M.Sc., PHYISCS

1

MODEL SYLLABUS

AUGUST : 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

M.Sc. PHYSICS COURSE STRUCTURE

FIRST SEMESTER

		HRS. ITS		HRS.		AX RKS	
COURSE COMPONENTS	NAME OF THE COURSE	THE COURSE IS IN THE COURSE					
Core	Paper 1- Mathematical Physics	6	4	3	25	75	
Core	Paper 2 - Classical Mechanics and Relativity	5	4	3	25	75	
Core	Paper 3 - Linear and Digital ICs and Applications		4	3	25	75	
Core Practical	Paper 4 – Practical I	6	3	3	25	75	
Elective- I	Choose any one from the list I	4	3	3	25	75	
Professional Competency Course		2	2	3	25	75	
Soft Skill – I	Soft Skill – I Ability Enhancement Compulsory Course		2	3	25	75	

SECOND SEMESTER

COURCE		HRS.		IRS.		AX RKS
COURSE COMPONENTS	NAME OF THE COURSE	INST. H	CREDIT	EXAM F	CIA	EXT.
Core	Paper 5– Statistical Mechanics		4	3	25	75
Core	Paper 6 - Quantum Mechanics –I		4	3	25	75
Core Practical	Paper 7 – Practical – II		3	3	25	75
Elective- II	Choose any one from the list II	4	3	3	25	75
Elective - III	Choose any one from the lists III	4	3	3	25	75
	Skill Enhancement Course – I	2	2	3	25	75
Soft Skill – II	Ability Enhancement Compulsory Course		2	3	25	75
	Internship* / Industrial Activity	-	-	-	-	-

** Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

THIRD SEMESTER

		KS.		HRS.		AX RKS
COURSE COMPONENTS	NAME OF COURSE	INST. HRS.	CREDIT	EXAM H	CIA	EXT.
Core	Paper 8 – Quantum Mechanics –II	6	4	3	25	75
Core	Paper 9 – Condensed Matter Physics	5	4	3	25	75
Core	Paper 10 - Electromagnetic Theory	5	4	3	25	75
Core Practical	Paper 11 – Practical – III Numerical Methods and Computer Programming (FOTRAN/C)	6	3	3	25	75
Elective - IV	Choose any one from the lists I, II & III	4	3	3	25	75
	Skill Enhancement Course – II	2	2	3	25	75
Soft Skill - III	Ability Enhancement Compulsory Course	2	2	3	25	75
	Internship / Industrial Activity [Credits]	-	2	-	_	-

FOURTH SEMESTER

		HRS.	IS	IRS.		IAX ARKS
COURSE COMPONENTS	NAME OF COURSE	INST. H	CREDIT	EXAM HRS	CIA	EXT.
Core	Paper 12– Nuclear and Particle Physics	6	4	3	25	75
Core	Paper 13 - Spectroscopy	5	4	4	25	75
Core	Paper 14 – Numerical Methods and Computer Programming		4	4	25	75
Core Practical	Paper 15 – Practical – IV	6	3	4	25	75
Core	Paper 16 – Project with Viva-Voce	4	4	-	25	75
	Skill Enhancement Course – III	2	2	3	25	75
Soft Skill - IV	Soft Skill - IV Ability Enhancement Compulsory Course		2	3	25	75
Extension Activity		-	1	-	-	-

Consolidation:

Part	Subject	Credits Distribution	Total					
Α	Core	12x4	48					
Α	Core Practical	4x3	12					
Α	Elective	4x3	12					
B1	SEC	4x2	08					
B2	Soft Skill & Internship	5x2	10					
С	Extension Activity	1x1	01					
	TOTAL	* · · · · · · · · · · · · · · · · · · ·						

ELECTIVE PAPERS

List 1

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Analysis of Crystal Structures
- 4. Materials Science
- 5. Physics of Nano Science and Technology
- 6. Digital Communication
- 7. Communication Electronics

LIST 2

- 8. Plasma Physics
- 9. Bio Physics
- 10. Non-linear Dynamics
- 11. Quantum Field Theory
- 12. General Relativity and Cosmology
- 13. Advanced Optics
- 14. Advanced Mathematical Physics

LIST 3 INDUSTRY ORIENTED ELECTIVE (IOE)

- 15. Advanced Spectroscopy
- 16. Microprocessor 8086 and Microcontroller 8051
- 17. Characterization of Materials
- 18. Medical Physics
- 19. Solid Waste Management (SWM)
- 20. Sewage and Waste Water Treatment and Reuse
- 21. Solar Energy Utilization

(Note: Institutions can also frame such IOE courses more suitable for their locality.)

Paper-1 - MATHEMATICAL PHYSICS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATHEMATICAL PHYSICS	Core				4	6	75

Pre-Requisites							
Matrices, vectors, differentiation, integration, differential equations							
Learning Objectives							
> To equip students with the mathematical techniques needed for understanding theoretical							
treatment in different courses taught in their program							

- > To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
	Basic concepts – Definitions- examples of vector space – Linear independence -
UNIT I:	Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –
	linear operators – Dual space- ket and bra notation – orthogonal basis – change
LINEAR	of basis – Isomorphism of vector space – projection operator –Eigen values and
VECTOR SPACE	Eigen functions – Direct sum and invariant subspace – orthogonal
	transformations and rotation
	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex
	Variable- Differentiability -Analytic functions- Harmonic Functions- Complex
UNIT II:	Integration- Contour Integration, Cauchy – Riemann conditions – Singular
	points - Cauchy's Integral Theorem and integral Formula -Taylor's Series -
COMPLEX	Laurent's Expansion- Zeros and poles – Residue theorem and its Application:
ANALYSIS	Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates,
	coaxial cylinders and an annular region (2) Heat problems - Parallel plates and
	coaxial cylinders
	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix
UNIT III:	- Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -
	Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen
MATRICES	values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
	Definitions -Fourier transform and its inverse - Transform of Gaussian function
UNIT IV:	and Dirac delta function -Fourier transform of derivatives - Cosine and sine
	transforms - Convolution theorem. Application: Diffusion equation: Flow of
FOURIER	heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of

TRANSFORMS	n infinite string and of a semi - infinite string.								
&	Laplace transform and its inverse - Transforms of derivatives and integrals –								
LAPLACE	Differentiation and integration of transforms - Dirac delta functions -								
TRANSFORMS	Application - Laplace equation: Potential problem in a semi - infinite strip								

	Second order differential equation- Sturm-Liouville's theory - Series solution								
	with simple examples - Hermite polynomials - Generating function -								
UNIT V:	Orthogonality properties - Recurrence relations – Legendre polynomials -								
	Generating function - Rodrigue formula – Orthogonality properties - Dirac								
DIFFERENTIAL	a function- One dimensional Green's function and Reciprocity theorem								
EQUATIONS	Sturm-Liouville's type equation in one dimension & their Green's function.								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,								
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill								
COMPONENTS	Enhancement, Social Accountability and Patriotism								
	1. George Arfken and Hans J Weber, 2012, Mathematical Methods for								
	Physicists – A Comprehensive Guide (7th edition), Academic press.								
	2. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2 nd edition), New								
	Age, New Delhi								
	3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition								
TEXT BOOKS	(Paperback), New Age International Pvt. Ltd., India								
	4. B. D. Gupta, 2009, <i>Mathematical Physics</i> (4 th edition),								
	Vikas Publishing House, New Delhi.								
	5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics,								
	Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.								
	1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley								
	Eastern, New Delhi,								
	2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering								
	Mathematics, 3rd Ed. Narosa, New Delhi.								
	3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill,								
REFERENCE	New York 3. E. Butkov, 1968, Mathematical Physics Addison -								
BOOKS	Wesley, Reading, Massachusetts.								
	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition,								
	Affiliated East West, New Delhi.								
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering								
	Mathematics, 6 th Edition, International Edition, McGraw-Hill, New								
	York								
	1. www.khanacademy.org								
	2. https://youtu.be/LZnRIOA1_2I								
WEB SOURCES	3. http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath								
	4. https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R								
	YTEU27vS_SIED56gNjVJGO2qaZ								
	5. https://archive.nptel.ac.in/courses/115/106/115106086/								

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	K2, K3
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K4, K5
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K2, K5
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Paper-2 - CLASSICAL MECHANICS AND RELATIVITY | I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CLASSICAL MECHANICS AND RELATIVITY	Core				4	5	75

Pre-Requisites

Fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations

UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
	1. H. Goldstein, 2002, <i>Classical Mechanics</i> , 3rd Edition, Pearson

	Edu.
	2. J. C. Upadhyaya, Classical Mechanics, Himalaya Publshing.
	Co. New Delhi.
TEXT BOOKS	3. R. Resnick, 1968, Introduction to Special Theory of Relativity,
TEXT DOORS	Wiley Eastern, New Delhi.
	4. R. G. Takwala and P.S. Puranik, Introduction to Classical
	Mechanics – Tata – McGraw Hill, New Delhi, 1980.
	5. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw
	Hill, 2001
	1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
	2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
REFERENCE BOOKS	Kolkata.
KETEREIUCE DOORS	3. Gupta and Kumar, Classical Mechanics, Kedar Nath.
	4. T.W.B. Kibble, Classical Mechanics, ELBS.
	5. Greenwood, Classical Dynamics, PHI, New Delhi.
	1. http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldst
	ein_Classical_Mechanics_optimized.pdf
	2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
WEB SOURCES	editionpdf-pdf-free.html
WEB SOURCES	3. https://nptel.ac.in/courses/122/106/122106027/
	4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-
	iii-fall-2014/lecture-notes/
	5. https://www.britannica.com/science/relativistic-mechanics

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	K2
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve	K3
	the equations of motion of physical systems.	КJ
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve	K3,
	the equations of motion of physical systems.	K5
CO4	Analyze the small oscillations in systems and determine their normal	K4,
	modes of oscillations.	K5
CO5	Understand and apply the principles of relativistic kinematics to the	K2,
	mechanical systems.	K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

Strong -3, Medium -2, Low -1

Paper- 3 - LINEAR AND DIGITAL ICs & APPLICATIONS | I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core				4	5	75

Pre-Requisites

Knowledge of semiconductor devices, basic concepts of digital and analog electronics

Learning Objectives

- > To introduce the basic building blocks of linear integrated circuits.
- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

UNITS	Course Details
UNIT I:	
INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features, the ideal Operational amplifier, Op-Amp internal circuit and
OPERATIONAL	Op-Amp. Characteristics.
AMPLIFIER	

TEXT BOOKS	 D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S.
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
	asynchronous binary counter (IC 7493).
TTL 74XX ICs	IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit
CIRCUITS USING	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,
SEQUENTIAL	Demultiplexer (IC 74154).
&	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),
TTL 74XX ICs	7485), Decoder (IC 74138, IC 74154), BCD to
COMBINATIONAL CIRCUITS USING	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC
CMOS LOGIC, COMBINATIONAL	AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic
UNIT V:	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-
	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS
	approximation ADC and dual slope ADC, DAC and ADC Specifications.
CONVERTERS	converters -parallel comparator type ADC, counter type ADC, successive
D to A AND A to D	weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D
REGULATOR &	D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -
VOLTAGE	Regulator.
UNIT IV:	Voltage Regulators, IC 723 general purpose regulators, Switching
	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC
	monolithic PLL and applications of PLL
	detector/comparator, voltage controlled oscillator (IC 566), low pass filter,
TIMER AND PHASE LOCKED LOOPS	description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase
ACTIVE FILTERS &	TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer,
UNIT III:	low pass and high pass filters, band pass, band reject and all pass filters.
	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order
	waveform generators.
	Comparators, Schmitt trigger, Multivibrators, Triangular and Square
OP-AMP	Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider,
APPLICATIONS OF	NON-LINEAR APPLICATIONS OF OP-AMP:
UNIT II:	I to V converters.
	equations and differential equations, Instrumentation amplifiers, V to I and
	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous

	Charad Q. Ca. 10th Edition
	Chand & Co, 12th Edition.
	5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital
	& Analog), S. Viswanathan Printers & Publishers Private Ltd,
	Reprint. V.
	1. Sergio Franco (1997), Design with operational amplifiers and
	analog integrated circuits, McGraw Hill, New Delhi.
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated
	Circuits, Wiley International, New Delhi.
REFERENCE	3. Malvino and Leach (2005), Digital Principles and Applications 5th
BOOKS	Edition, Tata McGraw Hill, New Delhi
	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson
	Education, New Delhi.
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th
	Reprint (2000)
	1. https://nptel.ac.in/course.html/digital circuits/
	2. https://nptel.ac.in/course.html/electronics/operational amplifier/
	3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-
WEB SOURCES	7/field-effect-controlled-thyristors/
	4. https://www.electrical4u.com/applications-of-op-amp/
	5. https://www.geeksforgeeks.org/digital-electronics-logic-design-
	tutorials/

At the end of the course the student will be able to:

K1 - Re	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	
	circuits	K4
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential	K1,
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
	circuits using IC 555 timer and can solve problems related to it.	K3
CO3	Gain knowledge about PLL, and develop the skills to design the simple	K1,
	Amp and design the active filters circuits.	цу
CO2	Develop skills to design linear and non-linear applications circuits using Op-	K3
	linear integrated circuits and develops skill to solve problems	K5
CO1	Learn about the basic concepts for the circuit configuration for the design of	K1,

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Paper 4 - PRACTICAL I

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL I	Core				3	6	75

Pre-Requisites

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient

23. Construction of relaxation oscillator using UJT

- 24. FET CS amplifier- Frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741.
- 26. V- I Characteristics of different colours of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

39. Collstruction	of Encoder and Decoder circuits using iCs.
	1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
TEXT BOOKS	3. Electronic Laboratory Primer a design approach, S. Poornachandra,
IEAI DOURS	B. Sasikala, Wheeler Publishing, New Delhi.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
	2. An advanced course in Practical Physics, D. Chattopadhayay, C.R
	Rakshit, New Central Book Agency Pvt. Ltd
REFERENCE	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
BOOKS	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
	Sons (Asia) Pvt. Ltd.
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing.

