousands and sorted by sales value in descending order)

COURSE OUTCOMES

CO1:	Enable to create and apply Spread sheet and Tableau for various data processing	
CO2:	Gains knowledge to create and design various visualization tools in Excel and Tableau.	
CO3:	Comprehend, create and deploy labels and heat map.	K1-K6
CO4:	Enable to create and apply dashboard for various data processing	
CO5:	Illustrate and apply data visualization tool for any data set	

On the successful completion of the course, students will be able to:

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- evaluate and K6- Create

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	L	М	Н	L	L	L	-
CO2	Н	Μ	Н	Н	Н	М	L	L	L	-
CO3	Н	Н	Н	Н	Н	Н	L	L	L	-
CO4	Н	М	М	Н	М	L	L	L	L	-
CO5	М	Н	М	L	Н	М	L	L	L	-

Subject Code: 23UPCSC1S01

SOFT SKILL DEVELOPMENT LAB

COURSE OBJECTIVE

This course enables the students:

- To enable students to gain basic communication skills in professional and social contexts effectively.
- To acquire useful words and apply them in situational context.
- To develop listening and reading skills through comprehension passages
- To enrich the leadership qualities and interpersonal communication
- To enhance essential characteristics in writing

LIST OF EXPERIMENTS

- 1. Characteristics of Technical Writing
- 2. Development of Employability Skills
- 3. Vocabulary Development
- 4. Sentence Completion
- 5. Error Spotting
- 6. Interpretation of Verbal Analogy
- 7. Interpretation of Reading (Comprehension -Conception)
- 8. Interpretation of Reading (Comprehension -Reasoning)
- 9. Practice for writing E-mails/Technical Blogs/Forums
- 10. PPT Preparation / Demonstration of Technical Presentation
- 11. Preparation of Resume
- 12. Preparation for Job Interviews / Mock Interview Section
- 13. Group Discussion Skills
- 14. Developing Listening Skill(Comprehension)
- 15. Practice for Short Speeches / Situational Conversation

- 16. English through Mass Media
- 17. Essential Grammar
- 18. Communicating and collaborating with peer members
- 19. Team Empowerment
- 20. Persuasive Communication

TEXT BOOKS

- 1. Uma Narula, "Development Communication: Theory and Practice", Revised Edition, Har-Aanad Publication, 2019.
- 2. Annette Capel and Wendy Sharp, "Cambridge English: Objective First", Fourth Edition, Cambridge University Press, 2013.
- 3. Emma Sue-Prince, "The Advantage: The 7 Soft Skills You Need to Stay One Step Ahead", First Edition, FT Press, 2013.
- 4. Guy Brook-Hart, "Cambridge English: Business Benchmark", Second Edition, Cambridge University Press, 2014.
- 5. Norman Lewis, "How to Read Better & Faster", Binny Publishing House, New Delhi, 1978.

REFERENCE BOOKS

- 1. Michael McCarthy and Felicity O'Dell, "English Vocabulary in Use:100 Units of Vocabulary Reference and Practice", Cambridge UniversityPress,1996.
- 2. Murphy, Raymond, "Intermediate English Grammar", Second Edition, Cambridge University Press, 1999.

COURSE OUTCOMES

On the successful completion of the course, students will be able

	-	
CO1:	To gain basic professional communication skills and social contexts	
	effectively.	
CO2:	To acquire useful words and apply them in situational context.	
CO3:	To develop listening and reading skills through comprehension passages	K1-K6
CO4:	To enrich the leadership qualities and interpersonal communication	
CO5:	To enhance essential characteristics in writing	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6-Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	L	М	Н	L	L	L	Н
CO2	Н	М	Н	Н	Н	М	L	L	L	М
CO3	Н	Н	Н	Н	Н	Н	L	L	L	Н
CO4	Н	М	М	Н	М	L	L	L	L	L
CO5	М	Н	М	L	Н	М	L	L	L	М

DATA STRUCTURES AND ALGORITHMS

COURSE OBJECTIVES:

- To get a clear understanding of various ADT structures.
- To understand how to implement different ADT structures with real-time scenarios.
- To analyze the various data structures with their different implementations.
- To get an idea of applying right models based on the problem domain.
- To realize, and understand how and where to implement modern data structures with Python language.

UNIT-I

Abstract Data Types: Introduction-Date Abstract Data Type – Bags-Iterators. Arrays: Array Structure-Python List-Two Dimensional Arrays-Matrix Abstract Data Type. Sets, Maps: Sets – Maps – Multi-Dimensional Arrays.

UNIT-II

Algorithm Analysis: Experimental Studies-Seven Functions-Asymptotic Analysis. Recursion: Illustrative Examples-Analyzing Recursive Algorithms-Linear Recursion- Binary Recursion-Multiple Recursion.

UNIT-III

Stacks, Queues, and Deques: Stacks – Queues – Double-Ended Queues Linked. **Lists:** Singly Linked Lists-Circularly Linked Lists-Doubly Linked Lists. **Trees:** General Trees-Binary Trees-Implementing Trees-Tree Traversal Algorithms.

UNIT-IV

Priority Queues: Priority Queue Abstract Data Type- Implementing a Priority Queue – Heaps-Sorting with a Priority Queue. **Maps, Hash Tables, and Skip Lists:** Maps and Dictionaries-Hash Tables- Sorted Maps-Skip Lists-Sets, Multi Sets, and Multi Maps.

UNIT-V

Search Trees: Binary Search Trees-Balanced Search Trees-AVL Trees-Splay Trees. Sorting and Selection: Merge sort-Quick sort-Sorting through an Algorithmic Lens- Comparing Sorting Algorithms-Selection. Graph Algorithms: Graphs-Data Structures for Graphs-Graph Traversals-Shortest Paths-Minimum Spanning Trees.

TEXT BOOKS:

- Rance D. Necaise, "Data Structures and Algorithms Using Python", John Wiley & Sons, 2011. (Unit – 1)Chapters: 1, 2, 3.
- Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & Sons, 2013. (Unit – 2, 3, 4, and 5) Chapters: 3 to 12, and 14.

REFERENCE BOOKS:

- 1. Dr. Basant Agarwal; Benjamin Baka, "Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7", Packt Publishing, 2018.
- 2. Magnus Lie Hetland, "Python Algorithms: Mastering Basic Algorithms in the Python Language", Apress, 2014.

COURSE OUTCOME:

On the successful completion of the course, students will be able to,

CO1	Understand various ADT concepts	
CO2	Familiar with implementation of ADT models with Python language and understand how to develop ADT for the various real-time problems	
CO3	Apply with proper ADT models with problem understanding	K1-K6
CO4	Apply and Analyze right models based on the problem domain	
CO5	Evaluate modern data structures with Python language	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	L	L	L	L	Н	Н	Н	L
CO2	Н	М	Н	М	М	L	L	L	L	L
CO3	Н	Н	Н	L	L	L	М	М	Μ	М
CO4	Н	Н	Н	L	L	L	М	М	М	L
CO5	Н	Н	Н	L	М	М	Н	Н	Н	Н

Subject Code: 23UPCSC1C05

BIG DATA ANALYTICS

COURSE OBJECTIVES

- To introduce big data tools & Information Standard formats.
- To understand the basic concepts of big data.
- To learn Hadoop, HDFS and Map Reduce concepts.
- To teach the importance of NoSQL.
- To explore the big data tools such as Hive, HBase and Pig.

UNIT I

Big Data and Analytics: Classification of Digital Data: Structured Data- Semi Structured Data and Unstructured Data.

Introduction to Big Data: Characteristics - Evolution - Definition - Challenges with Big Data - Other Characteristics of Data - Big Data - Traditional Business Intelligence versus Big Data - Data Warehouse and Hadoop.

Environment Big Data Analytics: Classification of Analytics - Challenges - Big Data Analytics important - Data Science - Data Scientist - Terminologies used in Big Data Environments -Basically Available Soft State Eventual Consistency - Top Analytics Tools

UNIT II

Technology Landscape: NoSQL, Comparison of SQL and NoSQL, Hadoop -RDBMS Versus Hadoop - Distributed Computing Challenges -Hadoop Overview - Hadoop Distributed File System - Processing Data with Hadoop - Managing Resources and Applications with Hadoop YARN - Interacting with Hadoop Ecosystem

UNIT III

Mongodb and Mapreduce Programming: MongoDB: Mongo DB - Terms used in RDBMS and Mongo DB - Data Types - MongoDB Query Language.

MapReduce: Mapper - Reducer - Combiner - Partitioner- Searching - Sorting - Compression

UNIT IV

Hive: Introduction - Architecture - Data Types - File Formats - Hive Query Language Statements - Partitions - Bucketing - Views - Sub- Query - Joins - Aggregations - Group by and Having - RCFile - Implementation - Hive User Defined Function - Serialization and Deserialization.

UNIT V

Pig: Introduction - Anatomy - Features - Philosophy - Use Case for Pig - Pig Latin Overview -Pig Primitive Data Types - Running Pig - Execution Modes of Pig - HDFS Commands -Relational Operators - Eval Function - Complex Data Types - Piggy Bank - User-Defined Functions - Parameter Substitution - Diagnostic Operator - Word Count Example using Pig - Pig at Yahoo! - Pig Versus Hive

TEXT BOOK:

1. Seema Acharya, Subhashini Chellappan, "Big Data and Analytics", Wiley Publications, First Edition.2015

REFERENCE BOOK:

- 1. Judith Huruwitz, Alan Nugent, Fern Halper, Marcia Kaufman, "Big data for dummies", John Wiley & Sons, Inc. (2013)
- 2. Tom White, "Hadoop The Definitive Guide", O'Reilly Publications, Fourth Edition, 2015
- 3. Dirk Deroos, Paul C.Zikopoulos, Roman B.Melnky, Bruce Brown, Rafael Coss, "Hadoop For Dummies", Wiley Publications, 2014
- 4. Robert D.Schneider, "Hadoop For Dummies", John Wiley & Sons, Inc. (2012)
- 5. Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill, 2012 Chuck Lam, "Hadoop In Action", Dreamtech Publications, 2010

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1:	To understand, illustrate and evaluate the concepts and techniques of Data Science, Big Data Analytics and its tools					
CO2:	To collaborate, apply and review the computing for big data in Hadoop, and NoSQL environment.					
CO3:	To comprehend, implement and review the concepts of data science and big data analytics projects using MapReduce, and MongoDB					
CO4:	To understand, use and analyze the concepts of big data analytics projects using HIVE database.					
CO5:	To illustrate, develop and review the concepts of PIG database in Hadoop environment.					

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5 Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	Н	Н	-	L	-	Н	-	-
CO2	Н	L	L	L	Μ	L	-	L	-	-
CO3	Н	L	Μ	М	Н	L	-	М	-	Н
CO4	Н	L	Μ	М	Н	L	-	М	-	Н
CO5	Н	Н	Н	Н	Н	L	-	Н	-	Н
Subject Code: 23UPCSC1C06

SOFT COMPUTING

COURSE OBJECTIVES:

- Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- To understand supervised and unsupervised learning algorithms
- To enable the students to gain a basic understanding of neural networks.
- To know about fuzzy logic, fuzzy inference systems, and their functions.
- To impart basic knowledge on Genetic algorithms and their applications.

UNIT-I

INTRODUCTION TO SOFT COMPUTING: Artificial Neural Networks- Biological Neurons- Basic Models of Artificial Neural Networks – Connections – Learning-Activation Functions- Important Terminologies of ANNs- Muculloch and Pitts Neuron-Linear Separability-Hebb Network-Flowchart of Training Process-Training Algorithm.

UNIT – II

SUPERVISED LEARNING NETWORK : Perceptron Networks–Perceptron Learning Rule – Architecture-Flowchart for Training Process-Perceptron Training Algorithms for Single Output Classes-Perceptron Training Algorithm for Multiple Output Classes-Perceptron Network Testing Algorithm - Adaptive Linear Neuron-Delta Rule for Single Output Unit-Flowchart for training algorithm-Training Algorithm – Testing Algorithm - Multiple Adaptive Linear Neurons-Architecture-Flowchart of Training Process-Training Algorithm-Back Propagation Network – Architecture-Flowchart for Training Process-Training Algorithm-Learning Factors of Back-Propagation Network-Radial Basis Function Network – Architecture-Flowchart for Training Process-Training Algorithm.

UNIT-III

UNSUPERVISED LEARNING NETWORK: Associative Memory Networks - Auto Associative Memory Network– Architecture-Flowchart for Training Process-Training Algorithm-Testing Algorithm- Bidirectional Associative Memory – Architecture-Discrete Bidirectional Associative Memory-Iterative Auto Associative Memory Networks - Linear Auto Associative Memory-Kohonen Self-Organizing Feature Map – Architecture-Flowchart for Training Process-Training Algorithm.

UNIT-IV

INTRODUCTION TO FUZZY LOGIC: Classical Sets –Operations on Classical Sets-Fuzzy sets - Fuzzy Sets- Properties of Fuzzy Sets- Fuzzy Relations –Membership Functions: Fuzzification- Methods of Membership Value Assignments – Defuzzification – Lambda-Cuts for Fuzzy sets and Fuzzy Relations – Defuzzification Methods–Max-Membership Principle-Centroid Method-Weighted Average Method-Mean Max Membership-Center of Sums-Center of Largest Area-First of Maxima

UNIT-V

GENETIC ALGORITHM: Introduction -Biological Background - Basic Operators and terminologies in Genetic algorithm- Search Space- Effects of genetic Operators – Traditional Vs Genetic Algorithm - Simple GA- General Genetic Algorithm- The Scheme Theorem - Applications

TEXT BOOK

1. Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley, Third Edition, 2019.

UNIT I: Chapter 1: 2.1,2.3,2.4,2.5,2.6,2.7 UNIT II: Chapter 2: 3.2,3.3,3.4,3.5,3.6 UNIT III: Chapter 4 and 5: 4.1,4.3,4.5,4.6,4.7,5.3 UNIT IV: Chapter 7: 7.2,7.3,8.4,9.3,9.4,10.1,10.2,10.3,10.4 UNIT V: Chapter 5: 15.1,15.2,15.3,15.4,15.5,15.6,15.10

REFERENCE BOOKS

- 1. Das, A. (2018). Artificial Intelligence and Soft Computing for Beginners.
- 2. Amit, K. (2018). Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain. CRC press.
- 3. Rajasekaran, S., &Pai, G. V. (2011). Neural networks, fuzzy logic and genetic algorithm: synthesis and applications (with cd). PHI Learning Pvt. Ltd.
- Jang, J. S. R., Sun, C. T., &Mizutani, E. (2004). Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on automatic control, 42(10), 1482-1484.
- 5. Gupta, M. M. (2004). Soft computing and intelligent systems: theory and applications. Elsevier.
- Jang, J. S. R., Sun, C. T., &Mizutani, E. (1997). Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on automatic control, 42(10), 1482-1484.

