M.Sc., NANO SCIENCE AND NANO TECHNOLOGY

1

MODEL SYLLABUS

AUGUST : 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

LEARNING OUTCOMES – BASED CURRICULUM FRAME WORK GUIDELINES BASED REGULATIONS FOR POST GRADUATE PROGRAMME

	BASED RECELATIONS FOR FOUL OBT GRADUATE I ROCKAMINE				
Program	nme: M.Sc. Nano-science and Nanotechnology				
Program	nme Code				
Duratio	n 2 years [PG]				
Program	n Outcomes (PO)				
	essful completion of the M.Sc. , Nano-science and Nanotechnology program, the are expected to				
PO1	Broad based knowledge in Industrial Biotechnology				
PO2	Transforming meaningful applications for better healthcare, industries and economic development				
PO3	Constant updation of knowledge				
PO4	Empowering skills				
PO5	Sole responsibility of contributing the public to lead better life through extension activities				
PO6	Development of critical thinking and problem-solving skills				
PO7	The provision of an inspiring, exciting and collaborative scientific environment				
PO8	To inculcate the values of professionalism and dedication				
PO9	Develop intelligent strategies and biochemical approaches in problem solving methods				
PO10	To compete globally with confidence in all the sectors of life science				

Program	n Specific Outcomes (PSO)
	essful completion of the M.Sc. , Nano-science and Nanotechnology program, the are expected to
PSO1	Ability to understand the technical aspects of modern nano level technologies that help in addressing the biological and medical challenges faced by humankind.
PSO2	Ability to contribute effectively in the development of the ethical practices, societal contributions, and leading to responsible and competent professionals
PSO3	Acquiring the ability of leadership skills to manage projects in multidisciplinary Environments
PSO4	Nurture problem solving skills, thinking, creativity through assignments, field work, seminar presentations and project work.
PSO5	Assist students in preparing (personal guidance, research papers, and books) for competitive exams e.g., NET-JRF, SLET, etc.

M.Sc. NANO-SCIENCE AND NANOTECHNOLOGY

The preamble of the syllabus

Nanoscience is the study of systems in nanoscale and nanotechnology is the ability to systematically organize and manipulate properties and behavior of matter in the atomic and molecular levels. Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. These newborn scientific disciplines are situated at the interface between physics, chemistry, materials science, microelectronics, biochemistry, and biotechnology and engineering. Through nanoscience and nanotechnology it has become possible to study and create very useful functional devices, materials and systems on the 1 to 100 nanometer (one billionth of a meter) length scale. The reasons why nanoscale has become so important are presented. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronics components, new types of "smart" medicines and sensors, and even interfaces between electronics and biological systems, nanodevices, nanorobotics, nanocomputers, nanopowders, nanostructured catalysts and nanoporous materials, molecular manufacturing, nanolayers, molecular nanotechnology, medicine such as Alzheimer's and cancer prediction, prevention and treatment through nanotechnology, nanobiology, organic nanostructures to name a few.

Master of Science (M.Sc.) in Nanoscience and Nanotechnology, the curricula, and course content were designed to meet the standards of UGC-CSIR (NET) and (SLET) examinations. The choice- based credit system of learning develops a strong base in the core subject and specializes in the disciplines of his / her liking and abilities and develops an indepth understanding of various aspects of Biotechnology. The students develop experimental skills, design, and implementation of novel synthetic methods, and develop the aptitude for academic and professional skills, by acquiring basic concepts for structural elucidation with hyphenated techniques, and understanding the fundamental biological process and rationale of the computer. The project introduced in the curriculum will motivate the students to pursue research and entrepreneurial skill development.

Examination Pattern: Time allotted: Theory – 03Hrs. & Practical – 04 hrs

Marks allotted for university examination:

	External Marks	Internal Marks	Total marks
Theory	75	25	100
Practical	75	25	100

Marks distribution for internals:

	Test	seminars	Assignment	Total marks
Theory	15	05	05	25

	Test	Record	Total marks		
Practical	10	15	25		

Pattern of question paper (theory):

Study Compo	nents	ins.	Credit		Maxii	mum M	arks
Course Little		hrs / week		Title of the Paper	CIA	Uni. Exam	Total
	EMESTER I					Елит	
Core	Paper -1	4		Introductory Physics	25	75	100
Core	Paper -2	4	5 4	Introductory Chemistry	25	75	100
Core	Paper -3	4	5 4	Introductory Biology	25	75	100
	Internal Elec	ctive for	same	major students (Choose any one)			
Core Elective	Elective – I	3	3 3	Introduction to Material Science	25	75	10
Practical -I		10) 4	Nanoscience Practical	25	75	10
Value Added course	VAC-1	2		Laboratory Safety and Health Intellectural Property Rights. Innovation and Entrepreneurship	25	75	100
		- 30	21				
SE	MESTER II				CIA	Uni. Exam	Tota
Core	Paper – 4	4	4	Core Courses	25	75	100
				Introduction to Nanoscience and Nanotechnology			
Core	Paper – 5	4	4	Preparation of Nanomaterials	25	75	10
Core	Paper – 6	4	4	Characterization Techniques of Nanomaterials –I	25	75	10
Core	Paper - 7	4	4	Nanobiotechnology	25	75	10
	Internal Elec	ctive for		major students (Choose any one)		•	
Core Elective	Elective -II	2		Introduction to Nanotoxicology	25	75	10
Practical -II		8		Nanoscience Practical – II	25	75	10
					25	75	

The course of	study and	the scheme of	f Examination -	Denartment	of Biotechnology
The course of	study and	the sentence of	L'Aannauon –	Department	of Diotechnology

Study Co	Study Components Course Title				Maximum Marks		
Course T			Creau	Title of the Paper	CIA	Uni.	Total
SEMEST	TER III				-	Exam	
Core	Paper -9	4	4	Core Courses	25	75	100
				Nanoelectronics and			
				Nano sensors			
Core	Paper –10	4	4	Properties of	25	75	100
	-			Nanomaterials			
Core	Paper – 11	4	4	Characterization	25	75	100
	1			Techniques of			
				Nanomaterials-II			