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	К2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5

CO6	Conduct experiments on applications of FET and UJT	K4				
CO7	Analyze various parameters related to operational amplifiers.	K4				
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	K2				
	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1				
CO10	Analyze the applications of counters and registers	K4				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

METHOD OF EVALUATION:

Continuous Internal Assessment			Grade
25	75	100	

Paper 5 - STATISTICAL MECHANICSI YEA

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	STATISTICAL MECHANICS	Core				4	6	75

Pre-Requisites

Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

Learning Objectives

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details					
	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule -					
UNIT I:	Phase transitions and Ehrenfest's classifications -Third law of					
PHASE	Thermodynamics. Order parameters - Landau's theory of phase					
TRANSITIONS	transition - Critical indices - Scale transformations and dimensional					
	analysis.					
UNIT II:	Foundations of statistical mechanics - Specification of states of a					
STATISTICAL	system - Micro canonical ensemble - Phase space – Entropy -					
MECHANICS AND	Connection between statistics and thermodynamics – Entropy of an					
THERMODYNAMICS	ideal gas using the micro canonical ensemble - Entropy of mixing and					
	Gibb's paradox.					

UNIT III:							
CANONICAL A	Trajectories and density of states - Liouville's theorem - Canonical						
GRAND	and grand canonical ensembles - Partition function - Calculation of						
CANONICAL							
ENSEMBLES							
UNIT IV:	Density matrix - Statistics of ensembles - Statistics of indistinguishable						
CLASSICAL AN	ND particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics – Ideal						
QUANTUM	Fermi gas – Degeneracy - Bose-Einstein statistics - Plank radiation						
STATISTICS	formula - Ideal Bose gas - Bose-Einstein condensation.						
	· · · · · · · · · · · · · · · · · · ·						
UNIT V:	Cluster expansion for a classical gas - Virial equation of state - Calculation						
REAL GAS,	of the first Virial coefficient in the cluster expansion - Ising model - Mean-						
ISING MODEL	field theories of the Ising model in three, two and one dimensions - Exact						
AND	solutions in one dimension. Correlation of space-time dependent fluctuations						
FLUCTUATIO	- Fluctuations and transport phenomena - Brownian motion - Langevin's						
NS	theory - Fluctuation-dissipation theorem - The Fokker-Planck equation						
UNIT VI:							
PROFESSIONA	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,						
L	Competitive Examinations, Employable and Communication Skill						
COMPONENTS	Enhancement, Social Accountability and Patriotism						
	1. S. K. Sinha, 1990, Statistical <i>Mechanics</i> , Tata McGraw Hill, New						
TEXT BOOKS	 Delhi. 2. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i>, Second Edition New Age International, New Delhi. 3. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i>: An Introductory Text, Allied Publication, New Delhi. 4. F. Reif, 1965, <i>Fundamentals of Statistical and Thermal Physics</i>, McGraw -Hill, New York. 5. M. K. Zemansky, 1968, <i>Heat and Thermodynamics</i>, 5th edition, McGraw-Hill New York. 						
REFERENCE BOOKS	 R. K. Pathria, 1996, <i>Statistical Mechanics</i>, 2nd edition, Butter WorthHeinemann, New Delhi. L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i>, Pergamon Press, Oxford. K. Huang, 2002, <i>Statistical Mechanics</i>, Taylor and Francis, London W. Greiner, L. Neise and H. Stoecker, <i>Thermodynamics and Statistical Mechanics</i>, Springer Verlang, New York. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i>, Books and Allied, Kolkata. 						
WEB SOURCES	 https://byjus.com/chemistry/third-law-of-thermodynamics/ https://web.stanford.edu/~peastman/statmech/thermodynamics.html https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodyna mics https://en.wikipedia.org/wiki/Grand_canonical_ensemble https://en.wikipedia.org/wiki/Ising_model 						

At the end of the course the student will be able to:

C01	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition						
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities	K4					
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function						
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between the three types of statistics.	K4, K5					
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	К3					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Paper 6 - QUANTUM MECHANICS - I

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – I	Core				4	6	75

Pre-Requisites Newton's laws of motion, Schrodinger's equation, integration, differentiation.

Learning Objectives

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II: ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal

	Time independent perturbation theory for non-degenerate energy levels –						
UNIT IV:	Degenerate energy levels – Stark effect in Hydrogen atom – Ground and						
APPROXIMATIO	excited state – Variation method – Helium atom – WKB approximation –						
N METHODS	Connection formulae (no derivation) – WKB quantization – Application to						
	simple harmonic oscillator.						
	Eigenvalue spectrum of general angular momentum – Ladder operators and						
UNIT V:	their algebra – Matrix representation – Spin angular momentum – Addition						
ANGULAR	of angular momenta – CG Coefficients – Symmetry and anti – symmetry of						
MOMENTUM	wave functions – Construction of wave-functions and Pauli's exclusion						
principle.							
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum						
	Mechanics, 2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi,						
	2010.						
	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of						
	India, New Delhi, 2009.						
TEXT BOOKS	3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition,						
	Pearson, 2011. 4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st						
	4. SE Gupta and ID Gupta, Advanced Quantum Theory and Heids, 1 Edition, S.Chand& Co., New Delhi, 1982.						
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and						
	Applications, 4 th Edition, Macmillan, India, 1984.						
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and						
	Sons, New York, 1970.						
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern						
REFERENCE	Ltd, New Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,						
BOOKS	Pergomon Press, Oxford, 1976.						
DOORD	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata,						
	1999.						
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science						
	International Ltd, Oxford, 2011.						
	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-						
	c7.pdf 2. http://www.feynmanlectures.caltech.edu/III_20.html						
WEB SOURCES	 http://www.reynnamectures.canech.edu/m_20.ntm http://web.mit.edu/8.05/handouts/jaffe1.pdf 						
	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/						
	Lecture_ 1.pdf						
	5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf						

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5				
CO2	Is able to apply and analyze the Schrodinger equation to solve one	K3,				
	dimensional problems and three dimensional problems	K4				
CO3	Can discuss the various representations, space time symmetries and	K1				
	formulations of time evolution	KI				
CO4	Can formulate and analyze the approximation methods for various	K4,				
	quantum mechanical problems	K5				
CO5	To apply non-commutative algebra for topics such as angular and spin	K3,				
	angular momentum and hence explain spectral line splitting. K4					
K1 - R6	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Paper 7 - PRACTICAL II

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL II	Core				3	6	75

Pre-Requisites

Knowledge and handling of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. Measurement of Susceptibility of liquid Quincke's method
- 5. B-H curve using CRO
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. LG Plate
- 8. Arc spectrum: Copper
- 9. Determination of Solar constant
- 10. Determination of e/m Millikan's method
- 11. Miscibility measurements using ultrasonic diffraction method
- 12. Determination of Thickness of thin film. Michelson Interferometer
- 13. GM counter Feather's analysis: Range of Beta rays
- 14. Iodine absorption spectra
- 15. Molecular spectra CN bands
- 16. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 17. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.

- 18. Measurement of Dielectricity Microwave test bench
- 19. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 20. Interpretation of vibrational spectra of a given material
- 21. Determination of I-V Characteristics and efficiency of solar cell.
- 22. IC 7490 as scalar and seven segment display using IC7447
- 23. Solving simultaneous equations IC 741 / IC LM324
- 24. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 25. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 26. Construction of second order butter worth multiple feedback narrow band pass filter
- 27. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 28. Construction of square wave generator using IC 555 Study of VCO
- 29. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer
- 30. Construction of pulse generator using the IC 555 Application as frequency divider
- 31. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 32. Study of binary up / down counters IC 7476 / IC7473
- 33. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
- 34. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 35. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 36. Study of Modulus Counter
- 37. Construction of Multiplexer and Demultiplexer using ICs.

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences
TEXT BOOKS	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. An advanced course in Practical Physics, D. Chattopadhayay,
	C.R Rakshit, New Central Book Agency Pvt. Ltd
	2. Advanced Practical Physics, S.P Singh, Pragati Prakasan
DEFEDENCE	3. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley &
REFERENCE	Sons (Asia) Pvt. ltd
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2					
CO2	Acquire knowledge of thermal behaviour of the materials	K1					
CO3	Understand theoretical principles of magnetism through the experiments.	K2					
CO4	Acquire knowledge about arc spectrum and applications of laser	K1					
CO5	Improve the analytical and observation ability in Physics Experiments	K4					
CO6	Conduct experiments on applications of FET and UJT	K5					
CO7	Analyze various parameters related to operational amplifiers	K4					
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2					
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic	K3					
0.09	Circuits K5						
CO10	CO10Analyze the applications of counters and registersK4						
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Paper 8 - QUANTUM MECHANICS – II II YEAR - TH

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – II	Core				4	6	75

Pre-Requisites Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules Learning Objectives ▶ Formal development of the theory and the properties of angular momenta, both orbital and spin ▶ To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation. ▶ Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field

To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts

To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNITS	Course Details
	Scattering amplitude – Cross sections – Born approximation and its validity
UNIT 1:	- Scattering by a screened coulomb potential - Yukawa potential - Partial
SCATTERING	wave analysis – Scattering length and Effective range theory for s wave –
THEORY	Optical theorem – Transformation from centre of mass to laboratory frame.
	Time dependent perturbation theory – Constant and harmonic perturbations
UNIT II:	- Fermi Golden rule - Transition probability Einstein's A and B
PERTURBATION	Coefficients – Adiabatic approximation – Sudden approximation – Semi –
THEORY	classical treatment of an atom with electromagnetic radiation - Selection
	rules for dipole radiation
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices
RELATISTIC	- Dirac Equation - Plane Wave Solutions - Interpretation Of Negative
QUANTUM	Energy States – Antiparticles – Spin of Electron – Magnetic Moment Of An
MECHANICS	Electron Due To Spin
UNIT IV:	Covariant form of Dirac Equation - Properties of the gamma matrices -
DIRAC	Traces - Relativistic invariance of Dirac equation - Probability Density -
EQUATION	Current four vector - Bilinear covariant - Feynman's theory of positron
	(Elementary ideas only without propagation formalism)
UNIT V:	Classical fields – Euler Lagrange equation – Hamiltonian formulation –
CLASSICAL	Noether's theorem – Quantization of real and complex scalar fields –
FIELDS AND	Creation, Annihilation and Number operators – Fock states – Second
SECOND	Quantization of K-G field.
QUANTIZATION	`
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd Edition, Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi,2009 L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968 V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005. Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017
REFERENCE BOOKS	 P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, London, 1973. B. K. Agarwal & Hari Prakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009. Deep Chandra Joshi, Quantum Electrodynamics and Particle Physics,1stedition,I.K.International Publishing house Pvt. Ltd., 2006

	4. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
	 Applications, 4th Edition, Macmillan India, New Delhi. 5. E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970
	1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall- 2013/lecture notes/MIT8_05F13_Chap_09.pdf
	 http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf
WEB SOURCES	3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
	4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-
	gk.pdf
	5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf

At the end of the course the student will be able to:

CO1	Familiarize the concept of scattering theory such as partial wave analysis and Born approximation	K1
CO2	Give a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts	К2
CO3	Discuss the relativistic quantum mechanical equations namely, Klein- Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic moment	K1, K4
CO4	Introduce the concept of covariance and the use of Feynman graphs for depicting different interactions	K1, K3
CO5	Demonstrate an understanding of field quantization and the explanation of the scattering matrix.	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	•

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

Paper 4 - CONDENSED MATTER PHYSICS II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CONDENSED MATTER PHYSICS	Core				4	5	75

Pre-Requisites						
Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.						
Learning Objectives						
To describe various crystal structures, symmetry and to differentiate different types bonding.	of					
To construct reciprocal space, understand the lattice dynamics and apply it to concept specific heat.	of					
To critically assess various theories of electrons in solids and their impact in distinguish solids.	ing					

- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).
UNIT II: LATTICE DYNAMICS	Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann- Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies de Hass van Alphen effect
SEMICONDUCTORS	

UNIT IV: MAGNETISM Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hurrule - Quenching of orbital angular momentum - Adiabatic demagnetization Quantum theory of ferromagnetism - Curie point - Exchange integra Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Blow wall - Spin waves - Quantization - Magnons - Thermal excitation of magnor Curie temperature and susceptibility of ferrimagnets - Theory antiferomagnetism - Neel temperature.	n - ıl - och ns -
--	----------------------------

UNIT V: Superconductivity	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill Enhancement,
COMPONENTS	Social Accountability and Patriotism
TEXT BOOKS	 C. Kittel, 1996, <i>Introduction to Solid State Physics</i>, 7th Edition, Wiley, New York. Rita John, Solid State Physics, Tata Mc-Graw Hill Publication. A. J. Dekker, <i>Solid State Physics</i>, Macmillan India, New Delhi. M. Ali Omar, 1974, <i>Elementary Solid State Physics – Principles and Applications</i>, Addison - Wesley H. P. Myers, 1998, <i>Introductory Solid State Physics</i>, 2nd Edition, Viva Book, New Delhi.
REFERENCE BOOKS	 J. S. Blakemore, 1974 , <i>Solid state Physics</i>, 2nd Edition, W.B. Saunder, Philadelphia H. M. Rosenburg, 1993, <i>The Solid State</i>, 3rd Edition, Oxford University Press, Oxford. J. M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London. C. Ross-Innes and E. H. Rhoderick, 1976, <i>Introduction to Superconductivity</i>, Pergamon, Oxford. J. P. Srivastava, 2001, <i>Elements of Solid State Physics</i>, Prentice-Hall of India, New Delhi.
WEB SOURCES	 http://www.physics.uiuc.edu/research/electronicstructure/389/389- cal.html http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html https://www.britannica.com/science/crystal https://www.nationalgeographic.org/encyclopedia/magnetism/ https://www.brainkart.com/article/Super-Conductors_6824/

At the end of the course, the student will be able to:

CO1	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure	K1
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2
CO3	Student will be able to comprehend the heat conduction in solids	K3
CO4	Student will be able to generalize the electronic nature of solids from band theories.	K3, K4
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

Paper 10 - ELECTROMAGNETIC THEORY

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ELECTROMAGNETIC THEORY	Core				4	5	75

Pre-Requisites

Different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

Learning Objectives

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNITS	Course Details
UNIT I: ELECTROSTATICS	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.
UNIT III: MAXWELL EQUATIONS	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force -

Conservation laws for a system of charges and electromagnetic fields.