• On the successful completion of the course, students will be able to

CO1	To provide an introduction to the basic principles, techniques, and applications of soft computing	
CO2	To get familiar with Neural network architectures and supervised learning algorithms	
CO3	To understand the architectures and algorithms of Unsupervised Learning techniques	K1-K6
CO4	Develop the skills to gain a basic understanding of fuzzy logic theory and fuzzy inference systems	
CO5	Ability to learn traditional optimization and search techniques and genetic programming	

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Μ	Н	М	Н	Н	Н	Μ	Н	Μ
CO2	М	Н	М	Н	М	М	М	Н	Μ	Н
CO3	М	М	Н	Н	Н	М	М	Н	Н	Н
CO4	Н	Н	М	М	М	Н	Н	Н	Н	Μ
CO5	Н	Н	Н	Н	Н	М	Н	М	Μ	Н

Subject Code: 23UPCSC1L04

Credits: 02

DATA STRUCTURES AND ALGORITHMS LAB

COURSE OBJECTIVES

- To understand Stack, Queue and Doubly Linked ADT structures.
- To implement different ADT structures with real-time scenarios.
- To analyze the recursion concepts.
- To apply different sorting and tree techniques.
- To implement modern data structures with Python language.

LIST OF EXPERIMENTS

IMPLEMENT THE FOLLOWING PROBLEMS USING PYTHON 3.4 AND ABOVE

- 1. Recursion concepts.
 - i) Linear recursion
 - ii) Binary recursion.
- 2. Stack ADT.
- 3. Queue ADT.
- 4. Doubly Linked List ADT.
- 5. Heaps using Priority Queues.
- 6. Merge sort.
- 7. Quick sort.
- 8. Binary Search Tree.
- 9. Minimum Spanning Tree.
- 10. Depth First Search Tree traversal.

On the successful completion of the course, students will be able to,

CO1 Strong understanding in various ADT concepts	
CO2 To become a familiar with implementation of ADT models	
CO3 Apply sort and tree search algorithms K1	1-K6
CO4 Evaluate the different data structure models	
CO5 Learn how to develop ADT for the various real-time problems	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	L	L	L	L	Н	Н	Μ	М
CO2	Н	М	Н	М	М	L	Н	М	Н	L
CO3	Н	Н	Н	L	L	L	М	М	Μ	М
CO4	Н	Н	Н	М	М	Н	М	М	Н	Н
CO5	Н	Н	Н	Н	L	М	Н	М	Μ	М

Subject Code: 23UPCSC1L05

Credits: 02

BIG DATA ANALYTICS LAB

COURSE OBJECTIVES

- To teach the fundamental techniques for handling the big data tools.
- To familiarize the tools required to manage big data.
- To analyse big data using Hadoop, MapReduce, Hive, and Pig
- To teach the fundamental principles in achieving big data analytics with scalability and streaming capability
- To enable students to have skills that will help them to solve complex.

- 1. Implement File System Shell Commands for HDFS in Hadoop Environment
- 2. Write a Mapreduce program using single reduce function for finding Maximum and Minimum Number
- Write a Mapreduce program using multiple reduce function for Word Count in an given Text document
- 4. Implement the following using Pig Latin Input and Output Operations Relational Operations
- Implement the following using Pig Latin User Defined Functions Advanced Relational Operations
- 6. Write a Word Count program using Pig Latin Script
- 7. Write a program to find a maximum temperature using Pig Latin Script
- Implement the following using Hive commands Handling the Database Creating and Manipulating table
- 9. Implement Simple Queries for database using Mongo
- 10. Implement Simple Queries for collections using Mongo

On the successful completion of the course, students will be able to

CO1:	Understand and develop conceptually how Big Data is stored and implement it using different tools	
CO2:	Comprehend and implement programs for data storage in HDFS and table manipulation using Big Data tools in Hadoop environment	
CO3:	Understand and Critically analyse existing Big Datasets and implementations the solutions for it using MongoDB	K1-K6
CO4:	Understand and examine existing Big Datasets and implementations the solutions using HIVE database	
CO5:	Comprehend and review existing datasets and implementations the solutions to handle it using PIG	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	Н	М	Н	Μ	Н	Н	-
CO2	Н	Μ	Н	Н	Н	Μ	М	L	L	М
CO3	Н	Н	Н	Н	Н	Н	Н	М	Μ	Н
CO4	Н	М	Н	Н	Н	М	Н	М	Μ	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

Subject Code: 23UPPGC1H01

FUNDAMENTALS OF HUMAN RIGHTS

UNIT I: INTRODUCTION

Meaning and Definitions of Human Rights - Characteristics and Importance of Human Rights -Evolution of Human Rights - Formation, Structure and Functions of the UNO - Universal Declaration of Human Rights - International Covenants - Violations of Human Rights in the Contemporary Era.

UNIT II: HUMAN RIGHTS IN INDIA

Development of Human Rights in India - Constituent Assembly and Indian Constitution -Fundamental Rights and its Classification - Directive Principles of State Policy - Fundamental Duties.

UNIT III

Rights of Marginalized and other Disadvantaged People: Rights of Women - Rights of Children - Rights of Differently Abled - Rights of Elderly - Rights of Scheduled Castes - Rights of Scheduled Tribes - Rights of Minorities - Rights of Prisoners - Rights of Persons Living with HIVAIDS - Rights of LGBT.

UNIT IV

Human Rights Movements: Peasant Movements (Tebhaga and Telangana) - Scheduled Caste Movements (Mahar and Ad-Dharmi) - Scheduled Tribes Movements (Santhal and Munda) -Environmental Movements (Chipko and Narmada BachaoAndolan) - Social Reform Movements (Vaikom and Self Respect).

UNIT V

Redressal Mechanisms: Protection of Human Rights Act, 1993 (Amendment 2019) - Structure and Functions of National and State Human Rights Commissions - National Commission for SCs - National Commission for STs - National Commission for Women - National Commission for Minorities - Characteristics and Objectives of Human Rights Education.

REFERENCE BOOKS

- 1. Sudarshanam Gankidi, Human Rights in India: Prospective and Retrospective, Rawat Publications, Jaipur, 2019.
- 2. SatvinderJuss, Human Rights in India, Routledge, New Delhi, 2020.
- 3. Namita Gupta, Social Justice and Human Rights in India, Rawat Publications, Jaipur, 2021.
- 4. Mark Frezo, The Sociology of Human Rights, John Willy & Sons, U.K. 2014.
- 5. Chiranjivi J. Nirmal, Human Rights in India: Historical, Social and Political Perspectives, Oxford University Press, New York, 2000.
- 6. Dr. S. Mehartaj Begum, Human Rights in India: Issues and perspectives, APH Publishing Corporation, New Delhi, 2010.
- 7. Asha Kiran, The History of Human Rights, Mangalam Publications, Delhi, 2011.
- 8. Bani Borgohain, Human Rights, Kanishka Publishers & Distributors, New Delhi-2, 2007.
- 9. Jayan Chudhary, A Textbook of Human Rights, Wisdom Press, New Delhi, 2011.

Subject Code: 23UPCSC1C07

ADVANCED JAVA PROGRAMMING

COURSE OBJECTIVES

- To gain knowledge of Object Oriented Programming Concept in Java
- To understand usages of String functions in Java
- To familiarize with the applet and swing
- To grasp the concepts on Java Beans
- To comprehend the connection between Relational Database and Java.

UNIT I

An Overview of Java: Object Oriented Programming- Data Types, Variables, and Arrays: Primitive Types-Literals Variables - Type Conversion and Casting - Arrays-Operators: Control Statements-Classes and Methods - Inheritance- Exception Handling.

UNIT II

String Handling: The String Constructors - String Length - Special String Operations - Character Extraction - String Comparison - Searching Strings - Modifying a String - Input/Output: The I/O Classes and Interfaces – File - Byte Streams - Character Streams.

UNIT III

Introducing GUI Programming with Swing– Introducing Swing - Swing Is Built on the AWT-Two Key Swing Features - The MVC Connection - Components and Containers - The Swing Packages - A Simple Swing Application - Exploring Swing.

UNIT IV

Java Beans: Introduction - Advantages of Beans – Introspection - The JavaBeans API - A Bean Example. Servlets: Life Cycle Simple Servlet-Servlet API-Packages-Cookies session tracking.

UNIT V

Network Programming: Working with URLs- Working with Sockets - Remote Method Invocation. Introduction to Database Management Systems - Tables, Rows, and Columns - Introduction to the SQL SELECT Statement - Inserting Rows - Updating and Deleting Existing Rows - Creating and Deleting Tables - Creating a New Database with JDBC - Scrollable Result Sets.

TEXT BOOKS:

1. Herbert Schildt, "Java the Complete Reference", 10th edition, McGraw Hill Publishing Company Ltd, New Delhi, 2017.

 Tony Goddis, "Starting out with Java from Control Structures Through Objects" 6th Edition, Pearson Education Limited, 2016

REFERENCE BOOKS :

- Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehensive Introduction", TMGH Publishing Company Ltd, New Delhi, 2013
- John Dean, Raymond Dean, "Introduction to Programming with JAVA A Problem Solving Approach", TMGH Publishing Company Ltd, New Delhi,2012.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Understand the Object Oriented Program including classes and methods; inheritance and exception handling	
CO2:	Complete comprehension of String functions and I/O Streams	
CO3:	Creation of graphical representation using Applet	K1-K6
CO4:	Application of Servlets for designing Web based applications	
CO5:	Usage of JDBC connectivity and implementation of the concept to get desired results from database	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	L	-	М	Н	-	-	-	Н
CO2	Н	Μ	Н	-	М	Н	-	-	-	L
CO3	Н	Н	М	-	L	Н	-	-	-	М
CO4	М	Н	М	-	Н	Н	-	-	-	М
CO5	Н	М	М	-	М	L	-	-	-	М

Subject Code: 23UPCSC1C08

Credits: 04

WEB TECHNOLOGIES

COURSE OBJECTIVES

- Understand the fundamentals of the web and thereby develop web applications using various development languages and tools.
- Enrich knowledge about XHTML control and Cascading Style Sheets.
- Provide in- depth knowledge about Javascript.
- To enhance knowledge in XML documents with presentations using CSS and XSLT.
- Deliver depth knowledge about PHP, Angular JS, Jquery.

UNIT I

WEB FUNDAMENTALS AND HTML: A Brief Introduction to the Internet - The World Wide Web - Web Browsers - Web Servers -URLs, MIME, HTTP, Security- Introduction to HTML- Origins and Evolution of HTML and HTML - Basic Syntax - Standard HTML Document Structure - Basic Text Markup – Images- Hypertext Links - Lists, Tables, Forms, The Audio Element, The Video Element - Organization Elements, The Time Element

UNIT II

INTRODUCTION TO XHTML AND CSS: Basic syntax, Standard structure, Basic textmarkup, Images, Hypertext Links. Lists, Tables, Forms, Frames, syntactic differences between HTML and XHTML-Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div>tags, Conflict resolution.

UNIT III

THE BASICS OF JAVASCRIPT: Overview of JavaScript, Object orientation and JavaScript, general Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions, Errors in scripts.

JAVASCRIPT AND XHTML DOCUMENTS: The JavaScript Execution Environment, The Document Object Model, Elements Access in Java Script, Events and Event Handling, Handling Events from Body Elements, Handling Events from Text Box and password Elements, The DOM2 Model

UNIT IV

DYNAMIC DOCUMENTS WITH JAVASCRIPT AND XML: Introduction, Positioning Elements, Moving Elements, Element Visibility, Changing Color and Fonts, Dynamic Content, Stacking Elements, Locating the Mouse Cursor, Reacting to a Mouse Click, Slow Movement of

Elements, Dragging and Dropping Elements. Introduction to XML, Syntax of XML, XML Document Structure, Document type definitions, Namespaces, XML schemas, displaying raw XML documents, Displaying XML documents with CSS, XSLT Style Sheets, Web services.

UNIT V

PHP, ANGULAR JS AND JQUERY: Introduction to PHP: Overview of PHP -General Syntactic Characteristics - Primitives, Operations, and Expressions - Output - Control Statements - Arrays - Functions - Pattern Matching - Form Handling - Cookies - Session Tracking - Introduction to JQuery, Syntax, selectors, events, JQuery HTML, JQuery Effects, JQuery CSS. Introduction to Angular JS, Directives, Expressions, Controllers, Filters, Services, Events, Forms, Validations, Examples.

TEXT BOOKS:

- 1. Robert W. Sebesta: Programming the World Wide Web, Eighth Edition, Pearson education, 2015. UNITS: 1,2,3,4
- 2. Dayley Brad, Dayley Brendan ," Angular JS, JavaScript, and j Query All in One", Sams Teach Yourself 1st Edition, Kindle Edition, 2015.**UNIT**: 5

REFERENCE BOOKS:

- 1. M. Srinivasan: Web Programming Building Internet Applications, 3rdEdition, Wiley India, 2009.
- 2. Jeffrey C. Jackson: Web Technologies-A Computer Science Perspective, Pearson Education, 7thImpression,2012.
- 3. Chris Bates: Web Technology Theory and Practice, Pearson Education, 2012.
- 4. Raj Kamal: Internet and Web Technologies, McGraw Hill Education.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to:

CO1	Design dynamic web pages using Javascript, Jquery and Angular Java	
	script	
CO2	Develop Web pages using HTML, CSS and XML	
CO3	Create web application using PHP and MySQL	K1-K6
CO4	To design dynamic web pages using Angular javascript	
CO5	Develop interactive web pages using Jquery	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	Н	Н	Н	Н	М	М	Н	Μ	М
CO2	Н	Н	М	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	Н	М	М	Н	М
CO4	Н	Н	Н	М	Н	М	М	Н	Н	М
CO5	Н	Н	Н	М	Н	Н	М	Н	Μ	Н

Subject Code: 23UPCSC1C09

ADVANCED MACHINE LEARNING TECHNIQUES

COURSE OBJECTIVES

- To understand the concepts of Machine Learning.
- To understand the theoretical and practical aspects of types of machine learning
- To teach and get familiarized with supervised learning and their applications.
- To teach and get familiarized with the concepts and algorithms of unsupervised learning.
- To appreciate the concepts and algorithms of deep learning.