Core	Paper -18	4	1	Advanced	25	75	100
COLE	1 aper -18	4	4	Nanobiotechnology	25	15	100
	Inter	nal Ele	ctive f	for same major studer	nte (C	^T hoose a	ny one)
	Inter			Biomaterials &	113 ((
Core	Elective -III	3	3	Nanobiotechnology	25	75	100
Elective	Elective III	5	5	for	25	15	100
				Tissue			
				Engineering			
External El	ective for other	maior s	tuden	ts (Inter/multi-discipl	inar	v naners)	(Choose any one)
Open				Core Industry	25	75	100
Elective	Open Elective	2	2	module-Industrial			100
	-II			Nanotechnology			
Practical -		9	4	Nanoscience	25	75	100
III				Practical – III			
		30	29				
*MOOC			2				100
Courses							
*USRR			2				100
SE	EMESTER IV				CIA	Uni. Exam	Total
Core	Paper -13	4	4	Biomedical Nanotechnology	25	75	100
Core				Nanotechnology for			
Elective	Elective -IV	3	3	Food and	25	75	100
Elective				Agriculture			
	Project					100	
Core	Compulsory	23	8			Project	100
	Compuisory				+2	5 viva)	
		30	15		7 25	2275	2000
		120	91		725	2275	2900

Extra credits for * MOOC course = 2 * USSR Project = 2

SEMESTER I

			CORE I			
Course Code		Course Name:	INTRODUCTORY	Credits 4		
		PHYSICS				
Lecture Hour	s:(L)	Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)		
per week		Hours :		Hours per week		
-		(T) per week		•		
Course Catego	ory:	Year &	Admission Year:			
Core I	-	Semester :				
Pre requisite:		Basic knowledge with concepts of				
-		physics.				
Links to other	courses					
Learning Obje	ectives:	The main objectives of this course are to:				
8 8		To understand fundamental concepts of electromagnetic waves,				
		current, magnetism, electronics and quantum mechanics.				
		To gain knowledge on electronic devices such as diodes and				
		transistors also quantummechanics				
L		1	•			
CLO1 To	understa	and fundamental concepts of physics which are necessary for				
		e and technolog	1 1 2	· · · · · · · · · · · · · · · · · · ·		
	apply the gained subject knowledge to understand the papo-enabled					

	nanoscience and technology subject
CLO2	To apply the gained subject knowledge to understand the nano-enabled devices in second and third semesters
CLO3	To evaluate microscopic scales with macroscopic Impact with the help of Physics.
CLO4	To understanding on real time applications of physics
CLO5	To analyze the acquired knowledge and understanding on real time applications of physics
Recap:	2 Tutorial hours

Contents and Required hours : (Total =90 hours)

Unit:1	18 hours	
Unit:2	18 hours	
Unit:3	18 hours	
Unit:4	18 hours	
Unit V	18 hours	
Unit:1	WAVES AND OPTICS	18 hours
Electromag	gnetic waves and their characteristics - Theorie	es of light –Wave,
Electromag	gneticand Quantum – Scattering of light: Raylei	igh's and Tyndal scattering –
TT	nringinla	
Huygen's p	principle –	

Unit:2 ELECTRIC CURRENT

1

18 hours

Formatted Table

Electric Current – Flow of Charges in Metals – Drift Velocity, Mobility and Their Relation – Ohm's Law: Electrical Resistance – I-V Characteristics – Resistivity and Conductivity – Superconductivity – Joule's Heating Effect – Thermoelectric Effects : Seebeck and Peltier Effect.

10								
Unit:3 MAGNETISM 18 hours	Formatted Table							
Fundamental Concepts of Magnetism- Bohr Magtron- Magnetic Dipoles- Field- Electron								
Spin and Magnetic Moment- Magnetic moment due to Nuclear Spin- Magnetic dipoles- Permeability- Magnetization- Intensity of Magnetization – Magnetic Materials								
Permeability- Magnetization- Intensity of Magnetization – Magnetic Materials								
Unit:4 ELECTRONICS 18 hours	Formatted Table							
Classification of Solids, Energy Levels, Intrinsic And Extrinsic Semiconductor, Conduction								
In Metals and Semiconductors. Diode Under Forward and Reverse Bias - Transistor Basics,								
Working Principles – Current-Voltage Characteristics								
Unit:5 QUANTUM MECHANICS 18 hours	Formatted Table							
De-Broglie wavelength: in terms of energy and potential – Schrödinger time dependent	Formatted Table							
equation – Time independent equation – Applications of Schrödinger wave equation – One								
dimensional harmonic oscillator: Eigen values of the total energy – Particle in a one								
dimensional box.								
Unit:6 CONTEMPORARY ISSUES 2 hours Expert lectures, online seminars – webinars	Formatted Table							
Expert fectures, online seminars – weomars								
TOTAL LECTURE HOURS 90 hours	Formatted Table							
Text Book(s)								
Solid State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers (2001).								
2 Introduction To Solid-State Physics, C. Kittel, Wiley (1986).								
3 Magnetism: Principles and Applications, D. Craik, Wiley (1995).								
4 A Textbook of Quantum Mechanics, P. M. Mathews and K. Venkatesan, Tata McGraw-Hill, (1978)								
5 Quantum Mechanics: Theory and Applications, Ajoy Ghatak, and S. Lokanathan,								
Springer (2004)								
Reference Book(s)								
1. Text Book Of Electronics, S. Chattopadhyay, New Central Book Agency pvt. Ltd., (2006).								
2. Magnetic Materials : Fundamentals And Applications by Nicola A. Spaldin,								
Cambridge University Press, 2nd Edition, (2018)								
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1 NPTEL: Electromagnetism								
https://nptel.ac.in/courses/115/106/115106122/								
2 NPTEL: Magnetic Properties								
https://www.youtube.com/watch?v=QQZ6EGf0Ju8								
3 NPTEL: Quantum Mechanics								
https://nptel.ac.in/courses/115/101/115101107/								

|

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
Strong - 3, Medium – 2,	CO1	3	3	3	2	2	2	2	3	3	3
Low - 1	CO2	3	2	2	3	3	2	3	3	2	2
Mapping with	CO3	3	2	2	3	3	3	3	2	2	2
Programme Specific	CO4	3	3	3	2	2	2	3	3	2	3
Outcomes	CO5	3	2	2	3	2	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER I, CORE-II

Course Name:	INTRODUCTORY	Credits					
CHEMISTRY							
Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)					
Hours :	week	Hours per week					
(T) per week		•					
Year &	Admission Year:						
Semester :							
Basic knowledg	ge with concepts of						
Chemistry	-						
The main objec	tives of this course are to:						
To understand	fundamental concepts of elec	tromagnetic waves,					
current, magnet	tism,electronics and quantum	mechanics.					
To gain knowledge on electronic devices such as diodes and							
transistors also quantummechanics							
	CHEMISTRY Tutorial Hours : (T) per week Year & Semester : Basic knowledg Chemistry The main object To understand is current, magnet	CHEMISTRY Tutorial Lab practice Hours : (P) per Hours : week (T) per week Week Year & Admission Year: Semester : Basic knowledge with concepts of Chemistry The main objectives of this course are to: To understand fundamental concepts of elec current, magnetism, electronics and quantum					