UNIT IV: WAVE PROPAGATION	 Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole The Boltzmann Equation - Simplified magneto-hydrodynamic equations 							
UNIT V: ELEMENTARY PLASMA PHYSICS	- Electron plasma oscillations - The Debye shielding problem - Plasma confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven waves and magnetosonic waves.							
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism							
TEXT BOOKS	 D. J. Griffiths, 2002, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford. Gupta, Kumar and Singh, Electrodynamics, S. Chand & Co., New Delhi 							
REFERENCE BOOKS	 W. Panofsky and M. Phillips, 1962, <i>Classical Electricity and</i> <i>Magnetism</i>, Addison Wesley, London. J. D. Kraus and D. A. Fleisch, 1999, <i>Electromagnetics with</i> <i>Applications</i>, 5th Edition, WCB McGraw-Hill, New York. B. Chakraborty, 2002, <i>Principles of Electrodynamics</i>, Books and Allied, Kolkata. P. Feynman, R. B. Leighton and M. Sands, 1998, <i>The Feynman</i> <i>Lectures on Physics</i>, Vols. 2, Narosa Publishing House, New Delhi. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA. 							

WEB SOURCES	 http://www.plasma.uu.se/CED/Book/index.html http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html
	 http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_ Tutorials/
	 https://www.cliffsnotes.com/study-guides/physics/electricity-and- magnetism/electrostatics

At the end of the course the student will be able to:

CO1	Solve the differential equations using Laplace equation and to find solutions for	K1,			
	boundary value problems	K5			
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction &	K2,			
	magnetic vector potential for various physical problems	K3			
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in	K3			
	different media	КJ			
CO4	Apply the concept of propagation of EM waves through wave guides in optical	K3,			
	tiber communications and also in radar installations calculate the transmission				
	and reflection coefficients of electromagnetic waves	K4			
CO5	Investigate the interaction of ionized gases with self-consistent electric and	K5			
	magnetic fields	NЭ			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Paper - 11 - Practical – III - NUMERICAL METHODS AND COMPUTER PROGRAMMING (FORTRAN/C)

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	Practical – III NUMERICAL METHODS AND COMPUTER PROGRAMMING (FORTRAN/C)	Core				3	6	75

Pre-Requisites

Basic knowledge in differential equation and linear algebra Basic knowledge of operating system and computer fundamentals.

Learning Objectives

- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN
- > To equip the computational skill using various mathematical tools.
- > To apply the software tools to explore the concepts of physical science.
- > To approach the real time activities using physics and mathematical formulations.

Course Details

(Any Twelve Experiments)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. Runge Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 14. Newton's cotes formula
- 15. Trapezoidal rule
- 16. Simpson's 1/3 rule
- 17. Simpson's 3/8 rule
- 18. Boole's rule
- 19. Gaussian quadrature method (2 point and 3 point formula)

20. Giraffe's root square method for solving algebraic equation

	1. Numerical methods using Matlab – John Mathews & Kurtis Fink,							
	Prentice Hall, New Jersey 2006							
	2. Numerical methods in Science and Engineering - M.K. Venkataraman,							
	2. Numerical methods in Science and Engineering - M.K. Venkataraman, National Publishing Co. Madras, 1996							
	3. V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed.							
	(Prentice-Hall, New Delhi.							
TEXT BOOKS	•							
	4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for							
	Scientific and Engineering Computation, 3 rd Ed. New Age							
	International, New Delhi.							
	5. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New							
	Delhi.							
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An							
	Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).							
	2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th							
	Edition, Addison Wesley, Reading, MA.							
REFERENCE	B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical							
BOOKS	Methods (Wiley, New York.							
	4. S.S. Kuo, 1996, Numerical Methods and Computers, Addison -							
	Wesley, London.							
	5. V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI,							
	New Delhi.							

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES: At the end of the course the student will be able to:

		1					
CO1	Program with the C Program/ FORTRAN with the C or any other high level	K1					
	language						
CO2	Use various numerical methods in describing/solving physics problems.	K4					
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific	K5					
COS	problems.	KJ					
CO4	To enhance the problem-solving aptitudes of students using various numerical	K5					
C04	methods.						
CO5	To apply various mathematical entities, facilitate to visualise any complicate	K3					
COS	tasks.						
CO6	Process, analyze and plot data from various physical phenomena and interpret	K4					
000	their meaning	K4					
CO7	Identify modern programming methods and describe the extent and limitations	K1					
01	of computational methods in physics	KI					
CO8	Work out numerical differentiation and integration whenever routine are not	K5					
008	applicable.	KJ					
CO9	Apply various interpolation methods and finite difference concepts.						
	Understand and apply numerical methods to find out solution of algebraic	V1					
CO10	equation using different methods under different conditions, and numerical	K1,					
	solution of system of algebraic equation.	K4					
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	1					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Paper 12 - NUCLEAR AND PARTICLE PHYSICS II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUCLEAR AND PARTICLE PHYSICS	Core				4	6	75

Pre-Requisites						
Knowledge of basic structure of atom and nucleus.						
Learning Objectives						
Introduces students to the different models of the nucleus in a chronological order						
Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles						
Provides students with details of nuclear decay with relevant theories						

> Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I: NUCLEAR MODELS	Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.
UNIT II:	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear
NUCLEAR FORCES	forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
UNIT III: NUCLEAR REACTIONS	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
UNIT IV: NUCLEAR DECAY	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.
UNIT V: ELEMENTARY PARTICLES	Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS REFERENCE	 D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011) K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons (2008) R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996) S. B. Patel – Nuclear Physics – An introduction – New Age International Pvt Ltd Publishers (2011) S. Glasstone – Source Book of Atomic Energy – Van Nostrand Reinhold Inc.,U.S 3rd Revised edition (1968) L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973) H. A. Enge – Introduction to Nuclear Physics – Addison Wesley,
BOOKS	 Publishing Company. Inc. Reading. New York, (1974). 3. Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)

	4. Bernard L Cohen - Concepts of Nuclear Physics - McGraw Hill
	Education (India) Private Limited; 1 edition (2001)
	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	1. http://bubl.ac.uk/link/n/nuclearphysics.html
	2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdf
	http://www.scholarpedia.org/article/Nuclear_Forces
WEB SOURCES	3. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
WED SOURCES	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.ht ml
	5. https://www.ndeed.org/EducationResources/HighSchool/Radiography/ra dioactivedecay.html

At the end of the course, the student will be able to:

CO1	Gain knowledge about the concepts of helicity, parity, angular correlation	K1,						
	and internal conversion.	K5						
CO2	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3						
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	К3						
CO4	Analyze data from nuclear scattering experiments to identify different	КЗ,						
	properties of the nuclear force.	K4						
CO5	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	K5						
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SPECTROSCOPY	Core				4	6	75

Pre-Requisites

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

Learning Objectives

- > To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- > Understand this important analytical tool

UNITS	Course Details
	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-
UNIT I:	reduced mass – rotational constant Effect of isotopic substitution - Non rigid
UNIT I:	rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic
MICROWAVE	molecules – linear – symmetric asymmetric top molecules - Hyperfine structure
SPECTROSCOPY	and quadrupole moment of linear molecules - Instrumentation techniques -
SIECIKOSCOII	block diagram -Information Derived from Rotational Spectra- Stark effect-
	Problems.
	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic
	oscillator - fundamentals, overtones and combinations- Diatomic Vibrating
UNIT II:	Rotator- PR branch – PQR branch- Fundamental modes of vibration of H_2O and
	CO ₂ -Introduction to application of vibrational spectra- IR Spectrophotometer
INFRA-RED	Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared
SPECTROSCOPY	Spectroscopy - Interpretation of vibrational spectra- remote analysis of
	atmospheric gases like N2O using FTIR by National Remote Sensing Centre
	(NRSC), India– other simple applications
UNIT III:	Theory of Raman Scattering - Classical theory - molecular polarizability -
	polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman
RAMAN	spectra of linear molecule - symmetric top molecule - Stokes and anti-stokes
SPECTROSCOPY	line- SR branch -Raman activity of H2O and CO2 _Mutual exclusion principle-

determination of N ₂ O structure -Instrumentation technique and block diagram -
structure determination of planar and non-planar molecules using IR and Raman
techniques - FT Raman spectroscopy- SERS

	Nuclear and Electron spin-Interaction with magnetic field - Population of
	Energy levels - Larmor precession- Relaxation times - Double resonance-
	Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -
UNIT IV:	Spin Interaction – interpretation of simple organic molecules - Instrumentation
	techniques of NMR spectroscopy – NMR in Chemical industries- MRI Scan
RESONANCE	Electron Spin Resonance: Basic principle – Total Hamiltonian (Direct Dipole-
SPECTROSCOPY	Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure
	(Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation -
	Medical applications of ESR
	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert
TINITT V.	Beer law - molar absorptivity – transmittance and absorbance - Color in organic
UNIT V:	compounds- Absorption by organic Molecule -Chromophores -Effect of
UV	conjugation on chromophores - Choice of Solvent and Solvent effect -
SPECTROSCOPY	Absorption by inorganic systems - Instrumentation - double beam UV-
SFECTROSCOFT	Spectrophotometer -Simple applications
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill
COMPONENTS	Enhancement, Social Accountability and Patriotism
	1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular
	Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.
	2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy,
	Prentice–Hall of India, New Delhi.
	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications,
TEXT BOOKS	New Age International Publication.
	4. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition),
	New Age International Publishers.
	1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India,
	New Delhi.
	2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal
DEFEDENCE	Society of Chemistry, RSC, Cambridge.
REFERENCE	3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall New York
BOOKS	Hall, New York.
	4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.
	5. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation,
	S. Demuoder. W, Laser Spectroscopy. Basic concepts and instrumentation, Springer Link.
	Springer Link.

	1. https://www.youtube.com/watch?v=0iQhirTf2PI
	2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5
	3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-
WEB SOURCES	8jEee
	4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
	5. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-
	introduction-XCWRu

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as	
	elastic rotors and interpret their behaviour. Able to quantify their nature	K2
	and correlate them with their characteristic properties.	
CO2	Understand the working principles of spectroscopic instruments and	
	theoretical background of IR spectroscopy. Able to correlate mathematical	K2,
	process of Fourier transformations with instrumentation. Able to interpret	K3
	vibrational spectrum of small molecules.	
CO3	Interpret structures and composition of molecules and use their	K5
	knowledge of Raman Spectroscopy as an important analytical tool	N3
CO4	Use these resonance spectroscopic techniques for quantitative and	K4
	qualitative estimation of a substances	N4
CO5	Learn the electronic transitions caused by absorption of radiation in the	K1,
	UV/Vis region of the electromagnetic spectrum and be able to analyze a	K1, K5
	simple UV spectrum.	N3
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Paper 14 - NUMERICAL METHODS ANDII YEAR - FOURTH SEMESTERCOMPUTER PROGRAMMING

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUMERICAL METHODS AND COMPUTER PROGRAMMING	Core				4	5	75

Pre-Requisites
Prior knowledge on computer and basic mathematics
Learning Objectives
> To make students to understand different numerical approaches to solve a problem.
> To understand the basics of programming

UNITS	Course Details
UNIT I: SOLUTIONS OF EQUATIONS	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.
UNIT II: LINEAR SYSTEM OF EQUATIONS	Simultaneous linear equations and their matrix representation– Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.
UNIT III: INTERPOLATION AND CURVE FITTING	Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.
UNIT IV: DIFFERENTIATION, INTEGRATION AND SOLUTION OF DIFFERENTIAL EQUATIONS	Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss- Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and Runga Kutta methods.