UNIT I

Introducing Machine Learning: The Origins of Machine Learning, Uses and Abuses of Machine Learning - Basics of Machine Learning Algorithm Model Works - Steps to apply Machine Learning - Choosing a Machine Learning Algorithm - Using Machine Learning concepts.

Managing and Understanding Data: Data Structures, Vectors And Factors: Lists, Data frames, Matrixes and arrays - Managing Data - Exploring and Understanding Data: Exploring the Structure of Data, Exploring Numeric variables - Exploring Categorical Variables- Exploring Relationships between Variables.

UNIT II

Lazy Learning - Classification Using Nearest Neighbors: The kNN Algorithm- Diagnosing Breast Cancer with the kNN Algorithm- Probabilistic Learning - Classification Using Naive Bayes: Basic concepts of Bayesian Methods- The Naïve Bayes Algorithm- Example - filtering Mobile Phone Spam with the Naive Bayes Algorithm.

Divide and Conquer -**Classification Using Decision Trees and Rules:** Understanding Decision Trees- Example - Identifying Risky Bank Loans using C5.0 Decision Trees- Understanding Classification Rules- Example - Identifying Poisonous Mushrooms with Rule Learners.

UNIT III

Forecasting Numeric Data -**Regression Methods:**Understanding Regression- Example - Predicting Medical Expenses using Linear Regression- Understanding Regression Trees and Model Trees- Example - Estimating the Quality of Wines with Regression Trees and Model Trees.

Black Box Methods Neural Networks and Support Vector Machines: Understanding Neural Networks, from Biological to Artificial Neurons, Activation Functions, Network Topology, Training Neural Networks with Backpropagation - Modeling the Strength of Concrete with ANNs- Understanding Support Vector Machines- Performing OCR with SVMs- Finding Patterns

- Market Basket Analysis Using Association Rules: Understanding Association Rules- Example - Identifying Frequently Purchased Groceries with Association Rules.

UNIT IV

Finding Groups of Data -**Clustering with K-Means:** Understanding Clustering- The k-means Algorithm for clustering- Finding teen market segments using k-means Clustering - Evaluating Model Performance: Measuring Performance for Classification- Beyond Accuracy - other Measures of Performance, Visualizing Performance Tradeoffs.

Improving Model Performance: Tuning Stock Models for Better Performance-Using Caret for Automated Parameter Tuning- Creating a simple Tuned Model- Customizing the Tuning Process-Improving Model Performance with meta-learning- Understanding Ensembles - Bagging – Boosting- Random forests.

UNIT V

Introduction to Deep Learning: Introduction to Deep Learning, Single Layer Perceptron Model (SLP), Multilayer Perceptron Model (MLP), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Restricted Boltzmann Machines (RBMs).

Convolutional Neural Networks (CNNs): Structure and Properties of CNNs - Components of CNN Architectures- Convolutional Layer, Pooling Layer, Rectified Linear Units (ReLU) Layer, Fully Connected (FC) Layer, Loss Layer - Tuning Parameters ,Notable CNN Architectures, Regularization- Recurrent Neural Networks (RNNs): Fully Recurrent Networks, Training RNNs with Back-Propagation Through Time (BPPT)- Elman Neural Networks, Neural History Compressor, Long Short-Term Memory (LSTM), Traditional and Training LSTMs - Structural Damping Within RNNs, Tuning Parameter Update Algorithm.

TEXT BOOKS

- 1. Brett Lantz, "Machine Learning with R", Addison-Wesley Packt Publishing, 2013.
- 2. TawehBeysolow, "Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R", San Francisco, California, USA, 2017.

REFERENCE BOOKS:

- 1. Daniel T. Larose, Chantal D. Larose, "Data mining and Predictive analytics", Second Ed., Wiley Publication, 2015.
- 2. Bertt Lantz, "Machine Learning with R: Expert techniques for predictive modeling", 3rd Edition, April 15,2019,
- 3. Jason Bell, "Machine Learning: Hands-On for Developers and Technical Professionals", Wiley Publication, 2015.

On the successful completion of the course, students will be able to

CO1	To understand, impart and analyze the concepts and of Machine Learning Techniques and types of data	
CO2	To comprehend, apply and evaluate the classification techniques for real- world applications	
CO3	To understand, use and perform evaluation of Regression methods	K1-K6
CO4	To recognize, implement and analyse the unsupervised techniques for real-	
	world applications	
CO5	To understand, identify, implement and review the deep learning	
	techniques for real-time applications	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	L	Н	М	М	Н	М	М	М
CO2	Н	Н	М	Н	Н	М	Н	Н	Н	М
CO3	Н	Н	Н	Н	Н	М	М	Н	Μ	Н
CO4	Н	Н	М	Н	М	М	Н	Н	М	М
CO5	Н	Н	Η	Η	Н	М	Н	М	Н	Н

ADVANCED JAVA PROGRAMMING LAB

COURSE OBJECTIVES

- To implement object oriented concepts in JAVA
- Develop the program using concepts Network programme
- Learn how to create a program in JSP and JavaBeans.
- Learn how to connect relational database to Java
- Develop the program using concepts Servlets

- 1. Implementation of java interface.
- 2. Implementation of Exception handling concepts with different type of Exception.
- 3. Implementation of java access specifiers.
- 4. Build a Swing application to implement metric conversion.
- 5. Build swing application to design a simple calculator.
- 6. Implementation of message communication using network programming.
- 7. Implementation of remote method invocation
- 8. Write a program to Invoke servlet from JSP.
- 9. Write a program to connect databases using JDBC.
- 10. Write a program to implement Java Beans.

On the successful completion of the course, students will be able to:

CO1:	Implement classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem	
CO2:	Apply Applets and Swing programs	
CO3:	Develop Servlets and JSP for creating Web based applications using JDBC	K1-K6
CO4:	Develop applications showcasing knowledge of networking	
CO5:	Craft dynamic web content using JSP, Java Beans effectively	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	Н	Μ	Н	Н	Н	Н	Н
CO2	Н	Н	Н	L	Μ	Н	Н	Н	Н	L
CO3	Н	Н	М	М	L	Н	Н	Н	Μ	М
CO4	М	Н	М	М	Н	Н	М	Н	Μ	М
CO5	Н	М	М	М	М	L	Н	М	Μ	М

Subject Code: 23UPCSC1L07

WEB TECHNOLOGIES LAB

COURSE OBJECTIVES:

AT THE END OF THE COURSE, THE STUDENT SHOULD BE ABLE TO DO:

- Learn how to create web pages using HTML, CSS and Javascript.
- Implement dynamic web pages using Javascript, Jquery and Angular Java script
- To create web applications using PHP and MySQL
- Create web pages using XML and Cascading Style Sheets
- Create XML documents and Schemas.

- 1. Develop a web page to display your education details in a tabular format.
- 2. Develop a web page to display your CV on a web page.
- 3. Design a Homepage having three links: About Us, Our Services andContact Us. Create separate web pages for the three links.
- 4. Design a web page to demonstrate the usage of inline CSS, internal CSS and external CSS.
- 5. Design an XML document and create a style sheet in CSS & display the document in the browser.
- 6. Develop a web page to Create image maps.
- 7. Design a web page to perform input validation using Angular Javascript.
- 8. Develop a web page in PHP to fetch details from the database.
- 9. Design a web page to hide paragraph using JQuery
- 10. Create a web page and add Javascript to handle mouse events and formevents

On the successful completion of the course, students will be able to:

CO1	Design dynamic web pages using JavaScript, Jquery and Angular Java script	
CO2	Develop Web pages using HTML, CSS and XML	
CO3	Create web application using PHP and MySQL	K1-K6
CO4	Develop interactive web pages using Jquery	
CO5	To design dynamic web pages using Angular javascript	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	Н	Н	Н	Н	Μ	М	Н	Μ	Μ
CO2	Н	Н	М	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	М	Н	М	М	Н	М
CO4	М	М	Н	М	Н	М	М	Н	Н	М
CO5	Μ	Μ	Н	М	Н	Н	М	Н	Μ	Μ

Subject Code: 23UPCSC1L08

Credits: 02

INTEGRATED TECHNOLOGIES (AML) LAB

COURSE OBJECTIVES

- To formulate machine learning problems corresponding to different applications.
- To understand a range of machine learning algorithms along with their strengths and weaknesses.
- To apply machine learning algorithms to solve problems of moderate complexity.
- To apply CNN to solve problems of moderate complexity.
- To apply LSTM and RNN to solve problems.

- Write a python program to compute the Central Tendency Measures: Mean, Median, Mode, Measure of Dispersion: Variance, Standard Deviation
- 2. Implement a Linear Regression and Multiple Linear Regression with a Real Dataset
- 3. Implementation of Logistic Regression using sklearn
- 4. Implement a binary classification model.
- 5. Classification with Nearest Neighbours and naive bayes Algorithm
- 6. Implementation Decision tree for classification using sklearn and its parameter tuning
- 7. Implement the k-means algorithm.
- 8. Implement an Image Classifier using CNN in Tensor Flow/Keras.
- 9. Implement an Autoencoder in Tensor Flow/Keras.
- 10. Implement a Simple LSTM using Tensor Flow/Keras.

On the successful completion of the course, students will be able to

CO1	To understand and implement the mathematical and statistical prospective of machine learning algorithms through python programming	
CO2	To recognize and develop the machine learning models through python in built functions	
CO3	To understand, impart and develop the machine learning models for real- time dataset	K1-K6
CO4	To comprehend, impart and implement the deep learning models for real- time applications	
CO5	To identify and evaluate the performance machine learning models for real- time dataset	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	Μ	Н	Н	Н	Н	Μ	Μ
CO2	Н	Н	Н	Н	Н	М	Н	Н	Н	М
CO3	Н	Н	Н	Н	Н	Н	Μ	Μ	Н	Μ
CO4	Н	Н	Н	М	М	Н	М	Н	Μ	М
CO5	Н	Н	Н	М	М	Н	М	Н	Н	М

Subject Code: 23UPCSC1E01

DATA ENGINEERING AND MANAGEMENT

COURSE OBJECTIVES

- To understand Data Management concepts
- To get brief knowledge on Data Modeling
- To analyse the techniques used in Distributed Databases
- To assess Distributed database and Business Modelling
- To get familiar with CRM tools

UNIT I

DATABASE DEVELOPMENT: Database architecture of an information system-Overview of the database development process-Conceptual data modeling-Relational data analysis-Roles of a data model-Physical database design. DATA MANAGEMENT: Problems encountered without data management-Data management responsibilities-Data management activities-Roles within data management-Benefits of data management-Relationship between data management and enterprise.

UNIT II

CORPORATE DATA MODELLING: Need for a corporate data model-Nature of a corporate data model- Develop a corporate data model - Corporate data model principles. DATA DEFINITION AND NAMING: Elements of a data definition-Data naming conventions. DATA QUALITY: Issues associated with poor data quality-Causes of poor data quality-Dimensions of data quality-Data model quality-Improving data quality. DATA ACCESSIBILITY: Data security-Data integrity-Data recovery

UNIT III

USE OF PACKAGED APPLICATION SOFTWARE: Application software packages-Impact on data management. DISTRIBUTED DATA AND DATABASES: Rationale for distributing data-Perfect distributed database system-Top down fragmentation and partitioning. Bottom up integration-The management of replication. BUSINESS INTELLIGENCE: Data warehousing-Multidimensional model of data-Standard reporting tools-Online analytical processing OLAP-Relational schema for a data warehouse.

UNIT IV

CRM: Three main pillars of CRM. GETTING TO KNOW YOUR CUSTOMER: 360-degree client view. UTILIZING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN

YOUR CRM STRATEGY: Evolution of AI-Current state of AI-Teaming up AI with people-Applying AI to your CRM solution-ethical aspects of AI-An example of AI in CRM processes.

UNIT V

CLOUD VERSUS ON PREMISE VERSUS HYBRID: Factors influencing vendor selection-Hybrid deployment-what are your options. CRM DIFFERENTIATORS: It's not about the feature list; it's about the ecosystem-Fourth industrial revolution and CRM-AI and smart cloud-To cloud or not to cloud-Leveraging smart cloud into CRM-Big data-Social selling and advertising-Implementation tools-Sustainable CRM platform.

TEXT BOOKS

- 1. Keith Gordon, "Principles of Data Management Facilitating Information Sharing", BCS Learning, 2013. (Chapters:1-5, 7,8,12,13,14)
- 2. Max Fatouretchi, "The Art of CRM", Packt Publishing, 2019.(Chapters: 1,2,5,8,9)

REFERENCE BOOKS

- 1. Peter Ghavami, "Big Data Management: Data Governance Principles for Big Data Analytics", De Gruyter, 2020.
- 2. Francis Buttle, Stan Maklan, "Customer Relationship Management Concepts and Technologies", Routledge, 2019.