CLO1	Define and identify differential branches of chemistry and theirimportance
CLO2	Understand and describe chemical concepts and processes
CLO3	Interpretation and application of the theories to chemical process and derivations.
CLO4	Differentiate different properties and mechanisms of organic reactions, inorganic properties and physical concepts
CLO5	Evaluation and assessment of the theories and chemical process fordifferent applications.
Recap:	2 Tutorial hours
C	

Contents and Required hours : (Total =90 hours)

Unit:1	18 hours
Unit:2	18 hours
Unit:3	18 hours
Unit:4	18 hours
Unit V	18 hours

Units							
IChemical Equilibria - Activity Concept, Equilibrium Constant And							
Applications, Ionisation Constants Of Acids And Bases. Concept Of							
pH,Hydrolysis Of Salts.							
IIBuffers – Types, Range And Capacity, Dissociation Of Polyprotic							
Acids, Common Ion Effect, Salt Effect. Electrochemistry –							
Conductivity Of							
Electrolytes, Electrochemical Cells, Standard Electrode Potentials							

III	Symmetry And Group Theory, Bonding Models In Chemistry – Ionic								
	Bond, Covalent Bond, Coordination Chemistry - Theories Of Bonding								
	n Coordination Compounds And Electronic Spectra Of								
	Coordination								
Compounds									
IV	IV Thermodynamics: First, Second And Third Law Of Thermodynamics.								
	Gibbs And Helmholtz Energy And Chemical Equilibrium. Chemical								
	Kinetics, Transition State Theory Ad Collision Theory,								
	Heterogeneous								
	Catalysis.								
V	Organic Compounds – Structure And Bonding, Aliphatic And								
	AromaticCompounds, Functional Groups, Nucleophiles And								
	Electrophiles,								
	Reactions And Mechanisms								
Reading List(Print	1. Fundamentals Of Analytical Chemistry - Skoog, West and								
and Online)	Holler, Saunders College, Publishing, VII Ed, (1996).								
	2. Text Book Of Quantitative Inorganic Analysis – A.I. Vogel,								
	Elbs, IVEd., (1985).								
	Physical Chemistry, .A. Alberty And R.J. Silbey								
mmendedTexts	1. Inorganic Chemistry : Principles Of Structure And Reactivity –								
minenaca i exts	J.E.Huheey, E.A. Keiter and R.L. Keiter, IVEd.								
	Physical Chemistry, Atkins								
	3. Text Book Of Quantitative Chemical Analysis – A.I. Vogel,								
	VI Ed,Pearson Education Ltd, 2001								
	vi Eu,i caison Education Elu, 2001								

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
	CO1	3	3	2	3	3	3	2	3	3	3	
S		3	3	2	3	3	3	2	3	2	2	
trong - 3, Medium – 2, Low - 1	CO3	3	3	2	3	3	3	2	2	2	2	
	CO4	3	3	2	3	3	3	2	3	2	• 3 (Formatted: Centered
	CO5	3	3	2	3	3	3	2	2	3	3	

Mapping with Programme Specific Outcomes							
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5		
C01	3	3	2	2	3		
CO2	3	3	2	2	3		
CO3	3	3	2	2	3		
CO4	3	3	2	2	3		
C05	3	3	2	2	3		
Weightage	15	15	10	10	15		
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3		

Strong - 3, Medium – 2, Low - 1

SEMESTER I CORE-III

Course Code	Course Name: I BIOLOGY	NTRODUCTORY	Credits •		Formatted Table
Lecture Hours :		Lab practice Hours : (P) p	er Total: (L+T+P)		
(L) per week	(T) per week	week	Hours per week		
Course Category:	Year & Semester :	Admission Year:			
Pre requisite:	Basic knowledge Biology	with concepts of			
Links to other courses					
Learning Objectives:	Acquire the know Explaining the ro Understanding the different types of Gaining the know	vledge about of glucose, and	blism, and bioenergetics. ucture, of DNA, RNAand	1.	
	1	Units			
I	Definitions, T	nization, Cytoskeletal prot	karyotic cells, Principle or eins, Types of cell division		Formatted: Centered, Indent: Left: -0.1" Formatted: Indent: Left: 0.12" Formatted: Indent: Left: 0.12", Right: 0.06
II	Proteins- Prim		mino acids and peptides, and Quaternary structures,		Formatted: Centered, Indent: Left: -0.1" Formatted: Indent: Left: 0.12" Formatted: Indent: Left: 0.12", Right: 0.13
Ш	ENZYMES Mechanism of	actions, Enzyme kinetics Role of ATP, Biological o	, Regulation of activities, xidation, Respiratory chain		Formatted: Centered, Indent: Left: -0.1" Formatted: Indent: Left: 0.12", Right: 0.19
IV	significance, Cholesterol, Sy	netabolism and catabolism, Glycolysis, Lipids of p nthesis, Transport and Ex atrix, Biooxidation, Fatty ac	Carbohydrates, Biological hysiological significance, cretion, Glycoproteins and id synthesis, Phospholipids		Formatted: Centered, Indent: Left: -0.1" Formatted: Indent: Left: 0.12", Right: 0.19"
v	NUCLEIC ACI Structure, funct Metabolism of	<u>DS</u> ions and replications of in	formation macromolecules. nucleotides. Organization, otein synthesis.		Formatted: Centered, Indent: Left: -0.1" Formatted: Indent: Left: 0.12", Right: 0.19

Reading List(Print and Online)	+](Formatted Table
	Lehninger, Principles of Biochemistry, Cox and Nelson, V Edn,2008		
Texts	L. Stryer, Biochemistry, 4 th Edn., 1995		
	Haper's Illustrated Biochemistry, R.K, Murray, D.K. Granner and V.W.		
	Rodwell, McGraw Hill, New Delhi, 2003.		