UNIT V: PROGRAMMING WITH C	Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
	Interactions/Visits, Competitive Examinations, Employable and
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism
	1. V. Rajaraman, 1993, Computer oriented Numerical
	Methods, 3rd Edition. PHI, New Delhi
	2. M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical
	Methods for Scientific and Engineering Computation,
	3rd Edition, New Age Intl., New Delhi
TEXT BOOKS	3. S. S. Sastry, Introductory Methods of Numerical analysis,
	PHI, New Delhi
	4. F. Scheid, 1998, Numerical Analysis, 2nd Edition,
	Schaum's series, McGraw Hill, New York
	5. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
	Flannery, 1992, Numerical Recipes in FORTRAN,
	2nd Edition, Cambridge Univ. Press
	1. S. D. Conte and C. de Boor, 1981, Elementary Numerical
	analysis-an algorithmic approach, 3rd Edition, McGraw
	Hill,)
	2. B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical
	analysis, 5th Edition, Addison-Wesley, MA.
REFERENCE BOOKS	
	3. B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied
	Numerical Methods, Wiley, New York.
	4. S. S. Kuo, 1996, Numerical Methods and Computers,
	Addison-Wesley.
	5. V. Rajaraman, Programming in FORTRAN / Programming
	in C, PHI, New Delhi
	1. https://www.scribd.com/doc/202122350/Computer-
	Oriented-Numerical-Methods-by-V-RajaRaman
	2. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/refer
WEB SOURCES	ence/referencespapers.aspx?referenceid=1682874
	3. https://nptel.ac.in/course/122106033/
	4. https://nptel.ac.in/course/103106074/
	5. https://onlinecourses.nptel.ac.in/noc20_ma33/preview

At the end of the course, the student will be able to:

CO1	Recall the transcendental equations and analyze the different root finding methods. Understand the basic concept involved in root finding procedure such as Newton Raphson and Bisection methods, their limitations.	K1, K2
CO2	Relate Simultaneous linear equations and their matrix representation	К5
	Distinguish between various methods in solving simultaneous linear equations.	K3
CO3	Understand, how interpolation will be used in various realms of physics and	K)
	Apply to some simple problems Analyze the newton forward and backward	K2,
	interpolation	K3
CO4	Recollect and apply methods in numerical differentiation and integration.	K3,
	Assess the trapezoidal and Simson's method of numerical integration.	K4
	Understand the basics of C-programming and conditional statements.	K2
CO5		N 2
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Paper 15 - PRACTICAL IV: MICROPROCESSORII YEAR - FOURTH SEMESTER8085 AND MICROCONTROLLER 8051

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL IV: MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	Core				3	6	75

Pre-Requisites

Fundamentals of digital principles

Learning Objectives

- To understand the theory and working of Microprocessor, Microcontroller and their applications
- > To use microprocessor and Microcontroller in different applications

Course Details

Practical IV: MICROPROCESSOR 8085 AND MICROCONTROLLER 8051 (ANY TWELVE EXPERIMENTS)

- 1. 8-bit addition and subtraction, multiplication and division
- 2. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending order
- 3. Code conversion (8-bit number): a) Binary to BCD b) BCD to binary
- 4. Addition of multi byte numbers, Factorial
- Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters
- Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter
- 7. Interfacing of seven segment display
- 8. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves
- 9. DAC 0800/ DAC 1048 interface and wave form generation (Unipolar/ Bipolar output)
- 10. ADC 0809 interface
- 11. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action
- 12. Interfacing of Temperature Controller and Measurement
- 13. Water level detector
- 14. Elevator
- 15. Traffic Light Controller
- 16. Key board Interface
- 17. Addition, Subtraction, Multiplication and Division of 8-bit numbers.
- 18. Sum of a series of 8-bit numbers
- 19. Average of N numbers

20. Factorial of number

21. Fibonacci ser	ies of N terms						
	ddition / Subtraction Sorting						
23. g in ascendin	g and descending order – Picking up smallest and largest number						
24. LED interface – Binary up/down counter, BCD up/down counter, Ring and twisted ring							
counter.							
	even segment displays						
	1408 interface and wave form generation						
27. ADC interfact 28. Stepper moto	•						
	controller and Measurements						
30. Traffic light							
	1. Douglas V. Hall, Microprocessors and Interfacing programming and						
	Hardware, Tata Mc Graw Hill Publications (2008)						
	2. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay,						
	The 8051 Microcontroller and Embedded Systems, Pearson						
	Education (2008).						
TEXT BOOKS	3. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",						
ILAI DOORS	3. V. Vijayendran, 2005, Fundamentals of Wieroprocessor-8085, 3rd Edition S. Visvanathan Pvt, Ltd.						
	4. The 8085 Microprocessor, Architecture, Programming and						
	Interfacing – K. Udaya Kumar, S. Uma Shankar, Pearson						
	5. Fundamentals of Microprocessors and Microcontrollers - B. Ram,						
	Dhanpat Rai Publications						
	1. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:						
	Programming, Interfacing, Software, Hardware and Applications",						
	Prentice-Hall of India, New Delhi.						
	2. Microprocessor and Its Application - S. Malarvizhi, Anuradha						
	Agencies Publications						
REFERENCE	3. Microprocessor Architecture, Program And Its Application With						
BOOKS	8085 - R.S. Gaonkar, New Age International (P) Ltd						
DOORS	4. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186,						
	80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New						
	Delhi.						
	5. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and						
	Interfacing, Software, Hardware and Applications", Prentice-Hall of						
	India, New Delhi.						

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Develop the programming skills of Microprocessor	K5					
CO2	Appreciate the applications of Microprocessor programming	K3					
CO3	Understand the structure and working of 8085 microprocessor and apply it.	K1,					
COS	Understand the structure and working of 8083 incroprocessor and appry it.	K3					
CO4	Acquire knowledge about the interfacing peripherals with 8085	K1,					
004	microprocessor.	K4					
	Acquire knowledge about the interfacing 8051 microcontroller with various	K1,					
CO5	peripherals.	K4					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

Elective - List 1 – 1. ENERGY PHYSICS

I/II YEAR - FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ENERGY PHYSICS	ELECTIVE				3	4	75

Pre-Requisites					
Knowledge of conventional energy resources					
Learning Objectives					
To learn about various renewable energy sources.					
\blacktriangleright To know the ways of effectively utilizing the oceanic energy					

- To know the ways of effectively utilizing the oceanic energy.
- \blacktriangleright To study the method of harnessing wind energy and its advantages.
- > To learn the techniques useful for the conversion of biomass into useful energy.
- > To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability- prospects of Renewable energy sources- Energy from other sources- chemical energy-Nuclear energy- Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power– utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation- solar cooking-solar greenhouse - Solar pond and its applications.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna					
	publishers, New Delhi.					
	2. S. Rao and Dr. Paru Lekar, Energy technology.					
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).					
	4. Solar energy, principles of thermal collection and storage by S. P.					
BOOKS	Sukhatme,					
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).					
	5. Energy Technology by S. Rao and Dr. Parulekar.					
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and					
	Francis group, London and New York.					
	2. Applied solar energy, A. B. Meinel and A. P. Meinal					
DEFEDENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and					
REFERENCE	Francis group, London and New York.					
BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S.					
	Solanki-PHI Learning					
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech					
	Publications					
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print					
	able=1					
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/					
SOURCES						
SUUKUES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy					
	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/					
	5. https://www.acciona.com/renewable-energy/solar-energy/					

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1					
CO2	Understand the principle of utilizing the oceanic energy and apply it for	K2					
	practical applications.	112					
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3					
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,					
		K4					
	Understand the components of solar radiation, their measurement and apply	K2,					
CO5	them to utilize solar energy.	K5					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	,	1			× /		• • •			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Strong (3) Medium (2) and Low (1)

Elective - List 1 – 2. CRYSTAL GROWTH AND THINI/II YEAR –FILMSFIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CRYSTAL GROWTH AND THIN FILMS	ELECTIVE				3	4	75

Pre-Requisites
Fundamentals of Crystal Physics
Learning Objectives
To acquire the knowledge on Nucleation and Kinetics of crystal growth
> To understand the Crystallization Principles and Growth techniques
To study various methods of Crystal growth techniques
> To understand the thin film deposition methods

> To apply the techniques of Thin Film Formation and thickness Measurement

UNITS	Course Details
	Basic Concepts, Nucleation and Kinetics of growth Ambient phase
UNIT I:	equilibrium - super saturation - equilibrium of finite phases equation of
CRYSTAL GROWTH	Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus
KINETICS	- Classical theory of Nucleation - Homo and heterogeneous formation
KINETICS	of 3D nuclei - rate of Nucleation - Growth from vapour phase
	solutions, solutions and melts - epitaxial growth - Growth mechanism
	and classification - Kinetics of growth of epitaxial films
	Crystallization Principles and Growth techniques Classes of Crystal
UNIT II:	system - Crystal symmetry - Solvents and solutions - Solubility
CRYSTALLIZATION	diagram - Super solubility - expression for super saturation -
PRINCIPLES	Metastable zone and introduction period - Miers TC diagram - Solution
	growth - Low and high temperatures solution growth - Slow cooling
	and solvent evaporation methods - Constant temperature bath as a
	Crystallizer.
	Gel, Melt and Vapour growth techniques Principle of Gel techniques -
LINIT III.	Various types of Gel - Structure and importance of Gel - Methods of
UNIT III:	Gel growth and advantages - Melt techniques - Czochralski growth -
GEL, MELT AND	Floating zone - Bridgeman method - Horizontal gradient freeze - Flux
VAPOUR GROWTH	growth - Hydrothermal growth - Vapour phase growth - Physical
	vapour deposition - Chemical vapour deposition - Stoichiometry.

	Thin film deposition methods of thin film preparation, Thermal
UNIT IV:	
	evaporation, Electron beam evaporation, pulsed LASER deposition,
THIN FILM	Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour
DEPOSITION	deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical
METHODS	bath deposition.
	Thin Film Formation and thickness Measurement Nucleation, Film
	growth and structure - Various stages in Thin Film formation,
UNIT V:	Thermodynamics of Nucleation, Nucleation theories, Capillarity
THIN FILM	model and Atomistic model and their comparison. Structure of Thin
FORMATION	Film, Roll of substrate, Roll of film thickness, Film thickness
	measurement - Interferometry, Ellipsometry, Micro balance, Quartz
	Crystal Oscillator techniques.
	Expert Lectures, Online Seminars - Webinars on Industrial
UNIT VI:	Interactions/Visits, Competitive Examinations, Employable and
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism
	1. V. Markov Crystal growth for beginners: Fundamentals of
	Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition
	2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi,
	2008)
	3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates
TEXT BOOKS	from Solution"
	4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High
	Temperature Solution"
	5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge
	University Press. USA.
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)
	2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School
	Notes".
REFERENCE	2 D. Sauthana Datama and D. Damana "Constal Consta
BOOKS	3. P. Santhana Raghavan and P. Ramasamy, "Crystal Growth
	Processes", KRU Publications.
	4. H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons,
	New York
	5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.
	1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3k
	MtrIO8kZ11D1Jp
	2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgw cy7KeTLUuBu3WF
WEB SOURCES	3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9M
	DA53CMKFHPSi9m
	4. https://www.youtube.com/playlist?list=PLXHedI-
	xbyr8xII_KQFs_R_oky3Yd1Emw
	5. https://www.electrical4u.com/thermal-conductivity-of-metals/

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1
CO2	Understand the Crystallization Principles and Growth techniques	K2,
		K4
CO3	Study various methods of Crystal growth techniques	K3
CO4	Understand the Thin film deposition methods	K2
CO5	Apply the techniques of Thin Film Formation and thickness	K3,
	Measurement	K4
K1 - Rei	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	•

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

Elective - L STRUCTU	ist 1 – 3. ANALYSIS OF CRYSTAL RES	I/II YEAR FIRST/TH) SE	MES	STER		
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ANALYSIS OF CRYSTAL STRUCTURES	ELECTIVE				3	4	75

Pre-Requisites

Fundamentals of crystal structures, symmetry and X-Ray Diffraction techniques

Learning Objectives

- > To teach the concept of crystal structures and symmetry, and diffraction theory
- To provide students with a background to X-ray generation, scattering theory and experimental diffraction from single crystals
- To provide instruction on the methods and basis for determining low-molecular weight crystal structures using X-ray Crystallography
- To give the students a background to the instrumentation used for powder diffraction and structure refinement using Rietveld method
- To teach the different levels of structure exhibited by proteins and nucleic acids and methods used in protein crystallography.

UNITS	Course details
UNIT I: CRYSTAL LATTICE	Unit cell and Bravais lattices - crystal planes and directions - basic symmetry elements operations - translational symmetries - point groups - space groups - equivalent positions - Bragg's law - reciprocal lattice concept -Laue conditions - Ewald and limiting spheres -
	diffraction symmetry - Laue groups.
UNIT II: DIFFRACTION	X-ray generation, properties - sealed tube, rotating anode, synchrotron radiation - absorption - filters and monochromators Atomic scattering factor - Fourier transformation and structure factor - anomalous dispersion - Laue, rotation/oscillation, moving film methods- interpretation of diffraction patterns - cell parameter determination - systematic absences - space group determination.
UNIT III: STRUCTURE ANALYSIS	Single crystal diffractometers - geometries - scan modes - scintillation and area detectors -intensity data collection - data reduction - factors affecting X-ray intensities - temperature and scale factor - electron density - phase problem - normalized structure factor - direct method fundamentals and procedures -Patterson function and heavy atom method - structure refinement - least squares method - Fourier and difference Fourier synthesis - R factor - structure interpretation - geometric calculations - conformational studies - computer program packages.