COURSE OUTCOME

On the successful completion of the course, students will be able to:

CO1 CO2 CO3	Comprehend the Data Management concepts and analyse the relationship with the enterprise Analyse Data Modelling concepts and assess its quality Understand and implement business modelling techniques	K1- K6
CO4	Evaluate the use of Artificial Intelligence and Machine Learning in CRM	
CO5	Develop CRM applications in cloud	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	Н	Μ	Н	Н	Н	Н	Μ
CO2	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO3	Н	М	Н	Н	М	Н	М	Н	Н	Μ
CO4	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	Н	М

Subject Code: 23UPCSC1E02

Credits: 01

DATA ENGINEERING AND MANAGEMENT LAB

COURSE OBJECTIVES

- To acquire basic scripting knowledge in MongoDB
- To learn CRUD Operation on MongoDB database
- To comprehend MongoDB using DbVisualizer
- To be familiar with Zoho CRM features
- To customize your application using Zoho CRM

- 1. Write a script to create a MongoDB database and perform insert operation
- 2. Write a MongoDB script to perform query operations
- 3. Write a MongoDB Script to perform update operations
- 4. Write a MongoDB Script to update documents with aggregation pipeline
- 5. Write a MongoDB script to delete single and multiple documents
- 6. Write a MongoDB script to perform string aggregation operations
- 7. Design a Data Model for MongoDB using DbVisualizer
- 8. Perform CRUD operations using DbVisualizer
- 9. Create a Zoho CRM account and organize your Tasks, Meetings and Deals
- 10. Create and maintain a project using Zoho CRM features

On the successful completion of the course, students will be able to:

CO1	Comprehend the scripting knowledge in MongoDB and perform basic operations in shell prompt	
CO2	Implement, Create, Read, Update and Delete Operations on MongoDB database	K1- K6
CO3	Analyze MongoDB using DbVisualizer	
CO4	Assess Zoho CRM features for managing the customer relationships	
CO5	Create a customized application in Zoho CRM	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	Н	Н	Μ	Н	Н	Н	Μ
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	М	Н	Н	М	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н	L	Н	Н
CO5	Н	Н	Н	Н	М	Н	Н	Н	Н	Н

ARCHITECTURE AND FRAMEWORKS

COURSE OBJECTIVES

- To understand the basics, benefits and purpose of software architecture
- Understand the quality attributes to fulfil the software requirements and relates the software with an organization
- Explore the design patterns, best practice and paradigms of efficient software development
- Understand the performance and security measures of software architecture
- Enable the developers to advance their carrier in software domain

UNIT I

Software architecture introduction - Importance of Software architecture - Software architecture consumers - Architect role - software architecture in an organization - Types of software architects - Software development methodologies - Project management - Office politics - Software risk management - Configuration management - Software product lines

UNIT II

Domain Knowledge - Developing business acumen - Domain-driven design -Requirement engineering -Requirement elicitation - Software Quality attributes: Maintainability - Usability -Availability - Portability - Interoperability - Testability

UNIT III

Software Architectures design - Importance - Top-down Versus bottom-up design approaches - Architectural drivers - Documenting the Software architecture design - Systematic approach - Attribute-driven design - Microsoft's technique for architecture and design - Architecture-centric design method - Architecture development method - Tracking the progress of the software architecture's design.

UNIT IV

Designing orthogonal software systems - Minimizing complexity - SOLID design principles -Software architecture patterns -Layered - Event-driven architecture - Model-View patterns -Service-Oriented architecture

UNIT V

Architecting Modern Applications.- Importance of Performance - Performance improvement -Server side caching - Web application performance - Database performance -Securing software systems - Threat modelling- Secure by design

TEXT BOOK

1. Joseph Ingeno, "Software Architect's Handbook" Packt Publishing 2018.

REFERENCE BOOKS

- 1. Oliver Vogel, Indo Arnold, Arif Chughtai and TimoKehrer, "Software Architecture" Springer-Verlag, 2011.
- 2. Ian Gorton, "Essential Software architecture", Second Edition, Springer, 2011
- 3. Len Bass, Paul Clements and Rick Kazman, "Software architecture in practice", Third edition, Addison-Wesley, 2013

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1	Understand, analyze and evaluate the purpose of Software architecture and development methodologies with consideration of risk management	
CO2	Comprehend, apply and evaluate the domain knowledge for software development process and determine the impact of quality attributes.	
CO3	Understand, track and examine the systematic approach for various software design models with effective document process	K1-K6
CO4	Illustrate and summarize the functions of orthogonal systems with complexity, design principles and design pattern for software architecture	
CO5	Comprehend, analyze and evaluate the performance and security measures for Server, Web and Database applications in order to create the secure software systems for various domain applications	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- evaluate and K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	Н	Н	Н	Н	Н	М	Н	Н	Н
CO2	М	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	М	Н	Н	Μ	Н	М	Н	Н
CO4	Н	Н	Н	Н	М	Н	Н	Н	L	Н
CO5	М	Н	Н	Н	Н	М	Н	Н	Н	Н

ARCHITECTURE AND FRAMEWORKS LAB

COURSE OBJECTIVES

- To understand and implement the basic concepts of Software architecture and its functions.
- To acquire programming skills to develop Implement various technologies and services associated with network protocols along with the challenges of data transfer.
- Implement the importance and functioning of Routing Protocols over communication service.
- To acquire skills to connect two routers and any two switches.
- To comprehend related to SSH protocols and accessing the remote device.

Note: Use the solid servers and client specification for implementation https://github.com/solid/specification/.

IMPLEMENT THE FOLLOWING USING LINUX / WINDOWS ENVIRONMENTS

- 1. Find the WebID profile document and display the necessary attributes
- 2. Set and access the primary authentications with account recovery mechanisms
- 3. Set and access the secondary authentications with account recovery mechanisms
- 4. Design authorization and web access control
- 5. Find the content representation
- 6. Reading resources from HTTP REST API and WebSockets API
- 7. Writing resources from HTTP REST API and WebSockets API
- 8. Data notification using Social Web App protocol
- 9. Managing subscriptions and friends list using Social Web App protocol
- 10. Managing list of followers and following list using Social Web App protocol

On the successful completion of the course, students will be able to :

C01	Comprehend the programming skills of Software architecture tools and packages	
CO2	Understand and implement the user profiles and authentication with recovery mechanism.	
CO3	Comprehend and evaluate the access control and content representation use of FTP server	K1-K6
CO4	Understand and implement reading and writing resources for various applications	
CO5	Identify and examine the notifications, friends, and follower list of social application protocols.	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5-Evaluate, K6- Create

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	L	М	Н	Н	Н	Н	Μ
CO2	Н	Μ	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Μ	Н	М	Н	Μ	Н	Н	Μ	Н
CO4	Н	Μ	L	Н	М	Н	Н	М	Н	Н
CO5	М	H	М	L	H	Н	Η	H	Μ	Н

Subject Code: 23UPCSC1E05

NETWORK PROTOCOLS

COURSE OBJECTIVES

- To understand the basic concepts of Transmission Control Protocol/Internet Protocol and associated functions
- Explore to describe the internet architecture and its processes associated with the data transfer and to provide the quality of service
- To understand technologies and services associated with network protocols along with the challenges of data transfer.
- Learners will understand the importance and functioning of Routing Protocols over communication service.
- Empower the learners to comprehend and manage the issues associated with IP protocols like data traffic problems, security and mobility.

UNIT I

Transmission Control Protocol/Internet Protocol : Fundamental Architecture - Internet Protocol Basics - Routing - Transport-Layer Protocols : Transmission Control Protocol - User Datagram Protocol - Stream Control Transmission Protocol - Real-Time Transport Protocol.

UNIT II

Internet Architecture: Internet Exchange Point - History of Internet Exchange Points - Internet Service Provider Interconnection Relationships - Peering and Transit - IP Routing Protocols: Overview of Routing Protocols - Routing Information Protocol - Open Shortest Path First -Border Gateway Protocol - Multiprotocol Label Switching.

UNIT III

IP Quality Of Service : Introduction - Quality of Service in IP Version 4 - Integrated Services - Differentiated Services - Quality of Service with Nested Differentiated Services Levels - IP Multicast and Any cast: Addressing - Multicast Routing - Routing Protocols – Any casting- IPv6 Any cast Routing Protocol: Protocol Independent Any cast - Sparse Mode - Transport over Packet: Draft-Martini Signaling and Encapsulation - Layer-2 Tunneling Protocol.

UNIT IV

Virtual Private Wired Service - Types of Private Wire Services - Generic Routing Encapsulation - Layer-2 Tunneling Protocol - Layer-3 Virtual Private Network 2547bis, Virtual Router - IP and Optical Networking: IP/Optical Network Evolution - Challenges in Legacy Traditional IP/Optical Networks - Automated Provisioning in IP/Optical Networks - Control Plane Models for IP/Optical Networking - Next-Generation Multi Layer Network Design Requirements -Benefits and Challenges in IP/Optical Networking - IP Version 6: Addresses in IP Version 6 - IP Packet Headers - IP Address Resolution - IP Version 6 Deployment: Drivers and Impediments.

UNIT V

IP Traffic Engineering: Models of Traffic Demands - Optimal Routing with Multiprotocol Label Switching - Link-Weight Optimization with Open Shortest Path First - Extended Shortest-Path-Based Routing Schemes - IP Network Security: Introduction - Detection of Denial-of-Service Attack - IP Trace back- Edge Sampling Scheme - Advanced Marking Scheme - Mobility Support for IP: Mobility Management Approaches - Security Threats Related to IP Mobility -Mobility Support in IPv6 - Reactive Versus Proactive Mobility Support - Relation to Multi homing - Protocols Supplementing.

TEXT BOOK

1. Eiji Oki, Roberto Rojas-Cessa, Mallikarjun Tatipamula, Christian Vogt, "Advanced Internet Protocols, Services and Applications", Copyright © 2012 by John Wiley & Sons, Inc.

REFERENCE BOOKS

- 1. BehrouzA.Forouzan, "TCP/IP Protocol Suite", Fourth Edition, Tata Mcgraw-Hill Edition 2010.
- Michael A. Gallo & William M. "Computer Communications and Networking Technologies" - Hancock- BROOKS & COLE
- 3. Douglas E. Comer "Computer Networks and Internets" PEARSON.
- 4. William Stallings, "Data and Computer Communications", Eighth Edition, Pearson Education.
- 5. Eric Cole, "Network Security Bible", 2nd edition, Wiley Publishers.
- 6. James Irvine and David Harley, "Data communication and networks", Publishers: Wiley India.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1	Understand, analyse and examine the concepts of Communication Protocols with its architecture and functions	
CO2	Illustrate and apply the appropriate internet architecture along with efficient protocol models for the user defined communication environment	
CO3	Comprehend, categorize and formulate the appropriate IP routing protocol to establish a efficient data transfer	K1-K6
CO4	Comprehend, analyse and evaluate the concepts of Virtual wired service and IP/optical networking with its functions and deployment	
CO5	Elucidate, analyse and inspect the IP traffic engineering and its models along with the security mechanisms	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- evaluate and K6- Create

MAPPING WITH PROGRAMME OUTCOME

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	Н	L	L	Μ	Н	М	М	L	Н
CO2	Н	М	Н	Н	М	L	М	Н	Н	М
CO3	Н	Н	М	М	Н	Н	Н	М	Μ	Н
CO4	Н	М	Н	Н	М	L	Н	L	Н	М
CO5	М	Н	L	L	Н	L	М	Н	L	Н

Subject Code: 23UPCSC1E06

NETWORK PROTOCOLS LAB

COURSE OBJECTIVES

- To understand and implement the basic concepts of Transmission Control Protocol/Internet Protocol and associated functions.
- To acquire programming skills in Implement various technologies and services associated with network protocols along with the challenges of data transfer.
- Implement the importance and functioning of Routing Protocols over communication service.
- To acquire skills to connect two routers and any two switches.
- To comprehend related to SSH protocols and accessing the remote device.

IMPLEMENT THE FOLLOWING USING LINUX / WINDOWS ENVIRONMENTS

- 1. Implement the following commands
 - a. ipconfig
 - b. ping
 - c. traceroute
 - d. netsat
 - e. nslookup
- 2. Implement the following server commands
 - a. ifconfig
 - b. ip
 - c. tracepath
 - d. ss
 - e. tcpdum
- 3. Connect and place the given file in the FTP server
- 4. Install packet tracer and connect a computer to router, switch and get a Icmp request
- 5. Implement the SSH protocols and accessing the remote device
- 6. Connect any two switches and get the status of each switches
- 7. Connect two routers and get packets from the routers.
- 8. Get the access of the router by connecting with working computer
- 9. Identify the route password of server and get the connection using telnet
- 10. Install wire shark for capture and analyse the packets (TCP /UDP)

On the successful completion of the course, students will be able to:

CO1:	Comprehend the programming skills the SSH protocols and accessing the remote device	
CO2:	Understand and implement the various functioning of Routing Protocols over communication service.	
CO3:	Evaluate the use of FTP server	K1-K6
CO4:	Design to Connect any two switches and get the status of each switches	
CO5:	Solve to Connect two routers and get packets from the routers.	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5-Evaluate, K6- Create

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	М	М	М	L	М	М	Μ	М
CO2	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO5	Н	М	М	М	М	L	М	М	Μ	М

Subject Code: 23UPCSC1E07

DOT NET TECHNOLOGIES

COURSE OBJECTIVES

- To get strong understanding of .NET Framework and C# programming.
- To get advanced programming skills in Visual Studio with C# language.
- To get advanced methods of manipulating data using Microsoft SQL Server.
- To get clear idea of how to developing real-time standalone, web applications using .NET Technologies.
- To get clear understanding and get experience in Microsoft Azure.

UNIT I

Introducing C#: .NET Framework - C# language - Visual Studio 2017 - Writing a C# Program: Visual Studio 2017 Development Environment - Console Applications - Desktop Applications - Variables and Expressions: Basic C# Syntax - Basic C# Console Application Structure - Variables - Expressions - Flow Control: Boolean Logic - Branching - Looping.

UNIT II

More About Variables: Type Conversion - Complex Variable Types - String Manipulation – Functions: Defining and Using Functions - Variable Scope - The Main Function - Struct Functions - Overloading Functions - Using Delegates - Debugging and Error Handling: Debugging in Visual Studio - Error Handling - Introduction to Object Oriented Programming: Object-Oriented Programming - OOP Techniques - OOP in Desktop Applications.

UNIT III

Defining Classes: Class Definitions in C# - System.Object - Constructors and Destructors - OOP Tools in Visual Studio - Class Library Projects - Interfaces Versus Abstract Classes - Struct Types - Shallow Copying Versus Deep Copying - Defining Class Members: Member Definitions - Additional Class Member Topics - Interface Implementation - Partial Class Definitions - Partial Method Definitions - The Call Hierarchy Window - Basic Cloud Programming: Cloud, Cloud Computing, and the Cloud Optimized Stack - Cloud Patterns and Best Practices - Using Microsoft Azure C# Libraries to Create a Storage Container - Creating an ASP.NET 4.7 Web Site That Uses the Storage Container - Advanced Cloud Programming and Deployment: Creating an ASP.NET Web API - Deploying and Consuming an ASP.NET Web API on Microsoft Azure -Scaling an ASP.NET Web API on Microsoft Azure.

UNIT IV

.NET Standard and .NET Core: Cross-Platform Basics and Must Know Terms – Need of .NET -Referencing and Targeting Frameworks - .NET Core - Building and Packaging a.NET Standard Library - Building a .NET Core Application with Visual Studio - Porting from .NET Framework to .NET Core - ASP.NET and ASP.NET Core: Overview of Web Applications – Use of ASP.NET - ASP.NET Web Forms - Creating ASP.NET Core Web Applications – Files: File Classes for Input and Output – Streams - Monitoring the File System - XML and JSON: XML Basics - JSON Basics - XML Schemas - XML Document Object Model - Converting XML to JSON - Searching XML with XPath.