Ī	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
Ī	CO1	3	3	3	2	2	2	2	3	3	Formatted: Centered
	CO2	3	2	2	3	3	2	3	3	2	2 Formatted: Centered
	CO3	3	2	2	3	3	3	3	2	2	2 Formatted: Centered
	CO4	3	3	3	2	2	2	3	3	2	Formatted: Centered
s	CO5	3	2	2	3	2	3	2	2	3	Formatted: Centered

S trong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	2	3	3	3	Formatted: Centered
CO2	3	2	3	3	3	Formatted: Centered
CO3	3	2	3	3	3	Formatted: Centered
CO4	3	2	3	3	3	Formatted: Centered
CO5	3	2	3	3	3	Formatted: Centered
Weightage	15	10	15	15	15	
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3	

Strong - 3, Medium - 2, Low - 1

I

SEMESTER I Elective Course-1

Course Code	Course Name:	Introductions To Materials	Credits 4		
	Science				
Lecture Hours : (L)	Tutorial	Lab practice Hours : (P) per	Total: (L+'	Г+Р)	
per week	Hours : (T) per week	week	Hours per v	veek	
Course Category:	Year &	Admission Year:			-
course category.	Semester :	rumission real.			
Pre requisite:		e with concepts of			-
	solid state physic	cs			_
Links to other courses	5				
Learning Objectives:	The main object	ctives of this course are to:			-
	To understand fu	undamental concepts of crystal s	structure and	defects	
		lge on various properties such a		nagnetic,	
Expected Course Outco		andmechanical properties of ma	aterials		
On the successful comple		student will be able to:			
		epts of material science	onconta of		
nanoscience in seco	-	ge to understand the advanced c	concepts or		
		purity and applied temperature	on various		
properties of materi	1	F			
To analyze the acqu	ired knowledge a	and understanding on real time a	pplications		
of various functiona	al materials				
			1		
		JCTURE AND DEFECTS		18 hours	Formatted Tab
		ine, Crystals, Polycrystals, Syn s, Miller Indices, Chemical Boi	•		
n Solids,	mographic 1 talles	, miner indices, Chemical Dol	anig, Atolli	e Donuing	
,	Ionic, Covalent a	nd Vander Waals; Crystal Defe	cts.		
				101	
Unit:2		CAL PROPERTIES		18 hours	Formatted Tabl
		t of Effective Mass of Electro			
		y – Activation Energy – (and Impurity on Fermi Level – I			
of	or remperature a	and impurity on Perint Level –		200111111ation	
Hall Coefficient.					
		TIC PROPERTIES			

Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie And Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of Data – Tapes and Floppy - Magnetic Disk Drives.

Unit:	4	DIELECTRIC PROPERTIES	18 hours
Diele	ctric Mater	ials: Electronic, Ionic, Orientational, and Space Charge Polarizati	on – Complex
Diele	ctric Const	ant RC Equivalent Network – Dielectric Loss – Different Types o	f Dielectric
Break	down, Cla	ssification of Insulating Materials.	
Unit:	5	THERMAL, OPTICAL & MECHANICAL PROPERTIES	18 hours
Therr	nal: Heat	Capacity - Thermal Expansion - Thermal Conductivity and	Stresses - Optical
		tetals and Non-Metals. Application of Optical Phenomena – Me	
		stic Deformation - Interpretation of Stress-Strain Curves, Com	
Hard	ness: Rock	well, Brinell and Vickers.	
Unit:	6	CONTEMPORARY ISSUES	2 hours
Expe	rt lectures,	online seminars – webinars	
		TOTAL LECTURE HOURS	90 hours
Text	Book(s)		
			2001)
1		te Physics, S.O. Pillai, 4 th Ed, New Age International Publishers (2001).
2	Introduct	tion To Solid-State Physics, C. Kittel, Wiley (1986).	
3	Magnetis	sm: Principles and Applications, D. Craik, Wiley (1995).	
4		ce Spectroscopy: Theory, Experiment, and Applications, 3rd Editi ov and Dr. J. Ross Macdonald, Wiley (2018).	on, Dr. Evgenij
Refe	rence Bool	s(s)	
1.	Solid-Sta (2018).	ate Physics: Introduction to the Theory, Patterson, James, Bailey, I	Bernard C.Springer
2.		c Materials : Fundamentals And Applications by Nicola A. Spaldin ty Press, 2nd Edition, (2018)	n, Cambridge
Relat	ted Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	NPTEL:	Material Science	
	https://n	otel.ac.in/courses/112/108/112108150/	
2		Magnetic Properties	
		ww.youtube.com/watch?v=QQZ6EGf0Ju8	
r	1		
-			

|

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium - 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
C03	3	3	3	3	2
CO4	3	3	3	3	2
CO5	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

Strong - 3, Medium - 2, Low - 1

Formatted Table

Formatted: Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Centered, Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Centered, Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Centered, Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Centered, Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Position: Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Centered, Position: Horizontal: Left, Relative to: Column, Vertical: In line,

Relative to: Margin, Horizontal: 0", Wrap Around

Formatted: Indent: First line: 0 ch

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
		LABORATORY SAFETY AND HEALTH	Value Added Course – A	2
Course Outco	between 2. E aspects o Understa 4. C applicati 5. I generatio	Jnderstanding the basic of Nanc nano and bulk materials Evaluate and critically review th ofnanomerials preparation and a anding the concepts and techniq Critically assess and outline the ion Demonstrate the new properties	e theoretical and pr pplication. ues in nanotechnolo nanotechnology for	actical Ogy all areas of
Title of th Course: Course Objectives	Define a Understa Interpret 4. I protocol 5. F equipme	RATORY SAFETY AND HEA and identify laboratory safety an and and describe various safety p ation and application of safety p Differentiate different types of la s and personal protective equips Evaluation and assessment safet onts and First aid practices. Apply the safety practices in real needs.	d health issues and protocol protocols and labora aboratory accidents ments. y regulations, perso	atory rules. and safety nal protective
I		Units Y REGULATIONS I Laboratory Procedures, Rules	And Regulations.	Lab Safety
II	Practice: SAFET		-	
III	CHEMI Chemica	CAL AND BIOSAFETY als Handing, MSDS Information als,Disposal Of The Chemical A	on, Labelling Of T	The
IV	SAFETY Various Manuals	Y EQUIPMENTS Safety Equipments, Personal P 5, Arrangements, Training.	-	
V	Emerger	l Practices - Cardiac, Chemical l hcyCalls And Procedures. First	Aid Kits.	
Reading List() and Online		uction To Health And Safety A	t Work, Elsevier (2	015)
mmendedText	ts 1. Envir College	onmental Health & Safety Pr (2001)	ocedure Manual, I	Harper

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low -1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium - 2, Low - 1