UNIT IV: POWDER METHODS	Fundamentals of powder diffraction - Debye Scherrer method - diffractometer geometries - use of monochromators and Soller silts - sample preparation and data collection - identification of unknowns - powder diffraction files (ICDD) - Rietveld refinement fundamentals - profile analysis - peak shapes - whole pattern fitting - structure refinement procedures – auto-indexing – structure determination from powder data - new developments. Energy dispersive X-ray analysis – texture studies - crystallite size determination - residual stress analysis - high and low temperature and high pressure crystallography (basics only).
UNIT V: PROTEIN CRYSTALLOGRAPHY	Globular and fibrous proteins, nucleic acids - primary, secondary, tertiary and quaternary structures - helical and sheet structures - Ramachandran map and its significance – crystallization methods for proteins - factors affecting protein crystallization - heavy atom derivatives – methods used to solve protein structures - anomalous dispersion methods.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.
TEXT BOOKS	 Azaroff, L.V., "Elements of X-Ray Crystallography", Techbooksl, New York, 1992. Blundell, T.L. and Johnson, L., "Protein Crystallography", Academic Press, New York, 1986. Cullity, B.D. and Stock,S.R. "Elements of X-ray Diffraction", Pearson, 2014. H.L. Bhat, Introduction to Crystal Growth Principles and Practice CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2015. B.R. Pamplin, Crystal Growth, Pergamon Press, Oxford, 1975.
REFERENCE BOOKS	 Glusker, J.P. and Trueblood, K.N. Crystal Structure Analysis: A Primer", Oxford University, Press, New York, 1994. Ladd, M.F.C. and Palmer, R.A., "Structure Determination by X- ray Crystallography", Plenum Press, New York, 3rd Edition, 1993. Stout, G.H. and Jensen, L."X-ray Structure Determination, A Practical Guide", Macmillan:,New York, 1989. Woolfson, M.M. "An Introduction to X-ray Crystallography" Cambridge University Press, New York, 1997. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization Techniques, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2009
WEB SOURCES	 https://archive.nptel.ac.in/courses/112/106/112106227/ https://archive.nptel.ac.in/courses/104/108/104108098/ https://www.digimat.in/nptel/courses/video/102107086/L11.ht ml https://onlinecourses.nptel.ac.in/noc19_cy35/previewhttps://o nlinecourses.nptel.ac.in/noc19_cy35/preview https://nptel.ac.in/courses/104/104/104104011/

COURSE OUTCOMES: At the end of the course, the student will be able to:

	Understand crystal symmetry and reciprocal lattice concept for X-ray diffraction	112
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation and moving film methods, and space group determination	K1,K3
CO3	Get an exposure to crystal structure determination using program packages	K1,K4
CO4	Understand the instrumentation used for powder diffraction, data collection, data interpretation, and structure refinement using Rietveld method	K2, K4
	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of proteins and methods to solve protein structures	K5
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Elective - List 1 – 4. MATERIALS SCIENCE

I/II YEAR - FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATERIALS SCIENCE	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge on different types of materials

Learning Objectives

- > To gain knowledge on optoelectronic materials
- > To learn about ceramic processing and advanced ceramics
- > To understand the processing and applications of polymeric materials
- > To gain knowledge on the fabrication of composite materials
- > To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
UNIT I: OPTOELECTRONIC MATERIALS	Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission – charge injection, quasi- Fermi levels and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.
UNIT II CERAMIC MATERIALS	Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics
UNIT III POLYMERIC MATERIALS	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers.
UNIT IV COMPOSITE MATERIALS	Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites: fabrication and applications.
UNIT V: NEW MATERIALS	Shape memory alloys: mechanisms of one-way and two-way shape memory effect, reverse transformation, thermo-elasticity and pseudo- elasticity, examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification, size effect on structural and functional properties, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007 P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi(For units 2,3,4 and 5) G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill M. Arumugam, 2002, Materials Science, 3rd revised Edition, Anuratha Agencies
REFERENCE BOOKS	 B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience and Nanotechnology. Springer- Verlag, 2012. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011. Lawrence H. Van Vlack, 1998. Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of Materials Science, 2nd Edition, Springer. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University Press, 2008.
WEB SOURCES	 https://onlinecourses.nptel.ac.in/noc20_mm02/preview https://nptel.ac.in/courses/112104229 https://archive.nptel.ac.in/courses/113/105/113105081 https://nptel.ac.in/courses/113/105/113105025/ https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_M odules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations

At the end of the course, the student will be able to:

CO1	Acquire knowledge on optoelectronic materials	K1
CO2	Be able to prepare ceramic materials	K3
CO3	Be able to understand the processing and applications of polymeric materials	K2,
		K3
CO4	Be aware of the fabrication of composite materials	K5
CO5	Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	K1
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Elective - List 1 – 5. PHYSICS OF	I/II YEAR –
NANOSCIENCE AND TECHNOLOGY	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	ELECTIVE				3	4	75

Pre-Requisites						
Basic knowledge in Solid State Physics						
Learning Objectives						
Physics of Nanoscience and Technology is concerned with the study, creation, manipula	tion					
and applications at nanometer scale.						
To provide the basic knowledge about nanoscience and technology.						
> To learn the structures and properties of nanomaterials.						
To acquire the knowledge about synthesis methods and characterization techniques and in applications.	[S					

UNITS	Course Details
UNIT I:	Fundamentals of NANO – Historical Perspective on Nanomaterial
FUNDAMENTALS OF	and Nanotechnology Classification of Nanomaterials - Metal and
NANOSCIENCE AND	Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials

TECHNOLOGY	- Quantum dots – Quantum wires – Quantum wells - Surface effects
TECHNOLOGI	of nanomaterials.
UNIT II: PROPERTIE OF NANOMATERIAL	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties - strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance - Quantum size effects -
UNIT III: SYNTHESIS AND FABRICATION	Plasma arching - Electrospinning method - ball milling fechnique - l
UNIT IV: CHARACTERIZATIO TECHNIQUES	 Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.
UNIT V: APPLICATIONS OF NANOMATERIALS	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries - supercapacitors - photovoltaics.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012). Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010). Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012). Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002). Nanotechnology and Nanoelectronics, D.P. Kothari, V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018)

	1. Nanostructures and Nanomaterials – Huozhong Gao – Imperial					
	College Press (2004).					
	2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley					
	Publishing Inc. USA					
	3. Nano particles and Nano structured films; Preparation,					
REFERENCE	Characterization and Applications, J. H. Fendler John Wiley and Sons.					
BOOKS	(2007)					
	4. Textbook of Nanoscience and Nanotechnology, B. S. Murty, et al.,					
	Universities Press. (2012)					
	5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology),					
	Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV -					
	Nanoelectronics Pentagon Press, New Delhi.					
	1. www.its.caltec.edu/feyman/plenty.html					
	2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm					
WEB SOURCES	3. http://www.understandingnano.com					
	4. http://www.nano.gov					
	5. http://www.nanotechnology.com					

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	K1
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4
CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

Elective - List 1 – 6. DIGITAL COMMUNICATION | I/II YEAR - FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	DIGITAL COMMUNICATION	ELECTIVE				3	4	75

Pre-Requisites
Exposure to Fourier transform, pulse modulation, multiplexing, noises in communication signals
Learning Objectives
To understand the use of Fourier, transform in analyzing the signals
To learn about the quanta of transmission of information

- To make students familiar with different types of pulse modulation
- To have an in depth knowledge about the various methods of error controlling codes
- > To acquire knowledge about spread spectrum techniques in getting secured communication

UNITS	Course Details			
UNIT I: SIGNAL ANALYSIS	Fourier transforms of gate functions, delta functions at the origin – Two delta function and periodic delta function – Properties of Fourier transform – Frequency shifting –Time shifting - Convolution –Graphical representation – Convolution theorem – Time Convolution theorem – Frequency Convolution theorem –Sampling theorem.			
UNIT II: INFORMATION THEORY	Communication system – Measurement of information – Coding – Bandot Code CCITT Code –Hartley Law – Noise in an information Carrying Channel- Effects of noise- Capacity of noise in a channel – Shannon Hartley theorem –Redundancy.			
UNIT III: PULSE MODULATION	Pulse amplitude modulation - natural sampling – Instantaneous sampling - Transmission of PAM Signals -Pulse width modulation – Time division multiplexing – Band width requirements for PAM Signals. Pulse Code Modulation –Principles of PCM –Quantizing noise – Generation and demodulation of PCM -Effects of noise –Companding – Advantages and application			
UNIT IV: ERROR CONTROL CODING	Introduction to Linear Block Codes, Hamming Codes, BCH Coding, RS Coding, Convolutional Coding, Coding Grain Viterbi Coding			
UNIT V: SPREAD SPECTRUM SYSTEMS	READ CTRUM Pseudo Noise sequences, generation and Correlation properties, di sequence spread spectrum systems, frequency HOP Systems, process gain anti-jam and multipath performance			

UNIT VI PROFESSIO COMPONE	NAL Interactions/Visits, Competitive Examinations, Employable and						
TEXT BOOKS	 B.P. Lathi, Communication system, Wiley Eastern. George Kennedy, Electronic Communication Systems, 3rd Edition, Mc Graw Hill. Simon Haykin, Communication System, 3rd Edition, John Wiley & Sons. George Kennedy and Davis, 1988, Electronic Communication System, Tata McGraw Hill 4th Edition. Taub and Schilling, 1991, "Principles of Communication System", Second edition Tata McGraw Hill. 						
REFERENCE BOOKS	 John Proakis, 1995, <i>Digital Communication</i>, 3rd Edition, McGraw Hill, Malaysia. M. K. Simen, 1999, <i>Digital Communication Techniques, Signal Design and</i> <i>Detection</i>, Prentice Hall of India. Dennis Roddy and Coolen, 1995, <i>Electronics communications</i>, Prentice Hall of India IV Edition. Wave Tomasi, 1998, "<i>Advanced Electronics communication System</i>" 4th Edition Prentice Hall, Inc. M.Kulkarni, 1988, "<i>Microwave and Radar Engineering</i>", 						
WEB SOURCES	3 http://www.ece.umd.edu/class/enee630.F2012.html						

At the end of the course, the student will be able to:

CO1	Apply the techniques of Fourier transform, convolution and sampling theorems	K1,
	in signal processing	K3
	Apply different information theories in the process of study of coding of information, storage and communication	K3
CO3	Explain and compare the various methods of pulse modulation techniques	K4
	Apply the error control coding techniques in detecting and correcting errors- able to discuss, analyze and compare the different error control coding	K3, K4
CO5	Apply, discuss and compare the spread spectrum techniques for secure communications	K3, k5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

Strong (3) Medium (2) and Low (1)

Elective List 1 – 7. COMMUNICATIONI/II YEAR –ELECTRONICSFIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	COMMUNICATION ELECTRONICS	ELECTIVE				3	4	75

Pre-Requisites

Knowledge of Regions of electromagnetic spectrum and its characteristics

Learning Objectives

- To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth
- > To gain knowledge in the generation and propagation of microwaves
- To acquire knowledge about radar systems and its applications and also the working principle of colour television
- > To learn the working principle of fiber optics and its use in telecommunication
- > To understand the general theory and operation of satellite communication systems

UNITS	Course Details				
UNIT I: ANTENNAS AND WAVE PROPAGATION	Radiation field and radiation resistance of short dipole antenna- grounded antenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave-ionosphere- Ecles and Larmor theory- Magnento ionic theory- ground wave propagation				
UNIT II: MICROWAVES	Microwave generation—multi cavity Klystron-reflex klystron- magnetron travelling wave tubes (TWT) and other microwave tubes- MASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)				
UNIT III: RADAR AND TELEVISION	Elements of a radar system-radar equation-radar performance Factor radar transmitting systems-radar antennas-duplexers-radar receiver and indicators-pulsed systems-other radar systems- colour TV transmission and reception-colour mixing principle-colour pictur tubes- Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV				
UNIT IV: OPTICAL FIBER	Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibres-optical fibres as a cylindrical wave guide-wave guide equations-wave guide equations in step index fibres - fibre losses and dispersion-applications				
UNIT V: SATELLITE COMMUNICATION	Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites				

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991). M. Kulkarani, Microwave and radar engineering, Umesh Publications, 1998. Mono Chrome and colour television, R. R. Ghulathi
REFERENCE BOOKS	 Electronic communications – Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998 Dennis Roddy and Coolen, 1995, <i>Electronics communications</i>, Prentice Hall of India IV Edition. Wayne Tomasi, 1998 "Advanced Electronics communication System" 4th edition, Prentice Hall of India, 1998 S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition.

	 https://www.geeksforgeeks.org/digital-electronics-logic-design- tutorials/ https://www.polytechnichub.com/difference-analog-instruments-
WEB SOURCES	digital-instruments/
	. http://nptel.iitm.ac.in/
	. http://web.ewu.edu/
	. http://nptel.iitm.ac.in/

At the end of the course, the student will be able to:

CO1	Discuss and compare the propagation of electromagnetic waves through sky and on earth's surface Evaluate the energy and power radiated by the different types of antenna	K1, K5
CO2	Compare and differentiate the methods of generation of microwaves analyze the propagation of microwaves through wave guides- discuss and compare the different methods of generation of microwaves	K4
CO3	Classify and compare the working of different radar systems- apply the principle of radar in detecting locating, tracking, and recognizing objects of various kinds at considerable distances – discuss the importance of radar in military- elaborate and compare the working of different picture tube	K3
CO4	Classify, discuss and compare the different types of optical fiber and also to justify the need of it-discover the use of optical fiber as wave guide	K1, K3
CO5	Explain the importance of satellite communication in our daily life-distinguish between orbital and geostationary satellites elaborate the linking of satellites with ground station on the earth	K4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

Elective - List 2 – 8. PLASMA PHYSICSI/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PLASMA PHYSICS	ELECTIVE				3	4	75

	Pre-Requisites						
	Electricity and Magnetism, Electromagnetic theory, Maxwell's equation,						
Basic knowledge	Basic knowledge of electrical and electronics instrumentation.						
	Learning Objectives						
	plasma universe by means of in-site and ground-based observations.						
	the model plasma phenomena in the universe.						
*	physical processes which occur in the space environment.						
UNITS	Course Details						
UNIT I: FUNDAMENTAL CONCEPTS OF PLASMA	Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.						
UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETICParticle description of plasma- Motion of charged particle in electric of charged particle in electric and magnetic fields- Motion of charged p article in electric and magnetic fields- Motion of charged p article in magnetic field - Motion of charged p article in electric and magnetic fields- Motion of charged p article in magnetic field - Motion of charged p article in electric and magnetic fields- Motion of charged p article in magnetic field - Motion of charged particle in magnetic field - Motion of an electron in a time varying electric Magneto- hydrodynamics - Magneto-hydrodynamic equations - Comment - Motion of charged particle in magnetic field - Motion of charged particle in magnetic field - Motion of an electron in a time varying electric magnetic field - Motion of charged particle in magnetic field - Motion of an electron in a time varying electric magnetic field - Motion of charged particle in magnetic field - Motion of an electron in a time varying electric magnetic field - Motion of charged particle in magnetic field - Motion of char							
UNIT III: PLASMA OSCILLATIONS AND WAVES	for magneto hydrodynamic behaviour. Introduction, theory of simple oscillations - electron oscillation in plasma – Derivations of plasma oscillations by using Maxwell's equation Ion oscillation and waves in a magnetic field - thermal effects on plasm oscillations - Landau damping - Hydro magnetic waves - Oscillations i an electron beam.						
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion.						
UNIT V: APPLICATIONS OF PLASMA PHYSICS	UNIT V: PLICATIONS DF PLASMA Density Plasma - Plasma Diode						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						

PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
	1. Plasma Physics- Plasma State of Matter - S. N. Sen,						
	Pragati Prakashan, Meerut.						
	2. Introduction to Plasma Physics-M. Uman						
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.						
	Berkeley, CA: San Francisco Press, 1986. ISBN:						
	9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:						
TEXT BOOKS	McGraw-Hill, 1967. ISBN: 9780070628120.						
	4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma Physics.						
	Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.						
	5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:						
	Cambridge University Press, 2005. ISBN: 9780521675741.						
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:						
	Springer, 1984. ISBN: 9780306413322.						
	2. Introduction to Plasma Theory-D.R. Nicholson						
	3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,						
REFERENCE	1971. ISBN: 9780126405507.						
BOOKS	4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma						
	Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.						
	5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic						
	Techniques. San Diego, CA: Academic Press, 1965						
	1. https://fusedweb.llnl.gov/Glossary/glossary.html						
	2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html						
WEB SOURCES	3. http://www.plasmas.org/						
	4. http://www.phy6.org/Education/whplasma.html						
	5. http://www.plasmas.org/resources.htm						

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Understand the collision, cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state.	K1, K2					
CO2	Understand the plasma and learn the magneto-hydrodynamics concepts applied to plasma.	K2					
CO3	Explore the oscillations and waves of charged particles and thereby apply the Maxwell's equation to quantitative analysis of plasma.	K1, K3					
CO4	Analyze the different principle and techniques to diagnostics of plasma.	K2, K5					
CO5	Learn the possible applications of plasma by incorporating various electrical and electronic instruments.	K4					
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

Elective - List 2 – 9. BIO PHYSICS

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	BIO PHYSICS	ELECTIVE				3	4	75

Pre-Requisites

Fundamental concepts of Physics and Biology

Learning Objectives

- > To understand the physical principles involved in cell function maintenance.
- To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.
- To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE AND NEURO BIOPHYISCS	Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels. Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer.

UNIT V: PHYSICAL METHODS IN BIOLOGY	Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation, density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism

	1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press,
	2013.
	2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009
TEXT BOOKS	3. Biophysics, P. S. Mishra VK Enterprises, 2010.
	4. Biophysics, M. A Subramanian, MJP Publishers, 2005.
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.
	1. Chemical Biophysics by Daniel A Beard (Cambridge University Press,
	2008).
	2. Essential cell biology by Bruce Albert et al (Garland Science)
DEPEDENCE	3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler.
REFERENCE	Springer Verlag, Berlin (1983).
BOOKS	4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A.
	Tuszynski, (Springer science & business media).
	5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek
	1. General Bio: http://www.biology.arizona.edu/DEFAULT.html
	2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm
WEB SOURCES	3. Electrophoresis:http://learn.genetics.utah.edu/content/labs/gel/
	4. Online biophysics programs: http://mw.concord.org/modeler/
	5. https://blanco.biomol.uci.edu/WWWResources.html

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should					
	able to apply the cell signaling mechanism and its electrical activities.					
CO2	Comprehension of the role of biomolecular conformation to function.	K1				
CO3	Conceptual understanding of the function of biological membranes and also to					
	understand the functioning of nervous system.					
CO4	To know the effects of various radiations on living systems and how to prevent	K1,				
	ill effects of radiations.	К5				
CO5	Analyze and interpret data from various techniques viz., spectroscopy,	K4				
	crystallography, chromatography etc.,	174				
K1 - F	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Elective List 2 – 10. NONLINEAR DYNAMICS I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NONLINEAR DYNAMICS	ELECTIVE				3	4	75

Pre-Requisites

Basics of Numerical methods and Differential equations, Fundamentals of linear and nonlinear waves, and Basics of communication systems

Learning Objectives

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- \succ To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details						
UNIT I: GENERAL	Linear waves-ordinary differential equations(ODEs)-Partial differential equations(PDEs)- Methods to solve ODEs and PDEs Numerical methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitative features						
UNIT II: COHERENT STRUCTURES	inear and Nonlinear dispersive waves - Solitons – KdB equation – Basic neory of KdB equation –Ubiquitous soliton equations – AKNS Method, eacklund transformation, Hirotabilinearization method, Painleve analysis - erturbation methods- Solitons in Optical fibres - Applications.						
UNIT III: BIFURCATIONS AND ONSET OF CHAOS	One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange attractors – Routes to chaos.						
UNIT V APPLICATIONS	Soliton based communication systems – Solition based computation – Synchronization of chaos – Chaos based communication – Cryptography – Image processing – Stochastic – Resonance – Chaos based computation – Time Series analysis.						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1. M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics:
	Integrability, Chaos and Patterns. Springer, 2003.
TEXT BOOKS	2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications.
	Oxford Press, 1995.

	3. Drazin, P. G. Nonlinear Systems. Cambridge University Press,
	2012. ISBN: 9781139172455.
	4. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems
	and Chaos. Springer, 2003. ISBN: 9780387001777.
	5. Strogatz, Steven H. Nonlinear Dynamics and Chaos: With
	Applications to Physics, Biology, Chemistry, and Engineering.
	Westview Press, 2014. ISBN: 9780813349107.
	1. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge
	University Press, 1989.
	2. M. Lakshmanan and K. Murali. Chaos in Nonlinear Oscillators.
REFERENCE	World Scientific, 1989.
BOOKS	3. S. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1995.
	4. Hao Bai-Lin, Chaos (World Scientidic, Singapore, 1984).
	5. Kahn, P. B., Mathematical Methods for Scientists & Engineers
	(Wiley, NY, 1990)
	1. https://www.digimat.in/nptel/courses/video/108106135/L06.html
	2. http://digimat.in/nptel/courses/video/115105124/L01.html
WEB SOURCES	3. https://www.digimat.in/nptel/courses/video/108106135/L01.html
	4. http://complex.gmu.edu/neural/index.html
	5. https://cnls.lanl.gov/External/Kac.php

At the end of the course, the student will be able to:

CO1	Gain knowledge about the available analytical and numerical methods to solve	K1,
	various nonlinear systems.	K4
	Understand the concepts of different types of coherent structures and their importance in science and technology.	K2
CO3	Learn about simple and complex bifurcations and the routes to chaos	K1,
		K2
	Acquire knowledge about various oscillators, characterization of chaos and fractals.	K1
CO5	To analyze and evaluate the applications of solutions in telecommunication,	K3,
	applications of chaos in cryptography, computations and that of fractals.	K5

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	· · · · · · · · · · · · · · · · · · ·				< <i>/ / /</i>		. ,			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

Elective - List 2 – 11. QUANTUM FIELD THEORY

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM FIELD THEORY	ELECTIVE				3	4	75

Pre-Requisites

Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential. Learning Objectives

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details
UNIT I: SYMMETRY PRINCIPLES	Relativistic kinematics, relativistic waves, Klein-Gordon (KG) equation as a relativistic wave equation, treatment of the KG equation as a classical wave equation: its Lagrangian and Hamiltonian, Noether's theorem and derivation of energy-momentum and angular momentum tensors as consequence of Poincaré symmetry, internal symmetry and the associated conserved current.
UNIT II: QUANTIZATION OF KLEIN-GORDAN FIELD	Canonical quantization of the KG field, solution of KG theory in Schrödinger and Heisenberg pictures, expansion in terms of creation and annihilation operators, definition of the vacuum and N-particle eigenstates of the Hamiltonian, vacuum expectation values, propagators, spin and statistics of the KG quantum.
UNIT III: QUANTIZATION OF DIRAC FIELD	Review of Dirac equation and its quantization, use of anti- commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.
UNIT IV: QUANTIZATION OF ELECTROMAGNETIC FIELDS	Review of free Maxwell's equations, Lagrangian, gauge transformation and gauge fixing, Hamiltonian, quantization in terms of transverse delta functions, expansion in terms of creation operators, spin, statistics and propagator of the photon.

UNIT VI:	Expert	Lectures	, On	ine Se	minars	-	Webin	nars	on	Indu	strial
PROFESSIONAL	Interacti	ons/Visits	s, Co	mpetitiv	e Exa	mina	ations,	En	ploya	able	and
COMPONENTS	Commu	nication	Skill	Enhanc	cement,	Sc	cial	Acco	untab	ility	and
COMITONENTS	Patriotis	m									

	1. J. D. Bjorkenand S. D. Drell, Relativistic Quantum Fields David
	2. An Introduction to Quantum Field Theory by M. Peskin and D. V.
	Schroeder
τεντ βροιος	3. Quantum Field theory: From Operators to Path Integrals, 2nd edition by
TEXT BOOKS	Kerson Huang
	4. Quantum Field Theory by Mark Srednicki
	5. Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.
	1. V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum
	Electrodynamics
REFERENCE	2. Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and
BOOKS	D. V. Shirkov (1959)
DOORS	3. Quantum Field Theory by L. H. Ryder (1984)
	4. Quantum Field Theory by L. S. Brown (1992)
	5. Quantum Field Theory: A Modern Introduction by M. Kaku (1993)
	1. https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf
	2. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/reference
	spapers.aspx?referenceid=2605249
WEB SOURCES	3. https://archive.nptel.ac.in/courses/115/106/115106065/
	4. http://www.nhn.ou.edu/~milton/p6433/p6433.html
	5. https://plato.stanford.edu/entries/quantum-field-theory/

At the end of the course, the student will be able to:

CO1	Understand the interconnection of Quantum Mechanics and Special Relativity	K1					
CO2	Enable the students to understand the method of quantization to various field	K2					
CO3	Employ the creation and annihilation operators for quantization	K5					
CO4	Summarizes the interacting field, in quantum domain, and gives a discussion on	K1,					
	how perturbation theory is used here.	K3					
CO5	Understand the concept of Feynman diagram	K2					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

Elective - List 2 – 12. GENERAL RELATIVITY AND	I/II YEAR – SECOND/THIRD
COSMOLOGY	SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	GENERAL RELATIVITY AND COSMOLOGY	ELECTIVE				3	4	75

Pre-Requisites				
Skill in mathematics and mechanics				
Learning Objectives				
> To give an introduction to students in the areas of general relativity and cosmology				

UNITS	Course Details
UNIT I: TENSORS	Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer products - contraction - symmetric and antisymmetric tensors - quotient law - metric tensors - covariant and contravariant tensors - vectors - the tangent space - dual vectors - tensors - tensor products - the Levi-Civita tensor - tensors in Riemann spaces
UNIT I: TENSORS FIELD	Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace operator in general coordinates - covariant derivatives and Christoffel connection - Elasticity: Field tensor - field energy tensor - strain tensor - tensor of elasticity- curvature tensor