UNIT V

LINQ: LINQ to XML - LINQ Providers - LINQ Query Syntax - LINQ Method Syntax - Ordering Query Results - Understanding the order by Clause - Querying a Large Data Set -Using Aggregate Operators - Using the Select Distinct Query - Ordering by Multiple Levels -Using Group Queries - Using Joins – Databases: Using Databases - Installing SQL Server - Express -Entity Framework - Code First Database - Finding the Database - Navigating Database Relationships - Handling Migrations - Creating and Querying XML from an Existing Database -Universal Apps: Windows Universal Apps - App Concepts and Design - App Development -Common Elements of Windows Store Apps - Windows Store.

TEXT BOOK

1. Benjamin Perkins, Jacob Vibe Hammer, Jon D. Reid, "Beginning C#7 Programming with Visual Studio 2017", Wiley Publishing, 2018.Chapters: 1 to 10, 16 to 23, and 25.

REFERENCE BOOKS

- 1. Nagel, Christian, "Professional C 7 and .NET Core 2.0", Wrox Publishing, 2018.
- 2. Mehboob Ahmed Khan, Ovais, "C# 7 and .NET Core 2.0 High Performance", Packt Publishing, 2018

COURSE OUTCOME

On the successful completion of the course, students will be able to:

CO1	Mastery of .NET framework and proficient C# programming	
CO2	Advanced proficiency in visual studio environment	
CO3	Data manipulation skills using MS SQL server	
CO4	Competency in developing in real time web applications using .NET	K1 – K6
	technologies	
CO5	Comprehensive understanding and practical experience in MS Azure	
05	services	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	L	L	М	М	Μ	Μ
CO2	Н	Μ	L	М	Μ	L	Н	Н	Н	Н
CO3	Н	Н	Н	М	Μ	L	Н	Н	Н	Н
CO4	Н	М	L	М	М	L	Н	Н	Н	Н
CO5	Н	М	Н	М	М	L	М	М	Μ	М

Subject Code: 23UPCSC1E08

Credits: 01

DOT NET TECHNOLOGIES LAB

COURSE OBJECTIVES

- To get strong understanding of .NET Framework and C# programming.
- To get advanced programming skills in C# .NET OOPs Concepts
- To get advanced methods of manipulating data using Microsoft SQL Server.
- To get clear idea of how to developing real-time standalone, web applications using ASP .NET.
- To get clear understanding and get experience in Microsoft Azure.

IMPLEMENT THE FOLLOWING PROBLEMS USING C# WITH VISUAL STUDIO 2017

- 1. Demonstrate method overloading and method overriding
- 2. Class and Objects
- 3. Multilevel Inheritance
- 4. Interfaces
- 5. Demonstrate multiple type of Exceptions
- 6. Azure Storage Container Using the Microsoft Azure Storage Client Library
- 7. Demonstrate Read and Write a Data using Random Access Files
- 8. Employee management database using LINQ
- 9. Student management system using ASP.NET
- 10. Demonstrates simple Universal App.
COURSE OUTCOME

CO1	Mastery of .NET framework and proficient C# programming	
CO2	Advanced proficiency in visual studio environment	
CO3	Data manipulation skills using MS SQL server	K1- K6
CO4	Competency in developing in real time web applications using .NET technologies	
CO5	Comprehensive understanding and practical experience in MS Azure services	

On the successful completion of the course, students will be able to,

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 -Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	L	L	М	М	Μ	М
CO2	Н	М	L	М	L	L	Н	Н	Н	Н
CO3	Н	Н	Н	М	L	L	Н	Н	Н	Н
CO4	Н	М	L	М	L	L	Н	Н	Н	Н
CO5	Н	Н	Н	М	L	L	Μ	Μ	Μ	Μ

SOFTWARE DEVELOPMENT TECHNOLOGIES

COURSE OBJECTIVES

- To learn and Implementing Micro services
- To analysing the Azure Kubernetes Service
- To learn and anlyse .NET DevOps for Azure and its applications
- To building code for .NET core applications
- To get familiarized with Azure pipelines

UNIT I

Implementing Microservices: Client to microservices communication, Interservice communication, data considerations, security, monitoring, microservices hosting platform options. Azure Service Fabric: Introduction, core concepts, supported programming models, service fabric clusters, develop and deploy applications of service fabric. Monitoring Azure Service Fabric Clusters: Azure application, resource manager template, Adding Application Monitoring to a Stateless Service Using Application Insights, Cluster monitoring, Infrastructure monitoring.

UNIT II

Azure Kubernetes Service (AKS): Introduction to kubernetes and AKS, AKS development tools, Deploy applications on AKS. Monitoring AKS: Monitoring, Azure monitor and analytics, monitoring AKS clusters, native kubernetes dashboard, Prometheus and Grafana. Securing Microservices: Authentication in microservices, Implenting security using API gateway pattern, Creating application using Ocrlot and securing APIs with Azure AD. Database Design for Microservices: Data stores, monolithic approach, Microservices approach, harnessing cloud computing, database options on MS Azure, overcoming application development challenges. Building Microservices on Azure Stack: Azure stack, Offering IaaS, PaaS on-premises simplified, SaaS on Azure stack.

UNIT III

.NET DevOps for Azure: DevOps introduction, Problem and solution. Professional Grade DevOps Environment: The state of DevOps, professional grade DevOps vision, DevOps architecture, tools for professional DevOps environment, DevOps centered application. Tracking work: Process template, Types of work items, Customizing the process, Working with the process. Tracking code: Number of repositories, Git repository, structure, branching pattern, Azure repos configuration, GIT and Azure.

UNIT IV

Building the code: Structure of build, using builds with .NET core and Azure pipelines, Validating the code: Strategy for defect detection, Implementing defect detection. Release candidate creation: Designing release candidate architecture, Azure artifacts workflow for release candidates, Deploying the release: Designing deployment pipeline, Implementing deployment in Azure pipelines. Operating and monitoring release: Principles, Architectures for observability, Jumpstarting observability.

UNIT V

Introduction to APIs: Introduction, API economy, APIs in public sector. API Strategy and Architecture: API Strategy, API value chain, API architecture, API management. API Development: Considerations, Standards, kick-start API development, team orientation. API Gateways: API Gateways in public cloud, Azure API management, AWS API gateway. API Security: Request-based security, Authentication and authorization.

TEXT BOOKS

- 1. Harsh Chawla and Hemant Kathuria, "Building Microservices Applications on Microsoft Azure- Designing, Developing, Deploying, and Monitoring", Apress, 2019.
- 2. Jeffrey Palermo, NET DevOps for Azure A Developer's Guide to DevOps Architecture the Right Way, Apress, 2019.
- 3. Thurupathan and Vijayakumar, Practical API Architecture and Development with Azure and AWS Design and Implementation of APIs for the Cloud, Apress, 2018.

REFERENCE BOOKS

- 1. Karl Matthias and Sean P. Kane, Docker: Up and Running, O'Reilly Publication, Second Edition 2018.
- 2. Len Bass, Ingo Weber, Liming Zhu, "Dev Ops, A Software Architects Perspective", Addison Wesley-Pearson Publication, First Edition 2015.
- 3. John Ferguson Smart, "Jenkins, The Definitive Guide", 'O'Reilly Publication, First Edition 2011.

COURSE OUTCOMES

On the successful completion of the course, students will be able:

CO1:	To understand, apply and summarize the basic concepts of Micro services communication Microsoft Azure and Dev Ops for software development life cycle	
CO2:	To illustrate, and implement Azure Kubernetes Service tools for software development life cycle	
CO3:	To recognize, analyse and summarize the functionalities of .NET Dev Ops for Azure applications	K1 –K6
CO4:	To understand, design and evaluate the principles and architecture service tools for software development life cycle.	
CO5:	To comprehend, implement and review the functionalities of API and API gateways for cloud and Azure applications	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

				··· •						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	М	М	Н	М	М	Н	М
CO2	Н	Н	Μ	Н	Μ	Н	М	М	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Μ	Н	М	Н	Μ	М	Н	Н
CO5	Н	Н	М	М	М	Н	М	М	Н	М

MAPPING WITH PROGRAMME OUTCOMES

SOFTWARE DEVELOPMENT TECHNOLOGIES LAB

COURSE OBJECTIVES

- To understand the concept of DevOps with associated technologies and methodologies.
- To be familiarized with Jenkins, which is used to build & test software Applications
- To understand Continuous integration in Devops environment.
- To understand Docker to build, ship and run containerized images
- To use Docker to deploy and manage Software applications running on Container.

- 1. Deploy Version Control System / Source Code Management, install git and create a GitHub account.
- 2. Perform various GIT operations on local and Remote repositories using GIT Cheat-Sheet
- 3. Continuous Integration: install and configure Jenkins with Maven/Ant/Gradle to setup a build Job.
- 4. Build the pipeline of jobs using Maven / Gradle / Ant in Jenkins, create a pipeline script to Test and deploy an application over the tomcat server.
- 5. Implement Jenkins Master-Slave Architecture and scale your Jenkins standalone implementation by implementing slave nodes.
- 6. Setup and Run Selenium Tests in Jenkins Using Maven.
- 7. Implement Docker Architecture and Container Life Cycle, install Docker and execute docker commands to manage images and interact with containers.
- 8. Implement Docker file instructions, build an image for a sample web application using Docker file.
- 9. Install and Configure Pull based Software Configuration Management and provisioning tools using Puppet.
- 10. Implement LAMP/MEAN Stack using Puppet Manifest.

COURSE OUTCOMES

On the successful completion of the course, students will be able:

CO1:	To Understand and analyse the importance of Jenkins to Build, Deploy and Test Software Applications	
CO2:	To synthesis and summarize the importance of Software Configuration Management in DevOps	
CO3:	To identify, analyze and illustrate the Containerization of OS images and deployment of applications over Docker	K1 -K6
CO4	To design, analyze and develop the Pull based Software Configuration Management	
CO5	To design, analyze and develop Puppet Manifest	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	М	М	Μ	Н	М	Н	Н
CO2	Н	Н	Μ	Н	М	Н	Н	М	Н	Н
CO3	Н	Н	М	Н	М	Н	Н	Н	Н	Н
CO4	Н	Н	М	Н	М	Н	Н	М	Н	Н
CO5	Н	Н	М	М	М	М	Н	М	Н	Н

INTERNET OF THINGS

COURSE OBJECTIVES

- To get familiar with the evolution of IOT with its design principles
- To outline the functionalities and protocols of internet communication
- To analyze the hardware and software components needed to construct IOT applications
- To identify the appropriate protocol for API construction and writing embedded code
- To realize various business models and ethics in Internet of Things

UNIT I : FUNDAMENTALS OF IOT

Evolution of Internet of Things - Enabling Technologies - IOT Architectures: oneM2M, IOT World Forum (IOTWF) and Alternative IOT models - Simplified IOT Architecture and Core IOT Functional Stack - Fog, Edge and Cloud in IOT - Functional blocks of an IOT ecosystem - Sensors, Actuators, Smart Objects and Connecting Smart Objects.

UNIT II : IOT PROTOCOLS

IOT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN- Network Layer: IP versions, Constrained Nodes and Constrained Networks - Optimizing IP for IOT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks - Application Transport Methods: Supervisory Control and Data Acquisition - Application Layer Protocols: CoAP and MQTT.

UNIT III : DESIGN AND DEVELOPMENT

Prototyping Embedded Devices: Electronics - Embedded Computing Basics - Arduino -Raspberry Pi - Beagle Bone Black - Electric Imp. Prototyping the Physical Design: Non digital Methods - Laser Cutting - 3D printing - CNC Milling - Repurposing/Recycling.

UNIT IV : PROTOTYPING ONLINE COMPONENTS

Prototyping Online Components: Getting started with an API - Writing a New API - Real-Time Reactions - Other Protocols. Techniques for Writing Embedded Code: Memory Management - Performance and Battery Life - Libraries - Debugging.

UNIT V : BUSINESS MODELS

Business Models: History of Business Models - Model - Internet of Starting up - Lean Startups. Moving to Manufacture: Designing Kits - Designing Printed circuit boards - Certification - Costs - Scaling Up Software. Ethics: Privacy - Control - Environment - Solutions.

TEXT BOOKS

- 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", Cisco Press, 2017 (UNIT I and II)
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, 2014. (UNIT III, IV and V)

REFERENCE BOOKS

- Ovidiu Vermesan and Peter Friess, "Internet of Things From Research and Innovation to Market Deployement", River Publishers, 2014.
- 2. Peter Waher, "Learning Internet of Things", Packt Publishing, 2015.
- 3. Donald Norris, "The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and Beagle Bone Black", McGraw Hill, 2015.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Comprehend the IoT evolution with its architecture and sensors	
CO2:	Understand the networking concepts for communication and underlying IoT protocols	
CO3:	Assess the embedded technologies and develop prototypes for the IoT products	K1- K6
CO4:	Evaluate the use of Application Programming Interface and design an API for IoT in realtime	
CO5:	Recognize the ethics of business models and perform security analysis	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO3	Н	М	Н	Н	Н	Н	М	Н	Н	М
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	М	Н	Н	Н	Н	М

Credits: 01

INTERNET OF THINGS LAB

COURSE OBJECTIVES

- To create IoT program to turn ON/OFF LED
- To implement IoT program for object detection
- To develop IoT programs for agricultural purpose
- To create web server program for local hosting
- To design IoT application for health monitoring

- 1. To develop an IoT program to turn ON/OFF LED light (3.3V)
- 2. To develop an IoT program using IR sensor (Smart Garbage Monitoring, Detecting Parking Availability, etc.)
- 3. To develop an IoT program using Humidity and Temperature Monitoring (Forest fire Detection, Weather Monitoring)
- 4. To develop an IoT web server program for local hosting
- 5. To develop an IoT program using Soil Moisture Sensor
- 6. To develop an IoT program using Ultrasonic Sensor (Distance Measurement, etc.)
- 7. To develop an real-time IoT program using Relay Module (Smart Home Automation with 230V)
- 8. To develop an IoT program for Fire Detection (Home, Industry, etc.)
- 9. To develop an IoT program for Gas Leakage detection (Home, Industry, etc.)
- 10. To develop an IoMT program using Heartbeat Sensor

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1	Implement IoT programs to turn ON/OFF LED					
CO2	Develop IoT programs for object detection					
CO3	Create IoT programs for agricultural purpose					
CO4	Implement web server program for local hosting					
CO5	Design IoT application for health monitoring					

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO3	Н	М	Н	Н	Н	Н	М	Н	Н	М
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	М	Н	L	Н	Н	M

CRYPTOGRAPHY AND NETWORK SECURITY

COURSE OBJECTIVES

- To familiarize classical encryption techniques and advanced encryption standards
- To explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms
- To recognize different encryption and decryption techniques to solve problems related to confidentiality and authentication
- To develop the ability to use existing cryptographic utilities to build programs for secure communication.
- To learn the need of digital signatures to secure the document with key management

UNIT I

Overview: Computer Security Concepts – The OSI Security Architecture – Security Attacks – Security Services – Security Mechanisms – A Model for Network Security – Classical Encryption Techniques: Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – Rotor Machines – Steganography.