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits	
		Intellectural Property Rights	Value Added Course – B	2	
Course Out	tcomes Understa	anding research ethics		•	Formatted Table
(Use verb	s like Learn to	protect our research finding			
interpret, ca	lculate, Learn to	o file Patents			
employ, gen	eralise, Criticall	y assess and outline the findings a	and Know How		
evaluat	te,				
different					
critically a	ssess,				
review, enu	merate,				
identify, s					
describe, er	kplain,				
outline, se					
recall, unde	rstand,				
compare	and				
contrast, ev	aluate,				
critique, r e	evise,				
summar					
demonstrate	,				
report, ex j					
obtain, reco					
respond, di	splay)			-	Formatted: Indent: Hanging: 0", Line
Course I	Value A	dded Course – B			spacing: single
Fitle of the	Course: Intellect	tural Property Rights			
Course	Define I	Intellectural Property Rights			
Objectives		and and describe various types of	IP rights		
U		different types of IPS			
		tiate different types of filing IPS			
	To learn	Know How and Trade Secrets			
	Evaluate	e and assessment of all regulation	s for the above sai	d IPS.	
		Units			
	Introduc	ction: – Invention and Creativity	v – Intellectual Pr	roperty (IP)	Formatted: Centered
Ι	muouue	5			
Ι	_				
	_ Importa	nce-Protection of IPR		e marksn and	Formatted: Centered
I II	_ Importa Patents:	nce-Protection of IPR IP- Patents- Copy rights and re	lated rights- Trad		Formatted: Centered
	 Importan Patents: right ar	nce-Protection of IPR IP-Patents-Copy rights and re ising from Trademark registrat	lated rights- Trad		Formatted: Centered
	_ Importa Patents:	nce-Protection of IPR IP-Patents-Copy rights and re ising from Trademark registrat	lated rights- Trad		Formatted: Centered
П	– Importan Patents: right ar Procedu	nce-Protection of IPR IP-Patents-Copy rights and reising from Trademark registrat res	lated rights- Trad tion- definitions-	Applications	
	 Patents: right ar Procedu Internati	nce-Protection of IPR IP- Patents- Copy rights and re- ising from Trademark registrat res	lated rights- Trad tion- definitions- llectual Property-	Applications establishment	Formatted: Centered Formatted: Centered
П	Importan Patents: right ar Procedu Internatio of WIPC	nce- Protection of IPR IP- Patents- Copy rights and re- ising from Trademark registrat res ional Convention relating to Inter D- Mission and Activities- History	lated rights- Trad tion- definitions- llectual Property-	Applications establishment	
П	Importan Patents: right ar Procedu Internatio of WIPC	nce-Protection of IPR IP- Patents- Copy rights and re- ising from Trademark registrat res	lated rights- Trad tion- definitions- llectual Property-	Applications establishment	
Ш	Importan Patents: right ar Procedu Internati of WIPC and Tari	nce- Protection of IPR IP- Patents- Copy rights and re- ising from Trademark registrat res ional Convention relating to Inte D- Mission and Activities- History iff (GATT)	lated rights- Trad tion- definitions- llectual Property- y –General Agreer	Applications establishment nent on Trade	Formatted: Centered
П	Importan Patents: right ar Procedu Internati of WIPC and Tari	nce- Protection of IPR IP- Patents- Copy rights and re- ising from Trademark registrat res ional Convention relating to Inter D- Mission and Activities- History	lated rights- Trad tion- definitions- llectual Property- y –General Agreer	Applications establishment nent on Trade	

V	Case Studies	•	(Formatted: Centered
	New Patents – copy right and related rights- Trame Marks- Know How-			
Reading List(Print	Subbaram N.R " Handbook of Indian Patent Law and Paractice, S.			
and Online)	Viswanathan, (Printer and Publishers), Pvt. Ltd. 1998			
mmendedTexts	Intellectual Proerty Today: Volume 8 May 2001, [www. Iptoday. Com]			

trong - 3, Iedium – 2, Low	Cos	PO1	PO2	PO3	3	PO4	PO5	PO6	PO7	PO8	3	PO9	PO10
1	CO1	3	3	2	2	3	3	3	2	3	3	3	3
T	CO2	3	3	2	3		3	3	2	3	3	2	2
Iapping with Programme	CO3	3	3	3 2		3	3	3	2	2	2 2		2
pecific	CO4	3	3	2		3	3	3	2	3	3	2	3
Outcomes	CO5	3	3	2	3		3	3	2	2	2	3	3
	CO	/PSO	1		P	SO1	PSO2	PSO3	PSC)4	Р	SO5	
CO1						3	3	2	2			3	
CO2						3	3	2	2			3	
CO3					3		3	2	2			3	
CO4						3	3	2	2			3	
CO5						3	3	2	2		3		
Weightage	9					15	15	10	10	1		15	
Weighted Course Co		U V		of)		3	3	2	2			3	

Strong - 3, Medium - 2, Low - 1

I

		INNOVATION AND ENTREPRENEURSHIP		alue A ourse		2			•	Formatted Table
CourseCode:		INNOVATION AND ENTREPRENEURSHIP		L	T	P	(
Core/Elective/	Supportive	Value Added Course – C								
Pre-requisite		Basic knowledge with data sets, graphs and scientific images.								
The main object	tives of this co	ourse are to:								
nnovation To understand	the concept an	n the various aspects of innovation d theories of entrepreneurship entrepreneurs that contributed to t				fosteri	ing			Formatted Table
Expected Cou	rse Outcomes	:								
		of the course,								
1 Crisis m	anagement/Ris	sk Management - you must take ad	lvan	ce fron	1					Formatted: Centered
-	nts before han			aduct		-				Formattade Contors
	nuch in the ma	t a business venture. Quality of the arker	s pro	Juuct		1				Formatted: Centered
		ds of the customer								Formatted: Centered
	a can be innovang strategies	ative if its in accordance to people	's ne	eed.						Formatted: Centered
Unit:1	Introduction	to Innovation			18 ho	ırs				
		novation-Types of Innovation-Re ations and opportunities	eleva	ance of	Tecl	nolog	gy f	or		
Unit:2	Promoting a	nd managing innovation			18 ho	ırs				
	d renewing in	ents, Trademarks, Intellectual Pre novation-Enhancing Innovation I						ng,		
Unit:3		Strategy for Commercializing I	nnc	ovation	<mark>18 h</mark>	<mark>ours</mark>				
	g up the Inves	nd barriers for introducing produ stment and establishing organisati	icts	and se	rvices	-Selec				
Unit:4		Entrepreneurship			<mark>18 h</mark>	ours				
Entrepreneursh		ntext – social and economic devel Meaning, Entrepreneurial attribu			ntrepr	eneurs				

<mark>Unit:5</mark>	ENTREPRENEURSHIP DEVELOPM	ENT IN INDIA <mark>18 hours</mark>
Growth an	d promotion of Entrepreneurship in India	- Institutional arrangements
Entrepreneu	rial motivation - Values and Culture - Entre	preneurship in various sectors
Access to f	inance, market, R&D and Technologym- Polic	cies and programmes related to
entrepreneu	rship development	
Unit:6	CONTEMPORARY ISSUES	<mark>2 hours</mark>
Expert lectu	res, online seminars – webinars	
	TOTAL LECTURE HOURS	90 hours
Text Book(s)	
	e and Sue Marriott, Enterprise: Entrepreneurship	and InnovationConcepts,
Contexts an	d Commercialization	
John Bessar	nt and Joe Tidd, Innovation and Entrepreneurship)
Reference I		
Rabindra N. 1998.	Kanungo "Entrepreneurship and innovation", S	age Publications, NewDelhi,
Peter F. Dru	cker, Innovation and Entrepreneurship	
EDII "Facul	lty and External Experts – A Hand Book for Nev	v Entrepreneurs Publishers:
Entrepreneu	rship Development" Institute of India, Ahmadab	oad, 1986.
	nefiel and Sharma (2011), Social Entrepreneurshi	ip, Global visionpublishing
house, New	Delhi.	
Related On	line Contents [MOOC, SWAYAM, NPTEL, V	Websites etc.]