UNIT III: GENERAL RELATIVITY	The space time interval - the metric - Lorentz transformations - space-time diagrams - world-lines - proper time - energy-momentum vector - energy-momentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor - the Bianchi identity
UNIT IV: TENSOR IN RELATIVITY	Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of Equivalence - gravitational redshift - gravitation as space-time curvature - the Newtonian limit - physics in curved space-time - Einstein's equations - the Weak Energy Condition - causality - spherical symmetry - the Schwarzschild metric - perihelion precession
UNIT V: COSMOLOGY	Expansion of the Universe - thermal history - and the standard cosmological model - Friedmann - Robertson-Walker type models of the Universe - Primordial inflation and the theory of cosmological fluctuations - Theory and observations of the cosmic microwave background and of the large-scale structure of the Universe - Dark matter and dark energy - theoretical questions and observational evidence - inflation - origin of galaxies and other open problems
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. M. R. Spiegel, Vector Analysis, Schaum'a outline series, McGraw Hill, New						
	York, 1974.						
	2. James Hartle, Gravity: An introduction to Einstein's general relativity, San						
	Francisco, Addison-Wesley, 2002						
	3. Sean Carroll, Spacetime and Geometry: An Introduction to General						
TEXT BOOKS	Relativity, (Addison-Wesley, 2004).						
	4. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General						
	Relativity and Cosmology, Cambridge University Press 2006						
	5. Meisner, Thorne and Wheeler: Gravitation W. H. Freeman & Co., San						
	Francisco 1973						
	1. Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and						
	Black Holes, Univ. of Chicago Press.						
DEFEDENCE	2. J. V. Narlikar, Introduction to Cosmology, Jones & Bartlett 1983						
REFERENCE	3. Steven Weinberg, Gravitation and Cosmology, New York, Wiley, 1972.						
BOOKS	4. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General						
	Relativity and Cosmology, Cambridge University Press 2006						
	5. R Adler, M Bazin& M Schiffer, Introduction to General Relativity						
	1. http://www.fulviofrisone.com/attachments/article/486/A%20First%20Course						
WEB	%20In%20General%20Relativity%20-%20Bernard%20F.Schutz.pdf						
	2. https://link.springer.com/book/9780387406282						
SOURCES	3. https://ocw.mit.edu/courses/8-962-general-relativity-spring-						
	2020/resources/lecture-18-cosmology-i/						

 https://arxiv.org/abs/1806.10122 https://uwaterloo.ca/applied-mathematics/future-undergraduates/what-you-
can-learn-applied-mathematics/relativity-and-cosmology

At the end of the course, the student will be able to:

CO1	Skillfully handle tensors	K1					
CO2	Understanding of the underlying theoretical aspects of general relativity and	К2					
02	cosmology	112					
CO3	Gain knowledge on space time curvature	K1					
CO4	Equipped to take up research in cosmology	K3, K4					
CO5	Confidently solve problems using mathematical skills	K5					
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

Elective - List 2 – 13. ADVANCED OPTICS | I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED OPTICS	ELECTIVE				3	4	75

Pre-Requisites Knowledge of ray properties and wave nature of light Learning Objectives > To know the concepts behind polarization and could pursue research work on application aspects of laser

- > To impart an extensive understanding of fiber and non-linear optics
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details
UNIT 1: POLARIZATION AND DOUBLE REFRACTION	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity
UNIT II: LASERS	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser
UNIT III: FIBER OPTICS	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic- index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor
UNIT IV: NON-LINEAR OPTICS	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light

	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect –								
UNIT V:	Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto-								
MAGNETO-	optic effect – Electro-optical effects – Stark effect – Inverse stark effect –								
OPTICS AND	Electric double refraction – Kerr electro-optic effect – Pockels electro-								
ELECTRO-OPTICS	1								
	optic effect								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial								
PROFESSIONAL	nteractions/Visits, Competitive Examinations, Employable and								
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism								
	1. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 rd Edition, New								
	Age International (P) Ltd.								
	2. Ajoy Ghatak, 2017, Optics, 6 th Edition, McGraw – Hill Education Pvt.								
	Ltd.								
TEXT BOOKS	3. William T. Silfvast, 1996, Laser Fundamentals Cambridge University								
	Press, New York								
	4. J. Peatros, Physics of Light and Optics, a good (and free!) electronic								
	book								
	5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-								
	Interscience,								
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th								
	Edition), McGraw – Hill International Edition.								
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley - VCH,								
REFERENCE	Varley GmbH.								
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition,								
	Cambridge University Press, New Delhi, 2011.								
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)								
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)								
	1. https://www.youtube.com/watch?v=WgzynezPiyc								
	2. https://www.youtube.com/watch?v=ShQWwobpW60								
	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-								
WEB SOURCES	applications.php								
	4. https://www.youtube.com/watch?v=0kEvr4DKGRI								
	5. http://optics.byu.edu/textbook.aspx								

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Discuss the transverse character of light waves and different polarization	K1
	phenomenon	
CO2	Discriminate all the fundamental processes involved in laser devices and to	K2
	analyze the design and operation of the devices	112
CO3	Demonstrate the basic configuration of a fiber optic – communication system	K3,
	and advantages	K4
CO4	Identify the properties of nonlinear interactions of light and matter	K4
CO5	Interpret the group of experiments which depend for their action on an applied	K5
	magnetics and electric field	Ŋ
K1 - Rer	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Elective - List 2 – 14. ADVANCED MATHEMATICALI/II YEAR –PHYSICSSECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED MATHEMATICAL PHYSICS	ELECTIVE				3	4	75

Pre-Requisites						
Good knowledge in basic mathematics						
Learning Objectives						
To educate and involve students in the higher level of mathematics and mathematical methods relevant and applicable to Physics.						

UNITS	Course Details
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.
UNIT II: CONTINUOUS GROUPS	Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.
UNIT III: SPECIAL UNITARY GROUPS	Definition of unitary, unimodular groups SU (2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3)-Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root diagram for SU(3). Weights and their properties, weight diagrams for the irreducible representations 3.3^* -, $6,6~8$, $10~$ and $10~$ of SU(3). Direct product of two SU(3) representations, Young tableaux method of decomposition of products of IR's illustrations with the representations of dim<10. C.G. coefficients for $3 \times 3^*$ and 3×6 representations. SU(3) symmetry in elementary particle physics, quantum numbers of hadrons and SU(2) and SU(3) classification of hadrons.
UNIT IV: TENSORS	Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors.

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial								
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and								
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism								
TEXT BOOKS	 A. W. Joshi, Group Theory for Physicists D. B. Lichtenberg, Unitary Symmetry and Elementary Particles E. Butkov, Mathematical Physics J. V. Narlikar, General Relativity & Cosmology R. Geroch, Mathematical Physics, The University of Chicago press (1985). 								
REFERENCE BOOKS	 M. Hamermesh <i>Group Theory</i> M. E. Rose: Elementary Theory of Angular Momentum Georgi : Lie Groups for Physicists E. A. Lord: Tensors, Relativity & Cosmology P. Szekeres, A course in modern mathematical physics: Groups, Hilbert 								
WEB SOURCES	 spaces and differential geometry, Cambridge University Press. https://vdoc.pub/documents/unitary-symmetry-and-elementary-particles c4qsfejthkc0 https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf https://www.hindawi.com/journals/amp/ https://projecteuclid.org/journals/advances-in-theoretical-and- mathematical-physics https://www.springer.com/journal/11232 								

At the end of the course, the student will be able to:

CO1	Gained knowledge of both discrete and continuous groups				
	Apply various important theorems in group theory				
CO3	Construct group multiplication table, character table relevant to important	mportant K5			
	branches of physics.				
CO4	Equipped to solve problems in tensors				
CO5	CO5 Developed skills to apply group theory and tensors to peruse research				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

Strong (3) Medium (2) and Low (1)

Elective - List 3 –	I/II YEAR – SECOND/THIRD
15. ADVANCED SPECTROSCOPY	SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED SPECTROSCOPY	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge of group theory, abstract thinking ability, lasers, chemical bonds and molecular structures

Learning Objectives

- Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.
- > Make them appreciate each of these specific techniques with numerous implementations.
- To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.
- To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

UNITS	Course Details
	Group axioms -subgroup, simple group, Abelian group, cyclic group,
	order of a group, class- Lagrange's theorem statement and proof -
UNIT I:	Symmetry operations and symmetry elements - Application: construction
MOLECULAR	of group multiplication table (not character table) for groups of order 2, 3,
SPECTROSCOPY	cyclic group of order 4, noncyclic group of order 4 – reducible and
AND GROUP	irreducible representations- Unitary representations – Schur's lemmas –
THEORY	Great orthogonality theorem - point group -Simple applications :
	Symmetry operations of water and ammonia- Construction of character
	table for C_{2v} (water) and C_{3v} (ammonia) molecules
	Lasers as Spectroscopy Light sources - Special Characteristics of Laser
UNIT II:	emission- ultra short pulses- laser cooling -Single and multi-mode lasers-
LASER	Laser tenability- Fluorescence spectroscopy with lasers- Laser Raman
SPECTROSCOPY	Spectroscopy – Non-linear Spectroscopy – Applications of Laser
	Spectroscopy in medical fields, materials science research
	Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect-
UNIT III:	Recoilless emission and absorption- Chemical shift -Effect of electric and
MOSSBAUER	magnetic fields – hyperfine interactions- instrumentation-Applications:
SPECTROSCOPY	understanding molecular and electronic structures
UNIT IV:	Principle – XPS spectra and its interpretation- ECSA-EDAX- other forms
XRAY	of XPS – chemical shift - Applications : - stoichiometric analysis-
PHOTOELECTRON	electronic structure- XPES techniques used in astronomy, glass industries,
SPECTROSCOPY	paints and in biological research

	Determination of force constants- force field from spectroscopic data-					
UNIT V:	normal coordinate analysis of a simple molecule (H2O) - analyzing					
MOLECULAR	thermodynamic functions, partition functions, enthalpy, specific heat and					
MODELLING	related parameters from spectroscopic data- molecular modelling using					
	data from various spectroscopic studies					
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial					
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and					
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism					
	1. William Kemp, 2019, Organic Spectroscopy (2 nd Edition) MacMillan,					
	Indian Edition.					
	2. C N Banwell and McCash, 1994, Fundamentals of Molecular					
	Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.					
TEXT BOOKS	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and					
ILAI DOORS	Applications, New Age International Publication.					
	4. B.K. Sharma , 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.					
	5. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal					
	Society of Chemistry, RSC, Cambridge.					

	1. Demtroder. W, Laser Spectroscopy: Basic concepts and
	Instrumentation, SpringerLink.
	2. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman
	and Hall, New York.
REFERENCE	3. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India,
BOOKS	New Delhi.
	4. David. L. Andrews, Introduction to Laser Spectroscopy, Springer,
	2020
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition)
	New Age International Publishers.
	1. Fundamentals of Spectroscopy - Course (nptel.ac.in)
	2. http://mpbou.edu.in/slm/mscche1p4.pdf
	3. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
WEB SOURCES	4. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-
	introduction-XCWRu
	5. https://serc.carleton.edu/research_education/geochemsheets/technique
	s/mossbauer.html

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1 Comprehend set of operations associated with symmetry elements of a molecule	,
apply mathematical theory while working with symmetry operations. Apply	V1 V 2
mathematical theory while working with symmetry operations. To use group	K1, K2
theory as a tool to characterize molecules.	
CO2 Align with the recent advances in semiconductor laser technology combined	
sensitive spectroscopic detection techniques.	KJ
CO3 Understand principle behind Mossbauer spectroscopy and apply the concepts of	K2, K3
isomer shift and quadrupole splitting to analyse molecules.	K2, K3
CO4 Assimilate this XPES quantitative technique and the instrumentation associated	КЗ,
with this, as applied in understanding surface of materials.	K4
CO5 Employ IR and Raman spectroscopic data along with other data for structural	
investigation of molecules. Analyze thermodynamic functions and other	K5
parameters to evolve molecular models.	
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

Strong (3) Medium (2) and Low (1)

Elective - List 3 – 16. MICROPROCESSOR 8085 AND MICROCONTROLLER 8051

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	ELECTIVE				3	4	75

Pre-Requisites

Knowledge of number systems and binary operations

Learning Objectives

- To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- > To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051

UNITS	Course Details
UNIT I: 8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter /interval timer.

UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLER HARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/ Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.
UNIT V: INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051 : Nested interrupts , Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities – Voltage and current) Measurement of physical quantities(Temperature an strain).
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications New Delhi (2016). V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S.Visvanathan Pvt, Ltd.
REFERENCE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186,

80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New
Delhi.
4. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and
Interfacing, Software, Hardware and Applications", Prentice-Hall of
India, New Delhi.
5. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:
Programming, Interfacing, Software, Hardware and Applications",
Prentice-Hall of India, New Delhi.

WEB SOURCES	1. https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.html
	2. http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
	3. https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
BOURCES	4. http://www.circuitstoday.com/8051-microcontroller
	5. https://www.elprocus.com/8051-assembly-language-programming/

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.					
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K1				
CO3	Be able to write simple assembly language programs for 8085A	K2,				
	microprocessor.					
CO4	Able to write simple assembly language programs for 8051 Microcontroller.					
CO5	Understand the different applications of microprocessor and microcontroller.					
		K 5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

Elective - List 3 – 17. CHARACTERIZATON OF MATERIALS

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CHARACTERIZATON OF MATERIALS	ELECTIVE				3	4	75

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

Learning Objectives

- To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- > To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details
	Introduction – thermogravimetric analysis (TGA) – instrumentation –
UNIT I	determination of weight loss and decomposition products – differential
THERMAL	thermal analysis (DTA)- cooling curves – differential scanning
ANALYSIS	calorimetry (DSC) – instrumentation – specific heat capacity
	measurements – determination of thermomechanical parameters.
	Optical Microscopy: optical microscopy techniques - Bright field
UNIT II	optical microscopy - Dark field optical microscopy - Dispersion
MICROSCOPIC	staining microscopy - phase contrast microscopy –differential
METHODS	interference contrast microscopy - fluorescence microscopy - confocal
METHODS	microscopy digital holographic microscopy - oil immersion
	objectives - quantitative metallography - image analyzer.
UNIT III ELECTRON	SEM, EDAX, EPMA, TEM: working principle and Instrumentation –
MICROSCOPY AND	sample preparation –Data collection, processing and analysis- Scanning
SCANNING PROBE	tunneling microscopy (STEM) - Atomic force microscopy (AFM) -
MICROSCOPY	Scanning new field optical microscopy.