UNIT II

Block Ciphers and the Data Encryption Standard: Traditional Block Cipher Structure –The Data Encryption Standard – The DES Example – The Strength of DES – Block Cipher Design Principles –Basic Concepts in Number Theory and Finite Fields: Divisibility and the Division Algorithm – The Euclidean Algorithm – Modular Arithmetic – Groups, Rings, and Fields – Finite Fields of the Form GF(p) – Polynomial Arithmetic.

UNIT III

Advanced Encryption Standard: Finite Field Arithmetic– AES Structure – AES Transformation Functions – AES Key Expansion –Block Cipher Operation: Multiple Encryption and Triple DES – Stream Ciphers – RC4 – Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems – The RSA Algorithm –Diffe-Hellman Key Exchange – Elgamal Cryptographic System – Elliptic Curve Arithmetic – Elliptic Curve Cryptography – Pseudorandom Number Generation Based on an Asymmetric Cipher.

UNIT IV

Cryptographic Hash Functions: Applications of Cryptographic Hash Functions – Two Simple Hash Functions – Requirements and Security – Hash Functions Based on Cipher Block Chaining – Secure Hash Algorithm(SHA) – SHA-3 – Message Authentication Codes: Requirements – Functions – Security of MACs – MACs Based on Hash Functions: HMAC – MACs based on Block Ciphers: DAA and CMAC – Authenticated Encryption: CCM and GCM – Key Wrapping.

UNIT V

Digital Signatures – Elgamal Digital Signature Scheme – Schnorr Digital Signature Scheme – NIST Digital Signature Algorithm – Elliptic Curve Digital Signature Algorithm – RSA-PSS Digital Signature Algorithm – Key Management and Distribution: Symmetric Key Distribution Using Symmetric Encryption – Symmetric Key Distribution Using Asymmetric Encryption – Distribution of Public Keys – X.509 Certificates – Public-Key Infrastructure.

TEXT BOOKS

- 1. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson Education / PHI, 7th Edition, 2017.
- 2. Behrouz A Forouzan, Debdeep Mukhopadhyay, "Cryptography And Network Security", McGraw Hill Education, 3rd Edition, 2015.

REFERENCE BOOKS

- 1. Bernard Menezes, "Network Security and Cryptography", Cengage, 1st Edition, 2010.
- 2. William Stallings, "Cryptography and Network Security", Pearson Education India, Sixth Edition, 2016.
- 3. V.K. Jain, "Cryptography and Network Security", Khanna Book Publishing, New Delhi, 2016.
- 4. C.K. Shyamala, N. Harini, Dr. T. R. Padmanabhan, "Cryptography and Security", Wiley India Pvt. Ltd.,2011

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Comprehend and analyze the security concepts to apply and evaluate the encryption techniques in various models								
CO2:	Understand and examine the various data encryption standards and number theory. Illustrate and evaluate the various techniques in different applications								
CO3:	Trasp the knowledge of AES techniques and apply to evaluate the performance with different key types K1								
CO4:	Comprehend and analyse the basics of hash function and MAC that helps to develop the encryption models in various application								
CO5:	Understand and illustrate the need of digital signature to examine the method of providing good security to the document. And also learn the concept of key management								

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- evaluate and K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	Н	М	L	Μ	Н	М	М	Μ	Н
CO2	М	Н	Н	М	М	L	М	Н	Н	М
CO3	Н	Н	Н	М	Н	М	Н	М	Н	Н
CO4	Н	М	Н	Н	М	L	Н	М	Н	М
CO5	М	Н	М	L	Н	L	М	Н	М	Н

CRYPTOGRAPHY AND NETWORK SECURITY LAB

COURSE OBJECTIVE

- To develop in classical encryption techniques and advanced encryption standards.
- To acquire programming skills in implement various cryptographic algorithms including secret key cryptography.
- To develop hashes, message digests and public key algorithms.
- Implement different encryption and decryption techniques.
- To comprehend related to confidentiality and authentication techniques.

- 1. Write a program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in the string with 0 and display the result
- 2. Write a program to perform encryption and decryption using the Ceaser Cipher
- 3. Write a program to perform encryption and decryption using the Hill Cipher
- 4. Write a program to perform encryption and decryption using the Vernam Cipher
- 5. Write a program to perform encryption and decryption using the Substitution Cipher
- 6. Write a program to perform encryption and decryption using the DES algorithm
- 7. Write a program to implement hash function using SHA algorithm
- 8. Connect to switch with a computer and enable the port security
- 9. Implement signature scheme Digital Signature Standard
- 10. Identify and capture the user name and password in a same network using wireshark

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1	Comprehend the programming skills in classical encryption techniques and to develop advanced encryption standards	
CO2	Understand and implement the various cryptographic algorithms including secret key cryptography, hashes and message digests	
CO3	Evaluate the use of different encryption and decryption techniques	K1-K6
CO4	Design to Solve related confidentiality and authentication problems	
CO5	Create public key algorithms	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5-Evaluate, K6- Create

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	-	L	L	М	М	Μ
CO2	Н	L	М	L	М	L	L	Н	Н	Н
CO3	Н	L	Н	L	Н	L	L	Н	Н	Н
CO4	Н	L	Н	L	Н	L	L	Н	Н	Н
CO5	Н	L	Н	L	Н	L	L	М	М	М

Course Code: 23UPCSC1E15

COMPUTER VISION

COURSE OBJECTIVES:

- To get understanding about Computer vision techniques behind a wide variety of realworld applications.
- To get familiar with various Computer Vision fundamental algorithms and how to implement and apply.
- To get an idea of how to build a computer vision application with Python language.
- To understand various machine learning techniques that are used in computer vision tasks.
- To incorporate machine learning techniques with computer vision systems.

UNITI

Basic Image Handling and Processing: PIL - the Python Imaging Library - Matplotlib - NumPy - SciPy - Advanced example: Image de-noising. **Local Image Descriptors:** Harris corner detector - SIFT – Scale - Invariant Feature Transform - Matching Geotagged Images.

UNITII

Image to Image Mappings: Homographies - Warping images - Creating Panoramas. **Camera Models and Augmented Reality:** The Pin-hole Camera Model - Camera Calibration - Pose Estimation from Planes and Markers - Augmented Reality.

UNITIII

Multiple View Geometry: Epipolar Geometry-Computing with Cameras and 3D Structure -Multiple View Reconstruction - Stereo Images. **Clustering Images:** K-means Clustering-Hierarchical Clustering-Spectral Clustering.

UNITIV

Searching Images: Content based Image Retrieval-Visual Words-Indexing Images- Searching the Database for Images-Ranking Results using Geometry-Building Demos and Web Applications. **Classifying Image Content:** K-Nearest Neighbors-Bayes Classifier-Support Vector Machines-Optical Character Recognition.

UNITV

Image Segmentation: Graph Cuts-Segmentation using Clustering-Variational Methods. **OpenCV:** Python Interface-OpenCV Basics-Processing Video-Tracking.

TEXT BOOK:

1. Jan Erik Solem, "Programming Computer Vision with Python: Tools and Algorithms for Analyzing Images", O'REILLY Media, Inc, 2012.

REFERENCE BOOK:

- 1. David A. Forsyth, Jean Ponce, "Computer Vision A Modern Approach", Second Edition, Pearson Publication, 2012.
- 2. Xiaoyue Jiang, Abdenour Hadid, Yanwei Pang, Eric Granger, Xiaoyi Feng, "Deep Learning in Object Detection and Recognition", Springer 2019.
- 3. Benjamin Planche and Eliot Andres, "Hands-on Computer Vision with TensorFlow 2: Leverage Deep Learning to Create Powerful Image Processing Apps with TensorFlow 2.0 and Keras", 2019.

COURSE OUTCOME:

On the successful completion of the course, students will be able to:

CO1	To understand and recall computer vision and its application areas	
CO2	To develop build a computer vision system	
CO3	To apply and analyze a design range of algorithms for image processing and computer vision	K1-K6
CO4	To develop incorporate machine learning techniques with computer vision system	
CO5	To apply and analyze image segmentation and image registration	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	L	L	М	М	Μ	Н
CO2	Н	М	L	М	М	L	Н	L	Н	L
CO3	Н	Н	Н	М	М	L	М	L	Μ	L
CO4	Н	Н	Н	М	М	L	М	L	Μ	L
CO5	Н	Н	Н	М	М	L	Н	L	Н	L

Course Code: 23UPCSC1E16

COMPUTER VISION LAB

COURSE OBJECTIVES:

- To get an idea of how to build a computer vision application with Python language.
- To learn the basic image handling and processing
- To get familiar with various Computer Vision fundamental algorithms and how to implement and apply.
- To get an idea of how to implement the image transforms.
- To understand various image segmentation algorithms.

IMPLEMENT THE FOLLOWING PROBLEMS USING PYTHON WITH OPENCV

- 1. Image Loading, Exploring and displaying an Image.
- 2. Access and Manipulate of Image Pixels.
- 3. Image Transformations.
 - i) Resizing
 - ii) Rotation
- 4. Addition operation of Two Images.
- 5. Image filtering operations
 - i) Mean Filtering
 - ii) Gaussian Filtering
- 6. Image Binarization Using Simple Thresholding method.
- 7. Edge Detection operation using Sobel and Scharr Gradients.
- 8. Find Grayscale and RGB Histograms of an Image.
- 9. Segment an Image using K-means Clustering algorithm.
- 10. Write a program to classify an Image using KNN Classification algorithm.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to:

CO1	To develop and implement the image loading and exploring	
CO2	To Evaluate the image transforms	
CO3	To apply and analyze for image processing denoising algorithms	K1-K6
CO4	To design and develop the Image Segmentation using Edge detection and	
CO5	To apply and analyze image clustering and classification algorithms	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	Μ	L	L	L	М	М	Μ	Н
CO2	Н	М	L	М	М	L	Н	L	Н	L
CO3	Н	Н	Н	М	М	L	М	L	М	L
CO4	Н	Н	Н	М	М	L	М	L	М	L
CO5	Н	Н	Н	М	М	L	Н	L	Н	L

SOCIAL NETWORKS

COURSE OBJECTIVES

- To learn about Social media, Social networking and Webcasts
- To understanding and building a Word Press Powered Website
- To analysis the Social Networking & Micro-Blogging.
- To learn and analysis the Widgets & Badges.
- To explore the importance of Website optimization.

UNIT I

Introduction: Social Media Strategy-Important First Decisions -Websites, Blogs - RSS Feeds Mapping -Preparation - Multimedia Items Gathering Content for Blog Posts RSS Feeds & Blogs-RSS Feeds-The Feed Reader-The Feed-Options for Creating an RSS Feed-Planning Feed –Blogs-Options for Starting. Blog and RSS Feed-Feed or Blog Content-Search Engine Optimization (SEO)-Feed Burner-RSS Feed and Blog Directories-An Optimization Plan for Blog or RSS Feed

UNIT II

Building a Word Press Powered Website: Word Press as A CMS - Diversity of Word Press Sites-The Anatomy of a Word Press Site -a Brief Look at the Word Press Dashboard Planning - Site Themes Plug-ins setting up Sidebars Building Pages- Posting Blog Entries. Podcasting, Vidcasting, & Webcasting- Publishing Options for Podcast- Creating and Uploading Podcast Episodes-Publishing Podcast Optimizing Podcast- Webcasting

UNIT III

Social Networking & Micro-Blogging: Facebook-The Facebook Profile -Myspace LinkedIn – Twitter-Niche Social Networking Sites-Creating Own Social Network-Promoting Social Networking Presence- Social Bookmarking & Crowd-Sourcing - Social Bookmarking-A Social Bookmarking Strategy – Crowd-Sourced News Sites- Preparation And Tracking Progress Media Communities-Image Sharing Sites-Image Sharing Strategy-Video Sharing Sites-Video Sharing Strategy-Searching And Search Engine Placement-Connecting With Others.

UNIT IV

Widgets & Badges: Highlighting Social Web Presence-Sharing And Syndicating Content Making Site More Interactive-Promoting Products And Making Money-Using Widgets In Word Press-Widget Communities And Directories- Working Widgets Into Strategy Social Media Newsrooms-Building Social Media Newsroom - Populating The Newsroom-Social Media News Releases-Social Media Newsroom Examples. More Social Tools-Social Calendars-Social Pages Wikis-Social Search Portals-Virtual Worlds.

UNIT V

Website optimization: A Website Optimization Plan - Streamlining Web Presence-An Integration Plan- Looking to the Future-Life streaming: The Future of Blogging-Distributed Social Networking-Social Ranking, Relevancy, and - Defriending-Web 3.0 or The Semantic Web-Mobile Technology- Measuring Your Success-A Qualitative Framework-A Quantitative Framework-Tools to Help You Measure-Come To Your Own Conclusions

TEXT BOOK

1. Deltina hay - A Survival Guide To social Media and Web 2.0 Optimization^{II}, Dalton Publishing, 2009

REFERENCE BOOKS

- 1. Miriam Salpeter Social Networking for Career Success Learning Express, 2011.
- 2. Miles, Peggy, Internet world guide to webcasting Wiley, 2008 Professionals", Wiley Publication, 2015.

COURSE OUTCOMES

On the successful completion of the course, students will be able:

CO1:	To understand, impart and summarize the concepts of Social media, Social networking and Webcasts	
CO2:	To comprehend, design and develop a Word Press Powered Website	
CO3:	To understand, implement and perform evaluation of Social Networking and Micro-Blogging	K1-K6
CO4	To collaborate, implement and analyse the Widgets and Badges in social networking environment	
CO5	To understand, illustrate and perform evaluation of web optimization for social networks	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	М	Н	L	М	Н	М	Н
CO2	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO5	Н	Н	Н	М	Н	L	М	Н	М	Н

SOCIAL NETWORKS LAB

COURSE OBJECTIVES

- To familiarize the tools required to manage social network applications
- To analyze social networks like Facebook, LinkedIn, Google+, GitHub
- To teach the fundamental techniques and principles in achieving social networking environment.
- To enable students to have skills that will help them to solve real time applications.
- To get explore in the Github API.