Strong - 3,
Medium – 2,
- 1

I

2, Low	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
,	CO1	3	3	2	3	3	3	2	3	3
	CO2	3	3	2	3	3	3	2	3	2
	CO3	3	3	2	3	3	3	2	2	2
	CO4	3	3	2	3	3	3	2	3	2
	CO5	3	3	2	3	3	3	2	2	3

PO10

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER I Nanoscience Practical I

Course Code	Course Name:	Nanoscience Practical- I	Credits 3	
Lecture Hours : (L per week	Tutorial Lab practice Hours : (P) Hours : week (T) per week (T)		Total: (L+T+P) Hours per week	
Course Category:	Year & Semester :	Admission Year:		
Pre requisite:		ge with concepts of istry and Physics		
Links to other cours	ses			
	Acquire practic methods in Bio proteins, Apply the pract separation tech Provides oppor cells. Master the tech and characterin	tunities to collect and examir nical skills in buffer, mediun g biological samples. structural diversity of health Units ATION	creatinine, DNA, ding the estimation, he samples fromblood and h, sterilizing,culturing,	Formatted: Centered
	ESTIMATIONS C Creatinine	DF BLOOD- Glucose, Blood	urea, Uric acid, and	Formatted: Centered
	Chromatography,	ND CHARACTERIZATION Gel Filtration, Ion exchange, LC, Polyacrylamide, Agaroso	Affinity	Formatted: Centered
				Formatted: Centered
	DNA ESTIMATIO	DN and demonstration of apoptos	is of DNA laddering	Formatted: Centered
•		FLUORESCENCE MICROS T assay for cell viability, and		Formatted: Centered

	Cos S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
trong - 3,	CO1	3	3	2	3	3	3	2	3	3	3
Medium – 2, Low - 1	CO2	3	3	2	3	3	3	2	3	2	2
	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
Mapping with Programme	CO5	3	3	2	3	3	3	2	2	3	3

Specific Outcomes

Strong - 3, Medium – 2, Low - 1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER-II CORE-IV

Course Code			Credits	4	Formatted Table
Lecture Hours : (L) per week	Nanoscience Ar Tutorial Hours : (T) per week	d Nanotechnology Lab practice Hours : (P) per week	Total: (L+T+F Hours per wee		
Course Category:	Year & Semester :	Admission Year:			
Pre requisite:	•	e with concepts of I Nanotechnology			
Links to other courses					
Learning Objectives:	The main objec	tives of this course are to:			
		indamental concepts of nanoscie lge on size dependent various pl			
Expected Course Outco					
On the successful comple 1 To understand the f					Formatted: Centered
2 To apply the basic of			Formatted Table		
understand the adva			Formatted: Centered		
3 To influence of size materials.	and morphology	and other factors on various pro-	operties of	4	Formatted: Centered
		nd understanding on real time a	pplications		Formatted: Centered
Unit:1		DAMENTALS	18 hours	itions and	Formatted Table
Classifications based on d	limension : Zero,	perspectives and Scientific revo One, Two And Three - Clusters, e model: Grain and Grain bound	Quantum dots, N		
Unit:2 BASIC (CONCEPTS		18 hours		Formatted Table
-		Physical - Chemical and Mecha			
	no in Nature: Ge	tallites - Nanocomposites: Meta ecko Effect, Lotus leaf effect, S es and Dichroism.			
Unit:3	-	JE PROPERTIES		18 hours	Formatted Table
		of grain size and morphology			
		copic solids: Optical – Surface netism, Thermal – Melting point		uice, Daliû	

Unit	:4	ADVANCED NANOSTRUCTURED MATERIALS	18 hours	Formatted Table
	-	urbon: Graphene, CNT, C-dots, Fullerenes – Inorganic: Organic hybrid		
		shells - Nanostructures of Zinc Oxide: tetrapods, rings, springs, belt, 1	ods, wires -	
Addi	tive Manuf	facturing of 3D Nanoarchitected Metals – Nanorobots		
Unit	:5	ROAD MAP	18 hours	Formatted Table
		of electronic materials and devices – Lithography techniques		
– bat	ch fabricat	ion and circuit integration – MEMS and NEMS – Current and future of	challenges	
		TOTAL LECTURE HOURS	90 hours	Formatted Table
Text	Book(s)			
1	Solid Sta	ate Physics, S.O. Pillai, 4th Ed, New Age International Publishers (200	01).	
2	Introduc	tion To Solid-State Physics, C. Kittel, Wiley (1986).		
3	Magneti	sm: Principles and Applications, D. Craik, Wiley (1995).		
4	Springer	Handbook of Nanotechnology, Edited by Bharat Bhushan, Springer (2006)	
Refe	rence Book	c(s)		
1.		The Essentials: Understanding Nanoscience and Nanotechnology, T. J	Pradeep,	
2.		y Hill (2017) a Materiala - Fundamentala And Analiastiana hu Niasla A. Snaldin, C	amhridae	
2.	-	c Materials : Fundamentals And Applications by Nicola A. Spaldin, C ty Press, 2nd Edition, (2018)	anonuge	
	Universi	(2010)		
Relat	ed Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.]		
1	NPTEL:	Introduction to Nanomaterials		
	https://n	ptel.ac.in/courses/118/104/118104008/		
2		Nanostructuresd Materials		
1		ptel.ac.in/courses/118/102/118102003/		

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
Strong - 3, Medium – 2,	CO1	3	3	3	2	2	2	2	3	3	3
Low - 1	CO2	3	2	2	3	3	2	3	3	2	2
Mapping	CO3	3	2	2	3	3	3	3	2	2	2
with Programme	CO4	3	3	3	2	2	2	3	3	2	3
Specific Outcomes	CO5	3	2	2	3	2	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CU/P30	rsui	r502	r303	r504	r505

CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium - 2, Low - 1

SEMESTER-II

CORE-V

Course Code:		Preparations of Nanomaterials	L	Т	Р	С
Core/Elective/	Supportive	Core	4	0	0	4
Pre-requisite		Basic knowledge with wet chemistry				
		and materials				
Course Object	tives:					
The main objec	tives of this co	ourse are to:				
	preparation pro	ocedures also the various factors that affect	ets the siz	e andmo	orpholog	gy of
crystallites.						
To gain knowle	dge on curren	t status, future trends and scope for resear	ch.			
Expected Cou						
	-	of the course, student will be able to:				
		ntal concepts in materials preparation wit	h various			
Morpholo						
2 To apply	the gained sub	ject knowledge towards understanding th	e mechan	isms		
		nical and mechanical routes.				
		and the role of preparation method toward	ds grain v	vith		
		desired morphology.				
-	-	owledge and understanding on effect of g	rain			
morpholo		ds for technological advancements				
Unit:1		ICS IN MATERIALS PREPARATION		18 hou		
		e and Amorphous solids – Alloys – comp				
		y volume ratio – Temperature effects – G nsional Classifications.	rain boun	dary seg	gregatio	n and
pinning – Aggi	egation- Dime	lisional Classifications.				
Unit:2		PHYSICAL ROUTES		18 hou	rs	
	ll mill - Inert o	PHYSICAL ROUTES	oxidation	18 hou		ering
High energy ba		gas condensation Role of inert gases - Post		n proces	s –Sputt	
High energy ba	lsed laser dep	gas condensation Role of inert gases - Post osition – Rapid solidification – Arc disc	harge me	n proces	s –Sputt	
High energy ba	lsed laser dep	gas condensation Role of inert gases - Post	harge me	n proces	s –Sputt	
High energy ba processes - Pul nanostructures	lsed laser dep	gas condensation Role of inert gases - Post osition – Rapid solidification – Arc disc	harge me	n proces	s –Sputt abricati	-
High energy ba processes - Pul nanostructures Unit:3	lsed laser depe and microfabri	gas condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS	harge me aphy.	thod- F	s –Sputt Pabricativ	on of
High energy ba processes - Pul nanostructures Unit:3 Polyol route – G	lsed laser depo and microfabri	as condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS pitation – Sol-Gel process– Chemical pro	charge me aphy. ecipitation	thod- F 18 hou Norm:	s –Sputt abricati rs al and R	on of
High energy ba processes - Pul nanostructures Unit:3 Polyol route – G reactions- Role	lsed laser depo and microfabri Colloidal preci e of surfactan	gas condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS	charge me aphy. cipitation ydrothern	18 hou 18 hou 18 hou 19 Norm 10 - S	s –Sputt abricati rs al and R alvother	on of
Processes - Pul nanostructures Unit:3 Polyol route – O reactions- Role	lsed laser depo and microfabri Colloidal preci e of surfactan – Microbial roo	as condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogr CHEMICAL METHODS pitation – Sol-Gel process– Chemical pre t – Hydrolysis: Reaction kinetics – H utes – Template route: DC and Pulsed ele	charge me aphy. cipitation ydrothern	18 hou 18 hou 18 hou 19 Norm 10 - S	s –Sputt abricati rs al and R alvother	on of
High energy ba processes - Pul nanostructures Unit:3 Polyol route – (reactions- Role Sonochemical -	lsed laser depo and microfabri Colloidal preci e of surfactan – Microbial roo	as condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogr CHEMICAL METHODS pitation – Sol-Gel process– Chemical pre t – Hydrolysis: Reaction kinetics – H utes – Template route: DC and Pulsed ele	charge me aphy. cipitation ydrothern	18 hou 18 hou 18 hou 19 Norm 10 - S	s –Sputt abricati rs al and R alvother	on of
High energy ba processes - Pul nanostructures Unit:3 Polyol route – (reactions- Role Sonochemical - deposition – Co Unit:4	lsed laser depo and microfabri Colloidal preci e of surfactan – Microbial rou pmbustion rout	gas condensation Role of inert gases - Post position – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS pitation – Sol-Gel process– Chemical pret t – Hydrolysis: Reaction kinetics – H utes – Template route: DC and Pulsed ele e. SPECIALIZED TECHNIQUES	charge me aphy. ecipitation ydrothern ectrodepos	18 hou 18 hou 18 hou 18 hou 18 hou	s –Sputt abricati rs al and R alvother d Electr	on of Revers rmal roless
High energy ba processes - Pul nanostructures Unit:3 Polyol route - O reactions- Role Sonochemical - deposition - Co Unit:4 Electrophoretic	lsed laser depo and microfabri Colloidal preci e of surfactan – Microbial roi pombustion rout	gas condensation Role of inert gases - Post position – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS pitation – Sol-Gel process– Chemical pre t – Hydrolysis: Reaction kinetics – H utes – Template route: DC and Pulsed ele e. SPECIALIZED TECHNIQUES Chemical Vapour deposition: Wet and D	charge me aphy. ecipitation ydrotherm cctrodepos	18 hou 18 hou 18 hou Norm 11 - S 18 hou on proc	s –Sputt abricati rs al and R alvother d Electr rs ess –Di	on of evers rmal roless
High energy ba processes - Pul nanostructures Unit:3 Polyol route - O reactions- Role Sonochemical - deposition - Co Unit:4 Electrophoretic	lsed laser depa and microfabri Colloidal preci e of surfactan – Microbial roi pmbustion rout c deposition – G rocess – Succe	as condensation Role of inert gases - Post osition – Rapid solidification – Arc disc ication using wet and dry etching-Lithogra CHEMICAL METHODS pitation – Sol-Gel process– Chemical pre t – Hydrolysis: Reaction kinetics – H utes – Template route: DC and Pulsed ele e. SPECIALIZED TECHNIQUES Chemical Vapour deposition: Wet and D essive ionic layer adsorption and reaction	charge me aphy. ecipitation ydrotherm cctrodepos	18 hou 18 hou 18 hou Norm 11 - S 18 hou on proc	s –Sputt abricati rs al and R alvother d Electr rs ess –Di	on of evers rmal roless

U nit:	5 IM	PORTANCE OF MORPHOLOGY	18 hours
Cryst	allites With Various Mo	rphologies – Polymorphs – Surface A	spect Ratio – Grain size
listri	outions – Surface area – C	urrent Status and Forecast for The Future	Trends
		TOTAL LECTURE HOURS	90 hours
Fext	Book(s)		
1	Springer Handbook of N	anotechnology- Ed. by B. Bhushan, Sprin	nger-Verlag (2004)
2	Vacuum Technology, A	Roth, North- Holland Pub., 2 nd Edition (1	982)
3		naterials: Synthesis, Properties and Applic (Eds), Wiley-VCH Verlag (2004)	cations, C.N.R. Rao, A.
4	B.S. Murty and S. Rang	anathan, International Materials Reviews	(1998) Vol. 43(3), 101
Refei	rence Book(s)		
1.	Nanoparticles And Nano	ostructured Films Preparation, Characteriz	ation And Applications,
	Janos H. Fendler (Ed) W	/iley (1998)	
2.	H. Gleiter, Progress In M	Materials Science, Vol.33, p.223 (1989)	
Relat	ed Online Contents [MO	OC, SWAYAM, NPTEL, Websites etc.	.]
1	NPTEL: Nanotechnolog	y, Science and Applications	
	https://nptel.ac.in/course	es/113/106/113106093/	
2	YOUTUBE: Introduction	n to Nanomaterials	
	https://www.youtube.co	m/watch?v=qUEbxTkPIWI	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium - 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
CO5	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