UNIT IV	Two probe and four probe methods- van der Pauw method - Hall
ELECTRICAL	probe and measurement – scattering mechanism – C-V
METHODS AND	characteristics – Schottky barrier capacitance – impurity

OPTICAL	concentration – electrochemical C-V profiling – limitations.
CHARACTERISATION	Photoluminescence – light – matter interaction – instrumentation –
	electroluminescence – instrumentation – Applications.
	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy,
	Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-
UNIT V	proton induced X-ray Emission spectroscopy (PIXE) -Rutherford
X-RAY AND	Back Scattering (RBS) analysis-application - Powder diffraction -
SPECTROSCOPIC	Powder diffractometer -interpretation of diffraction patterns -
METHODS	indexing - phase identification - residual stress analysis - Particle
	size, texture studies - X-ray fluorescence spectroscopy - uses.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
	Interactions/Visits, Competitive Examinations, Employable and
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism

TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press, (2008).
REFERENCE BOOKS	 Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, (2001). Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001). Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009). Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986). Wachtman, J.B., Kalman, Z.H., Characterization of Materials, ButterworthHeinemann, (1993)
WEB SOURCES	 https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf http://www.digimat.in/nptel/courses/video/113106034/L11.html https://nptel.ac.in/courses/104106122 https://nptel.ac.in/courses/118104008 https://www.sciencedirect.com/journal/materials-characterization

COURSE OUTCOMES: At the end of the course, the student will be able to:

	Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.	K1, K3
CO2	The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	

CO3	The working principle and operation of SEM, TEM, STM and AFM.	K2,					
		K3					
	Understood Hall measurement, four –probe resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and electroluminescence experimental techniques with necessary theory.	K3, K4					
	The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.	K4,K5					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

Strong (3) Medium (2) and Low (1)

Elective - List 3 – 18. MEDICAL PHYSICS I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MEDICAL PHYSICS	ELECTIVE				3	4	75

	Pre-Requisites					
Fu	Fundamentals of physiological concepts, Basics of instruments principle,					
	Learning Objectives					
$\boldsymbol{\lambda}$	To understand the major applications of Physics to Medicine					
\triangleright	To study the aid of different medical devices such as X-ray machines, gamma camera,					
	accelerator and nuclear magnetic resonance.					
\triangleright	To outline the principles of Physics of different medical radiation devices and their modern					
	advances, especially in medical radiation therapy and different applications in medical					
	physics.					

> To introduce the ideas of Radiography.

> To form a good base for further studies like research.

UNITS	Course Details
UNIT I:	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum –
X-RAYS AND	Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-
TRANSDUCERS	Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic
	cells – photo emissive cells –Photoconductive cells– piezoelectric transducer
UNIT II:	Introduction – sphygmomanometer – Measurement of heart rate – basic
BLOOD	principles of electrocardiogram (ECG) –Basic principles of electro-
PRESSURE	neurography (ENG) – Basic principles of magnetic resonance imaging (MRI).
MEASUREMENTS	
UNIT III:	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative
RADIATION	Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient –
PHYSICS	Radiation Detectors – Thimble Chamber – Condenser Chambers – Geiger
rni sics	Counter – Scintillation Counter
UNIT IV:	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray
MEDICAL	Film – Film processing – Fluoroscopy – Computed Tomography Scanner –
IMAGING	Principal Function – Display – Mammography – Ultrasound Imaging –
PHYSICS	Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera
1115105	(Only Principle, Function and display)
UNIT V:	Principles of Radiation Protection – Protective Materials – Radiation Effects –
RADIATION	Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring
PROTECTION	Devices – TLD Film Badge – Pocket Dosimeter
UNIT VI:	
	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill
PROFESSIONAL COMPONENTS	
CONFORENTS	Enhancement, Social Accountability and Patriotism
	1. Dr. K. Thayalan, <i>Basic Radiological Physics</i> , Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003.
	2. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic
	Radiology: -LippincotWilliams and Wilkins, 1990.
ΤΕΥΤ ΒΟΟΖΩ	3. FM Khan, <i>Physics of Radiation Therapy</i> , William and Wilkins, 3rd ed, 2002
TEXT BOOKS	2003.
	4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed,
	Elsevier Science, 2014.
	5. R.S. Khandpur, <i>Hand Book of Biomedical Instrumentations</i> , 1st ed, TMG, Nam Dalhi, 2005
	New Delhi, 2005.
	1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed,
	Springer International Publishing, 2017.
	2. Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i> , 1st ed, Charles
REFERENCE	University, Karolinum Press, 2018
BOOKS	3. Anders Brahme, <i>Comprehensive Biomedical Physics</i> , Volume 1, 1st ed,
	Elsevier Science, 2014.
	4. K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,
	Galgotia Publications, New Delhi, 2001.

		R. Cameron and James G. Skofronick, 2009, Medical Physics, John y Interscience Publication, Canada, 2nd edition.
WEB SOURCES	 https://sydne https://sydne https://sydne https://bi-by 	enptel.ac.in/courses/108/103/108103157/ ://www.studocu.com/en/course/university-of-technology- ey/medical-devices-and-diagnostics/225692 ://www.technicalsymposium.com/alllecturenotes_biomed.html ://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation- -deepraj-adhikary/78 ://www.modulight.com/applications-medical/

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Learn the fundamentals, production and applications of X-rays. K1					
CO2	Understand the basics of blood pressure measurements. Learn about					
02	sphygmomanometer, EGC, ENG and basic principles of MRI.	K2				
CO3	Apply knowledge on Radiation Physics	K3				
CO4	Analyze Radiological imaging and filters	K4				
CO5	Assess the principles of radiation protection	K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Elective - List 3 – 19. SOLID WASTE MANAGEMENT

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLID WASTE MANAGEMENT	ELECTIVE				3	4	75

Pre-Requisites					
Basic knowledge of solid waste and its type					
Learning Objectives					
To gain basic knowledge in solid waste management procedures					
To gain industry exposure and be equipped to take up a job.					
To harness entrepreneurial skills.					
> To analyze the status of solid waste management in the nearby areas.					

To sensitize the importance of healthy practices in waste managements

UNITS	Course Details						
UNIT I: SOLID WASTE MANAGEMENT	Introduction - Definition of solid waste - Types – Hazardous Waste: Resource conservation and Renewal act – Hazardous Waste: Municipal Solid waste and non-municipal solid waste.						
UNIT II: SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation						
UNIT III: TOOLS AND EQUIPMENT	Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique						
UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.						
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1	
	1.	Handbook of Solid Waste Management /Second Edition, George
		Tchobanoglous, McGraw Hill (2002).
	2.	Prospects and Perspectives of Solid Waste Management, Prof. B
		BHosett, New Age International (P) Ltd (2006).
	3.	Solid and Hazardous Waste Management, Second Edition, M.N
TEXT BOOKS		Rao, PSB / snoitacilbuP SBBooks (.(2020
	4.	Integrated Solid Waste Management Engineering Principles and
		Management, Tchobanoglous, McGraw Hill (2014).
	5.	Solid Waste Management (SWM), Vasudevan Rajaram, PHI
		learning private limited, 2016
	1.	Municipal Solid Waste Management, Christian Ludwig, Samuel
		Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012
	2.	Solid Waste Management Bhide A. D Indian National Scientific
		Documentation Centre, New Delhi Edition 1983 ASIN:
		B0018MZ0C2
REFERENCE BOOKS	3.	Solid Waste Techobanoglous George; Kreith, Frank McGraw
		Hill Publication, New Delhi 2002, ISBN 9780071356237
	4.	Environmental Studies Manjunath D. L. Pearson Education
		Publication, New Delhi, 20061SBN-I3: 978-8131709122
	5.	Solid Waste Management Sasikumar K. PHI learning, New
		Delhi, 2009 ISBN 8120338693
	1.	https://www.meripustak.com/Integrated-Solid-Waste-Management-
		Engineering-Principles-And-Management-Issues-125648
	2.	https://testbook.com/learn/environmental-engineering-solid-
		waste-management/
WEB SOURCES	3.	https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARI
WEB SOURCES		sA-
		gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ
		1iACq30KofoaAmFsEALw_wcB
	4.	https://images.app.goo.gl/tYiW2gUPfS2cxdD28
	5.	https://amzn.eu/d/5VUSTDI

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1				
CO2	Equipped to take up related job by gaining industry exposure	K5				
CO3	Develop entrepreneurial skills	K3				
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby	K4				
	areas	174				
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Elective - List 3 – 20. SEWAGE AND WASTE WATER TREATMENT AND REUSE

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SEWAGE AND WASTE WATER TREATMENT AND REUSE	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge of classification of sewage and solid waste and its harmful effects. Learning Objectives

- > To gain basic knowledge in sewage and waste water Treatment procedures
- > To gain industry exposure and be equipped to take up job.
- > To harness entrepreneurial skills.
- > To analyze the status of sewage and waste water management in the nearby areas.
- > To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details						
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication						
UNIT II: DISINFECTION	Disinfection: Introduction to disinfection and sterilization: Disinfectant - JV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.						
UNIT III: CHEMICAL DISINFECTION	Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)						
UNIT IV: PHYSICAL DISINFECTION	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.						
UNIT V: INDUSTRIAL VISIT	Industrial visit – data collection and analysis - presentation						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						

	T
	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	Shashi Bushan,(2015) sorB niaJ
	3. Integrated Water Resources Management, Sarbhukan M M, CBS
TEXT BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata
	McGraw Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations,
	Frank. R Spellman, CRC Press, 2020
	2. Wastewater Treatment Technologies, Mritunjay Chaubey, Wiley, 2021.
REFERENCE	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill
BOOKS	Higher Edu., 2002.
	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd
	Edn., McGraw Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition,
	RSC publishing, 2010.
	1. https://www.google.co.in/books/edition/Drinking_Water_Disinfectio
	nTechniques/HVbNBQAAQBAJ?hl=en
	2.https://www.meripustak.com/Integrated-Solid-Waste-Management-
	Engineering-Principles-And-Management-Issues-125648?
	3.https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-
	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iAC q30KofoaAmFsEALw_wcB
	4. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA
WEB SOURCES	4. https://www.menpustak.com/agend=CjokcQjwuukAbhCkAkisA C-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ
	jxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB
	5. https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-
	424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob
	-21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=
	g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=
	&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid
	=pla-890646066127&psc=1&ext_vrnc=hi

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1
CO2	Equipped to take up related job by gaining industry exposure	K5
CO3	Develop entrepreneurial skills	K3
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4

CO5 Adequately sensitized in managing solid wastes in and around his/her locality	K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

Elective - List 3 – 21. SOLAR ENERGY UTILIZATION

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLAR ENERGY UTILIZATION	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types

Learning Objectives

- > To impart fundamental aspects of solar energy utilization.
- > To give adequate exposure to solar energy related industries
- To harness entrepreneurship skills
- To understand the different types of solar cells and channelizing them to the different sectors of society
- > To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details						
UNIT I:	Conduction, Convection and Radiation – Solar Radiation at the						
HEAT TRANSFER &	earth's surface - Determination of solar time - Solar energy						
RADIATION ANALYSIS	measuring instruments.						
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.						
UNIT III:	Types of solar water heater - Solar heating system – Collectors and						
SOLAR HEATERS	storage tanks – Solar ponds – Solar cooling systems.						
UNIT IV: SOLAR ENERGY CONVERSION	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process-texturization, diffusion, Antireflective coatings, metallization.						
UNIT V: NANOMATERIALS IN FUEL CELL APPLICATIONS	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis - presentation						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						
	2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications", Mc Graw-Hill, 2010.						

	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",										
	Academic Press, London, 2009										
	4. Tiwari G.N, "Solar Energy - Fundamentals Design, Modelling and										
	applications, Narosa Publishing House, New Delhi, 2002										
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd.,										
	New Delhi, 1997.										
REFERENCE	1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)										
BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)										
	3. John W. Twidell & Anthony D.Weir, 'Renewable Energy Resources, 2005										
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,										
	4th Edition, john Wiley and Sons, 2013										
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley										
	and Sons,2007.										
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556										
SOURCES	f9a4fb										
	2. https://books.google.vg/books?id=l-										
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read										
	3. www.nptel.ac.in/courses/112105051										
	4. www.freevideolectures.com										
	5. http://www.e-booksdirectory.com										

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1					
CO2	Equipped to take up related job by gaining industry exposure	K3					
CO3	Develop entrepreneurial skills	K5					
CO4	Skilled to approach the needy society with different types of solar cells	K4					
CO5	Gained industrialist mindset by utilizing renewable source of energy						
CO5							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3