- 1. Creating and Exploring Twitter's API
- 2. To analyzing and visualizing tweets and tweet entities with frequency analysis
- 3. Creating and Exploring Facebook's Social Graph API
- 4. To analyzing the Facebook's Social Graph connections
- 5. Creating and Exploring LinkedIn API
- 6. To downloading LinkedIn connections as a CSV file
- 7. Creating and Exploring Google+ API
- 8. To create and querying Human Language Data with TF-IDF
- 9. Creating and Exploring GitHub's API
- 10. To analyzing GitHub interest graph

COURSE OUTCOMES

CO1:	To understand, implement and review the fundamental techniques and principles for social networks.	
CO2:	To design and develop the programs using the tools required to develop and manage social network like Facebook, LinkedIn, Google+, GitHub	
CO3:	To create and explore the functionality of social networking tools such as GitHub	K1-K6
CO4	To understand, implement and review the fundamental principles for social network graph.	
CO5	To comprehend and critically analyse the existing API for social networks	

On the successful completion of the course, students will be able to:

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	-	Μ	Н	М	Μ	Μ	Н
CO2	Н	Μ	Н	Н	Н	М	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	М	Н	Н	Н	М	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	М	М	Μ	Н

CYBER SECURITY

COURSE OBJECTIVES

- To understand the basics of Cybercrime and Computer forensics with protecting mechanism
- To explore the working principles of WLAN, Email and Smartphone along with security mechanism and guidelines
- To gain the ability to understand the importance of cyber investigations with its functioning role and learn the basics of Wi Fi and its security measures
- To understand and learn the method of seize the digital evidence
- To learn and analyze the concepts of digital forensics with cybercrime prevention techniques

UNIT I

Introduction to cybercrime: Classification of cybercrimes - reasons for commission of cybercrime - malware and its type - kinds of cybercrime - authentication - encryption - digital signatures - antivirus - firewall - steganography - computer forensics - why should we report cybercrime - introduction counter cyber security initiatives in India - generating secure password - using password manager-enabling two-step verification - security computer using free antivirus.

UNIT II

Tips for buying online: Clearing cache for browsers - wireless LAN-major issues with WLAN-safe browsing guidelines for social networking sites - email security tips - introduction-smartphone security guidelines - purses, wallets, smart phones - platforms, setup and installation-communicating securely with a smartphone.

UNIT III

Cyber investigation roles: Introduction - role as a cybercrime investigator - the role of law enforcement officers - the role of the prosecuting attorney - incident response: introduction-post mortem versus live forensics - computer analysis for the hacker defender program-network analysis - legal issues of intercepting Wi-Fi transmission - Wi-Fi technology - Wi-Fi RF-scanning RF - eavesdropping on Wi-Fi - fourth amendment expectation of privacy in WLAN.

UNIT IV

Seizure of digital information: introduction – defining digital evidence – digital evidence seizure methodology – factors limiting the wholesale seizure of hardware – other options for seizing digital evidence – common threads within digital evidence seizure – determining the most appropriate seizure method– conducting cyber investigations–demystifying computer/cyber crime – IP addresses – the explosion of networking – interpersonal communication.

UNIT V

Digital forensics and analyzing data: introduction – the evolution of computer forensics– phases of digital forensics-collection – examination-analysis – reporting – Cybercrime prevention: Introduction – crime targeted at a government agency.

TEXT BOOKS

- 1. Dr.Jeetendra Pande, "Introduction to Cyber Security" Published by Uttarakhand Open University, 2017.(Chapter: 1.2-6.4,9.3-12.2)
- 2. Anthony reyes, Kevin o'shea, Jim steele, Jon R. Hansen, Captain Benjamin R. Jean Thomas Ralph, "Cyber-crime investigations" bridging the gaps between security professionals, law enforcement, and prosecutors, 2007.(Chapter: 4, 5, 6, 7, 8, 9,10)

REFERENCE BOOKS

- 1. Sebastian Klipper, "Cyber Security", Ein Einblick Für Wirtschaftswissenschaftler. Fachmedien Wiesbaden,2015
- 2. John G.Voller Black and Veatch, "Cyber Security" Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada ©2014.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Understand, describe, analyze and examine the basics of Cyber security concepts and its implementation in India	
CO2:	Comprehend and demonstrate the security tips in browsers, WLAN, social networks, Email security and Smart phone. Apply the investigations in post mortem and Forensics	
CO3:	Understand, apply and evaluate the various investigation roles and Wi Fi protecting mechanisms.	K1-K6
CO4:	Understand, illustrate and evaluate the method of seize the digital information and evidences forensics data and evaluate the forensics reports	
CO5:	Comprehend, apply and appraise the methods digital forensics with cybercrime prevention techniques	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	М	L	М	М	Μ	М
CO2	М	Н	М	L	М	L	М	М	Μ	Μ
CO3	М	Н	L	L	М	L	М	М	Μ	М
CO4	Н	М	L	Н	М	L	Н	М	Μ	М
CO5	М	Н	М	L	Н	L	М	Н	Н	Н

Credits: 01

CYBER SECURITY LAB

COURSE OBJECTIVES

- To learn and implement to Change the wireless device mode as monitor mode
- To develop in multiple vulnerabilities webserver
- To understand and implement the open ports in the network
- To acquire programming skills in Implement various wireless device modes
- To comprehend related to find the sub domains of webpage

IMPLEMENT THE FOLLOWING USING ANY CYBER SECURITY TOOLS

- 1. Install virtual box (kali Linux)
- 2. Generate a secure password using keepass
- 3. Change the wireless device mode as monitor mode
- 4. Find the known and open vulnerabilities of system using metaspolit
- 5. Identify the multiple vulnerabilities webserver using nikto tool
- 6. Identify the open ports in the network using nmap tools
- 7. List all the network around us and display the information about the networks
- 8. Sniff and capture the packet sent over HTTP requests
- 9. Find the owners of internet resources using Whois Lookup tool
- 10. Find the subdomains of webpage using knock tool

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Comprehend the programming skills in Change the wireless device mode as monitor mode	
CO2:	Understand and implement multiple vulnerabilities webserver	
CO3:	Evaluate the use of different wireless device modes	K1-K6
CO4:	Design to Solve related to find the subdomains of webpage	
CO5:	Create and apply open ports in the network	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5-Evaluate, K6- Create

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	М	М	М	М	L	М	М	Μ	М
CO2	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO5	Н	М	Н	М	Н	L	М	М	Μ	М

BLOCK CHAIN TECHNOLOGIES

COURSE OBJECTIVES

- To understand about Blockchain is an emerging technology platform for developing decentralized applications and data storage.
- To comprehend fundamentals of Public Key Cryptography technology and Consensus Algorithms.
- To familiarize with Bitcoin Network, Bitcoin Clients, APIs and Payments technology of blockchain operations.
- To engage with Components of the Ethereum ecosystem.
- To grasp about Development Tools and Frameworks.

UNIT I: BLOCKCHAIN, DECENTRALIZATION

Blockchain :The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Blockchain - Consensus - CAP theorem and blockchain. **Decentralization:** Decentralization using blockchain - Methods of decentralization -Routes to decentralization - Blockchain and full ecosystem decentralization - Pertinent terminology - Platforms for decentralization - Innovative trends.

UNIT II: PUBLIC KEY CRYPTOGRAPHY, CONSENSUS ALGORITHMS AND SMART CONTRACTS

Public Key Cryptography: Asymmetric cryptography - Cryptographic constructs and blockchain technology. **Consensus Algorithms:** Introducing the consensus problem -Analysis and design - Classification - Algorithms - Choosing an algorithm. **Smart Contracts:** History - Definition - Ricardian contracts - Smart contract templates – Oracles - Deploying smart contracts - DAO

UNIT III: BITCOIN

Bitcoin: Bitcoin-an overview - Cryptographic keys - Transactions - Blockchain – Mining. **Bitcoin Network and Payments:** The Bitcoin network - Wallets - Bitcoin payments -Innovation in Bitcoin - Advanced protocols - Bitcoin investment and buying and sellingBitcoin.**Bitcoin Clients and APIs:** Bitcoin client installation - Experimenting further with bitcoin-cli - Bitcoin programming.

UNIT IV: ALTERNATIVE COINS

Alternative Coins: Theoretical foundations - Difficulty adjustment and retargeting algorithms -Bitcoin limitations - Extended protocols on top of Bitcoin -Development of altcoins. Ethereum: Ethereum – an overview - Ethereum network - Components of the Ethereum ecosystem -Ethereum Virtual Machine (EVM) - Smart contracts. - Blocks and blockchain - Wallets and client - Nodes and miners - APIs, tools, and DApps - Supporting protocols - Programming languages.

UNIT V: DEVELOPMENT TOOLS AND FRAMEWORKS, USE CASES & SECURITY

Development Tools and Frameworks :Languages - Compilers - Tools and libraries - Frameworks - Contract development and deployment - Layout of a Solidity source code file - Solidity language. Use Cases: IoT – Government - Health -Finance – Media. Scalability and Other Challenges: Scalability - Privacy - Security - Other challenges.

TEXT BOOK

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder. Bitcoin and Cryptocurrency Technologies Princeton University Press, 2016. ISBN 978-0691171692

REFERENCE BOOK

1. Andreas Antonopoulos. Mastering Bitcoin: Programming the open block chain. Oreilly Publishers, 2017. ISBN 978-9352135745

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Understand, apply and examine the characteristics of blockchain, bitcoin and consensus algorithm in centralized and decentralized methods.							
CO2:	Comprehend and demonstrate the application of hashing and public key cryptography in protecting the blockchain.							
CO3:	Understand and analyse the elements of trust in a Blockchain: validation, verification, and consensus.							
CO4	Comprehend and evaluate the alternate coin, Ethereum and smart contract.							
CO5	Grasp and apply the knowledge of Tools and languages for applications							

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5-Evaluate, K6- Create

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Μ	М	L	Μ	Н	М	М	Μ	М
CO2	Н	Н	Н	Н	Н	Μ	Н	L	Μ	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Μ
CO4	Н	Н	Н	Н	М	L	Н	Н	Н	Н
CO5	Н	М	H	L	Н	L	М	Н	Μ	L

Credits: 01

BLOCK CHAIN TECHNOLOGIES LAB

COURSE OBJECTIVES

- To learn the basics of Blockchain and apply cryptographic algorithms
- To design, build, and deploy smart contracts and distributed applications,
- To deploy Private Blockchain and smart contracts on Ethereum.
- To understand and deploy crypto currencies and their functions in applications
- To implement Blockchain for various use cases.

LIST OF EXPERIMENTS

IMPLEMENT THE FOLLOWING

1. Create a Public Ledger and Private Ledger with the various attributes like Access,

Network Actors, Native token, Security, Speed and examples.

- 2. Building and Deploying Multi Chain private Blockchain
- 3. Write Hello World smart contract in a higher programming language (Solidity)
- 4. Construct the Naïve block chain
- 5. Construct and deploy your contract (Use deploy method)
- 6. Set up a Regtest environment
- 7. Build a payment request URI
- 8. Hashcash implementation
- 9. Develop a toy application using Blockchain
- 10. Create simple wallet transaction from one account to another account using Metamask.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1:	Enable to setup your own private Blockchain and deploy smart contracts on Ethereum.	
CO2:	Gain familiarity and implement with cryptography and Consensus algorithms.	
CO3:	Create and deploy projects using Web3j.	K1 –K6
CO4:	Recall and deploy the structure and mechanism of Bitcoin, Ethereum, Hyper ledger	
CO5:	Implement Blockchain for various use cases	

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	М	L	М	Н	М	L	Μ	М
CO2	Н	Μ	Н	Н	Н	М	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	М	L	Н	М	L	М	Н	М	М
CO5	М	Н	М	L	Н	L	Н	L	Н	Н

OPTIMIZATION TECHNIQUES

COURSE OBJECTIVES

- To understand the concept of Linear optimization
- To develop mathematical models of transportation and assignment Problems
- To understand the Networking models
- To study non-linear optimization models
- To develop optimization algorithms based on Evolutionary concepts

UNIT I: LINEAR PROGRAMMING PROBLEM

Linear Programming Problem (LPP): Mathematical Formulation of Linear Programming Problem - Graphical Solution of LPP - canonical and standard forms of linear programming problem- Simplex method for solving LPP

UNIT II : TRANSPORTATION AND ASSIGNMENT PROBLEMS

Transportation Model: North West corner Method, Least cost method, and Vogel's Approximation Method. Assignment Model : Hungarian assignment model - Travelling Sales Man Problem.

UNIT III : CPM/PERT

Project Scheduling PERT/CPM Networks - Fulkerson's Rule - Measure of Activity - PERT Computation - CPM Computation - Resource Scheduling.

UNIT IV : NON-LINEAR OPTIMIZATION MODELS

Simplex Method - Gradient of function - Steepest Descent method - Conjugate Gradient method

UNIT V : EVOLUTIONARY ALGORITHMS

Particle Swarm Optimization method - Ant Colony optimization algorithm - Fruit Fly method - Fire Fly method

TEXT BOOKS

1. Kanti Swarup, P. K. Gupta and Man Mohan, "Operations Research", Sultan Chand and Sons, New Delhi, 2014. (Unit 1, 2, and 3)

2. S. S. Rao, "Engineering Optimization: Theory and Practice", JOHN WILEY & amp; SONS, INC., 2009. (Unit 4)

3. Bo Xing and Wen-Jing Gao, "Innovative Computational Intelligence: A Rough Guide to Clever Algorithms", Springer, 2014.(Unit 5)

REFERENCE BOOK

1. Hamdy A. Taha, Operations Research: An Introduction, Pearson, 2010

COURSE OUTCOMES:

On the successful completion of the course, students will be able to:

CO1:	Develop Linear Programming models for industrial problems	
coy.	Formulation of Transportation and Assignment problems for real life	
CO2.	problems	
CO3:	Critical path estimation can be done for a project	
		K1-K6
CO4:	Non-Linear optimization models can be solved	M1-M0
CO5:	Evolutionary Optimization algorithms can be used to solve any optimization	
	problems to overcome the issues in the traditional optimization models	

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	Н	L	Н	М	Н	Н
CO3	Н	М	Н	Н	Μ	Н	М	Н	Н	L
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Η	Н	Н	М	L	Н	Η	Η	М

Credits: 01

OPTIMIZATION TECHNIQUES LAB

COURSE OBJECTIVES

- To Grasp optimization principles for real time problems
- Translate real world issues in to mathematical models
- Study diverse optimization algorithms and their applications
- Understand and apply optimization algorithms effectively
- Enhance problem solving skills using optimization techniques

IMPLEMENT THE FOLLOWING ALGORITHMS USING PYTHON

- 1. Simplex algorithm
- 2. North-West Corner algorithm
- 3. Least Cost algorithm
- 4. Vogel's Approximation Algorithm
- 5. Modi algorithm
- 6. Hungarian assignment Algorithm
- 7. Travelling Sales man algorithm
- 8. Steepest Descent algorithm
- 9. Conjugate gradient algorithm
- 10. Ant Colony algorithm

COURSE OUTCOMES:

CO1:	Define optimization problem efficiently in various domain	
CO2:	Create accurate mathematical models for algorithmic solutions	
CO3:	Comprehend applications of various optimization algorithms.	
CO4:	Apply algorithms adeptly to solve diverse problems.	
CO5:	Select appropriate algorithms for specific optimization problems	

On the successful completion of the course, students will be able to:

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Μ	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	Н	L	Н	Μ	Н	Н
CO3	Н	М	Н	Н	М	Н	М	Н	Н	L
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	М	L	Н	Н	Н	М

SOLUTION ARCHITECTURE

COURSE OBJECTIVES

- To get familiar with the evolution of solution architecture
- To outline the functionalities of Solution Architecture Design
- To assess the Performance Considerations of Solution Architecture
- To analyze the Architectural Reliability Considerations
- To identify the design principles for cost optimization

UNIT I

Evolution of solution architecture - The benefits of solution architecture - Solution architecture in the public cloud - Solution Architects in an Organization - Types of solution architect role - Understanding a solution architect's responsibilities - Attributes of the Solution Architecture - Scalability and elasticity - Security and compliance - Cost optimization and budget

UNIT II

Principles of Solution Architecture Design - Scaling workload - Building resilient architecture - Design for performance - Using replaceable resources - Cloud Migration and Hybrid Cloud Architecture Design - Benefits of cloud-native architecture - Creating a cloud migration strategy - Steps for cloud migration - Creating a hybrid cloud architecture - Designing a cloud-native architecture

UNIT III

Solution Architecture Design Patterns - Building an n-tier layered architecture - Creating multitenant SaaS-based architecture - Building stateless and stateful architecture designs -Understanding SOA - Performance Considerations - Design principles for architecture performance - Technology selection for performance optimization - Managing performance monitoring

UNIT IV

Architectural Reliability Considerations - Design principles for architectural reliability -Technology selection for architecture reliability - Improving reliability with the cloud -Operational Excellence Considerations - Designing principles for operational excellence -Selecting technologies for operational excellence - Achieving operational excellence in the public cloud

UNIT V

Cost Considerations - Design principles for cost optimization - Techniques for cost optimization -Cost optimization in the public cloud - Architecting Legacy Systems - Learning the challenges of legacy systems - Defining a strategy for system modernization - Looking at legacy system modernization techniques - Defining a cloud migration strategy for legacy systems

TEXT BOOK

1. Saurabh Shrivastava and Neelanjali Srivastav, "Solutions Architect's Handbook", Packt Publishing, 2020

REFERENCE BOOKS

- 1. Alan McSweeney, "Introduction to Solution Architecture", Kindle Edition, 2019
- 2. Bernard, Scott A. An introduction to holistic enterprise architecture. Author House, 2020.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO1	Comprehend the types, benefits and attributes of solution architecture					
CO2	Assess the cloud architecture and create hybrid cloud architecture	V1 V6				
CO3	Analyze the design patterns for solution architecture					
CO4	Understand Architecture Reliability and Operational Excellence					
CO5	Optimize the cost in cloud and assess the legacy system					

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	М
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Μ	Н	Н	Н	Н	Μ	Н	Н	Н
CO4	Н	Н	Н	Μ	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Η	М	Н	Н	Н	Η	М

Credits: 01

SOLUTION ARCHITECTURE LAB

COURSE OBJECTIVES

- To get familiar with AWS cloud services
- To design secure, scalable, and well-structured cloud solutions
- To create EC2 instance and configure options
- To connect EC2 with Linux instance
- To connect VPN server to securely access instances

- 1. Managing Virtual Private Cloud
- 2. Creating and Configuring Internet Gateways
- 3. Configuring Routing Tables
- 4. Working with Amazon Elastic Cloud Compute (EC2)
- 5. Connecting EC2 Linux instance using PuTTY, Gitbash and Console
- 6. Recovering and connecting EC2 instance if the SSH key is lost
- 7. Creating and Configuring Elastic Load Balancer
- 8. Scheduling Auto Snapshot of volumes
- 9. Configuring Centralized Log Management using CloudWatch Log
- 10. Connecting OpenVPN server
COURSE OUTCOMES

CO1:	Understand AWS cloud services and manage the cloud data	
CO2:	Develop secure, scalable, and well structured cloud solutions	K1- K6
CO3:	Implement EC2 instance and configure the instance	
CO4:	Connect EC2 with Linux instance and perform operations	
CO5:	To connect VPN server to access instances with more security	

On the successful completion of the course, students will be able to:

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Μ
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO3	Н	М	Н	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Η	М	Н	Н	Н	Η	М

H- High; M-Medium; L-Low

HIGH PERFORMANCE COMPUTING

COURSE OBJECTIVES

- To get a clear idea of High Performance Computing concept.
- To get brief knowledge about how to function the HPC systems.
- To get idea of what techniques used in HPC models.
- To understand a Parallel computing concepts.
- To get familiar with OpenMP technology that is widely used in HPC technology.

UNIT I

MODERN PROCESSORS: Stored- Program computer architecture-General purpose cache based microprocessor architecture-Memory hierarchies-Multicore processors-Multithreaded processors-Vector processors. **Basic optimization techniques for serial code:** Scalar profiling-Common sense optimizations-Simple measures, large impact-The role of compilers-C++ optimizations.

UNIT II

DATA ACCESS OPTIMIZATION: Balance analysis and light speed estimates-Storage order -Algorithm classification and access optimizations-The Jacobi algorithm-Algorithm classification and access optimizations-Sparse matrix-vector multiply. **Parallel computers:** Taxonomy of parallel computing paradigms-Shared-memory computers-Distributed memory computers-Hierarchical systems-Networks.

UNIT III

BASICS OF PARALLELIZATION: Introduction to Parallelism -Parallel scalability. **Shared memory parallel programming with OpenMP:** Short introduction to OpenMP – OpenMP-parallel Jacobi algorithm.

UNIT IV

EFFICIENT OPENMP PROGRAMMING: Profiling OpenMP programs-Performance pitfalls-Parallel sparse matrix-vector multiply. **Locality optimizations on ccNUMA architectures:** Locality of access on ccNUMA-ccNUMA optimization of sparse MVM-Placement pitfalls-ccNUMA issues with C++.

UNIT V

DISTRIBUTED-MEMORY PARALLEL PROGRAMMING WITH MPI: Message passing-A short introduction to MPI-MPI parallelization of a Jacobi solver. **Efficient MPI programming:** MPI performance tools-Communication parameters-Synchronization, serialization, contention-Reducing communication overhead-Understanding intranode point-topoint communication.

TEXT BOOK

1. Georg Hager, Gerhard Wellein "Introduction to High Performance Computing for Scientists and Engineers", CRC Press, 2011. **Chapters:** 1 to 10.

REFERENCE BOOKS

- 1. Michael W. Berry, Kyle A. Gallivan, Efstratios Gallopoulos, Ananth Grama, Bernard Philippe, Yousef Saad, Faisal Saied, "High-performance scientific computing: algorithms and applications", Springer, 2012.
- 2. Victor Eijkhout, "Introduction to High Performance Scientific Computing", MIT Press, 2011.

COURSE OUTCOME

On the successful completion of the course, students will be able to:

CO2 Design and develop a parallel programming with modern C, C++ and new	
version of FORTRAN	
CO3Apply with parallel computingK1 - H	6
CO4 Develop an efficient OpenMP programming	
CO5 Evaluate an efficient MPI programming	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	М	L	L	L	Н	Н	Н	Н
CO2	Н	Μ	L	М	Μ	L	Н	L	Н	L
CO3	Н	Н	Н	М	Μ	L	М	L	Μ	L
CO4	Н	Н	Н	М	Н	L	М	L	Μ	Н
CO5	Н	Н	Η	М	М	L	М	М	M	М

H- High; M-Medium; L-Low

Credits: 01

HIGH PERFORMANCE COMPUTING LAB

COURSE OBJECTIVES

- To understand concepts of High Performance Computing.
- To get brief knowledge about PB and Slurm.
- To understand techniques of OpenMP and OpenMPI.
- To understand Parallel computing concepts.
- To get familiar with CUDA.

LIST OF EXPERIMENTS

IMPLEMENTED EITHER PB, SLURM, OPENMP, OPENMPIAND CUDA

- 1. Demo: Access and best practices on HPC
- 2. Matrix multiplication with Job scheduling (PB or Slurm)
- 3. Vectors add with malloc shared
- 4. Vector add program with MPI
- 5. Hello world task for Multithreading with openMP
- 6. openMP shared memory on Host and Device
- 7. openMP Matrix Multiplication with parallelism and Barrier
- 8. openMP with Reduction on operands and aggregate functionality
- 9. Vector and Matrix multiplication on CUDA
- 10. Feed forward computing on CUDA

COURSE OUTCOMES:

CO1	Apply and Evaluate the HPC Programs	
CO2	Design and Develop a MPI Programs	K1 - K6
CO3	Design and Develop a different programming concepts of OpenMP	
CO4	Develop an efficient PB and Slurm programming	
CO5	Evaluate an efficient CUDA programming	

1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Н	L	Μ	L	L	L	Н	Н	Н	Н
CO2	Н	М	L	М	Μ	L	Н	L	Н	L
CO3	Н	Н	Н	М	Μ	L	М	L	Μ	L
CO4	Н	Н	Н	М	Н	L	М	L	М	Н
CO5	Н	Н	Н	М	М	L	М	М	Μ	М

H- High; M-Medium; L-Low

NON MAJOR ELECTIVE – II

Subject Code : 23UPCSC1N01

Credit :2

ADVANCED MICROSOFT OFFICE LAB

LIST OF EXPERIMENTS

MS-Word:

- 1. Design an admission/enquiry form using shapes, textbooks, colors, tables with formatting options.
- 2. Design a text book with cover page, content page and text using indenting options, rulers, page layout, header/footer and hyperlinks.
- 3. Design Newspaper advertisement with images and texts.
- 4. Design mark statement copy using tables, images and watermarks.
- 5. Design conference/seminar invitation with logos, formatting options, margins and borders.
- 6. Write a Research article with Chart, Tables, Symbols, Equations and References.

MS-Excel:

- 7. Design an application for student Exam Result using Data validation, Aggregate functions and Conditional formatting.
- 8. Prepare Cost-Benefit Analysis for an organization using Statistical tools.
- 9. Develop an application to predict population of a city using analysis Macros.

MS- Access:

10. Design an Employee payroll system with Forms and Reports using Macros.

- 11. Develop relational integrity databases.
- 12. Develop an application which automatically update a table using

Triggers.

13. Design an inventory database and generate conditional report.

MS-PowerPoint:

14. Prepare a presentation with embedding multimedia objects.

15. Prepare presentation with slide layout, animations, font effects, hyperlinks.

MS-Publisher:

16. Prepare an academic calendar for an institution.

Reference Books:

- 1. Lisa A. Bucki, "MS Office 2013 Bible", Wiley Publications, 2013.
- 2. Richard Mansfield, "Mastering VBA for Microsoft office 2016", Wiley Publications, 2016.
- 3. Wayne L. Winston, "Microsoft Excel Data Analysis and Business Modeling", PHI, 2017.
- 4. Manisha Nigam, "Data Analysis with Excel", BPB Publications, 2019.
- 5. Michael Alexander and Dick Kusleika, "Excel Power Programming with VBA", Wiley Publications, 2016.
- 6. Michael Alexander and Dick Kuskeika, "Access the Comprehensive tutorial guide", Wiley Publications, 2016.

NON MAJOR ELECTIVE - II

Subject Code : 23UPCSC1N02

Credit : 2

BIOPYTHON PROGRAMMING LAB

LIST OF EXPERIMENTS

Implement the following in Python:

- 1. Program to implement Functions.
- 2. Program to perform Basic Operations on Sequence objects.
- 3. Program to perform Operations on Sequence annotation objects.
- 4. Program to perform Operations on Sequence Input/Output.
- 5. Program to perform Operations on Multiple Sequence Alignment objects.
- 6. Program to perform Operations on BLAST.
- 7. Program to perform Sequence motif analysis.
- 8. Program to perform Cluster analysis.
- 9. Program to perform Supervised learning methods.
- 10. Program to perform Genome Data visualization.

Reference Books:

- 1. Via, A., Rother, K., & Tramontano, A. (2014). Managing your biological data with Python. Chapman and Hall/CRC.
- 2. Rocha, M., & Ferreira, P. G. (2018). Bioinformatics Algorithms: Design and Implementation in Python. Academic Press.
- 3. Chun, W. (2001). Core python programming (Vol. 1). Prentice Hall Professional.

SEMESTER II

Subject Code: 23UPCSC1P01

Professional Competency Skill - Mini Project

Subject Code: 23UPCSC1X01

Extension Activity - Internet Safety and protecting personal information

The following activities may be carried out (Internal evaluation only)

- 1. Understanding online threats
- 2. Online privacy basics
- 3. Securing personal information
- 4. Safe browsing practices
- 5. Managing online presence

SEMESTER III

Subject Code: 23UPCSC1I01		Credits: 02
-	Internship / Industrial Activity	

SEMESTER IV

Subject Code: 23UPCSC1P02

Project with Viva Voce

Subject Code: 23UPCSC1I02

Credit Seminar (Industry / Entrepreneurship)

Student should attend any lecture series / workshop / panel discussion / presentation on specific subject. The student has to submit and present the report with detailed description

Credits: 02

Credits: 13

Credits: 01

Credits: 02