Strong - 3, Medium - 2, Low - 1

Formatted: Centered
Formatted: Centered
Formatted: Centered
Formatted: Centered

Formatted: Centered

SEMESTER-II

CORE-VI

Course Code		Characterization	Credits				
	-	Nanomaterials –I					
Lecture Hours : (L)		Lab practice Hours : (P) per					
per week	Hours :	week	Hours per week				
	(T) per week						
Course Category:	Year &	Admission Year:					
	Semester :						
Pre requisite:	Basic knowled	ge with concepts of physics.					
Links to other course	es						
Learning Objectives	: 1. Unders	tand the properties of the ligh	t and interaction with				
	matter						
	2. Disting	uish the nanomaterials and bu	ulk materials using X-ray.				
	3. Explore	e the chemistry of the materia	ls				
	Understanding	the mechanical properties of	the nanomaterials				
	Study the mag	netic and electrical properties					
Course Outcomes	1. Unders	tanding the purpose of charac	terization for the given				
	materials		-				
	2. Explore	e the properties of nanomater	ials for the particular				
	applications						
	3. Understanding the principles of characterization technique						
		he properties of nanomateria					
	5. Understanding the instrumentation involved in the						
	characterization						
		tanding the suitability of the	characterization for the				
		particularmaterial.					
	*	7. Learn the interpretation of the results obtained from the					
	characterizatio						
	Units						
I I	Init I Introduction	on to spectroscopy					
	Basic principles and applications of UV-Vis-NIR, FTIR, FT-Ram						
		e, NMR, ESR and Light Scat					
ľ	notorunnineseene	e, mint, Lor and Light Sea	and memous.				
II U	Jnit II X – ray te	chniques					
		liffraction –Quantitative d	etermination of phases				
		single crystal diffraction tec					
		e parameters - structure a					
	particle size analysis using Scherer formula- Particle Size Analyze Ellipsometry- thickness measurements						
	inpsometry- thic	kness measurements					

ш	Unit III Electron Spectroscopy X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, X- Ray Characterization of Nanomaterials - EELS– EDAX and WDA analysis - Applications to nanomaterials characterization
IV	Unit IV Mechanical properties measurement Nanoindentation principles- elastic and plastic deformation -mechanical properties of materials in small dimensions- models for interpretation of Nanoindentation load-displacement curves- Nanoindentation data analysis methods-Hardness testing of thin films and coatings- MD simulation of nanoindentation.
V	Unit IV Magnetic and electrical properties measurement Vibration Sample Magnetometer, Impedance Spectroscopy- PPMS, - Measurement of Magnetic and electrical properties of nanomaterials.
Reading List(Print	
and Online)	dl.iranchembook.ir > ebook > organic-chemistry-2753
una ()()	An Introduction to Surface Analysis by XPS and AES Wiley
	onlinelibrary.wiley.com > doi > book
	EPMA - electron probe microanalysis
	www.ems.psu.edu > harbin > EPMA.ppt.pdf
	Physical Property Measurement System
	www.mrl.ucsb.edu > instruments > hcapPPMS
	www.min.ucso.edu / instruments / iteapi i iwis
Recommended	References:
Texts	Elements of X-ray Diffraction B. D. Cullity, Addison Wesley, 1977
	2. Transmission Electron Microscopy: A Textbook for
	MaterialsScience
	David B Williams, C Barry Carter, (1996) Plenum Press, New York
	Impedance Spectroscopy: Theory, Experiment, and Applications,
	E. Barsoukov and J. Ross Macdonald (Editors) (2000) John Wiley & Sons
	(P)Ltd.
	Fundamentals of Fourier Transform Infrared Spectroscopy,
	Brian C Smith, (1995) CRC Press
	Nanoindentation, By Anthony C Fischercripps, Anthony C., Springer
	science and Bussiness media publications, 2011
	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, Elsevier, 2009.

[Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
ĺ	CO1	3	3	3	2	2	2	2	3	3	3
ĺ	CO2	3	2	2	3	3	2	3	3	2	2
ĺ	CO3	3	2	2	3	3	3	3	2	2	2
ľ	CO4	3	3	3	2	2	2	3	3	2	3
3	CO5	3	2	2	3	2	3	2	2	3	3

S trong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER-II

Elective course-2

Course Code	Course Name:	Nanobiotechnology	Credits 3
Lecture Hours : (L) per week		Lab practice Hours : (P) per week	Total: (L+T+P) Hours per week
Course Category:	Year & Semester :	Admission Year:	
Pre requisite:	biomaterials, B	hould have the fundamental l iological Cell, functions of c nd its relation to cell functio	ell, biochemistry of
Links to other course	es		
) U E N E C aj	Acquire the kno Explaining the Understanding and different ty Gaining the kno Evaluation and production. In the successful of Understanding the etween Nano mat Evaluate and critic Iano materials application	tives of this course are to: by by the cell biology a role of cell organelles, metab the about the morphology, st pes of nucleic acid. by by by the different of completion of the different of completion of the course, stu basic of Biology and Nano s erials and bulk materials ally review the theoretical an obtain. bts in Nano biotechnology and outline the nanotechnology	olism, and bioenergetics. ructure, of DNA, RNA d fatty acid metabolism. enzyme role energy dent will be able to cience anddifferentiate d practical aspectsof

	40	
Course Dbjectives	1. Understand the basics of bioinspired strategies for the fabrication of Implants in Nanobiotechnology-	
	2. Learn the importance of bioactive nanomaterials in bone graftingand tissue engineering	
	3. Recognize the significance of Biomolecules in the fabrication of Nanostructures –	
	4. Study the applications of Polymer nanofibers in Tissue engineering and its merits and demerits-	
	5. Know the importance of vesicles and lipids in sensor and also its application in drug delivery –	
	6. Understand the overall basics of biomolecules and its applicationin Nano biotechnology	
J nits <mark>Total -48</mark>	h rs	
Ι	Bio-mineralised Inorganic Nanomaterials – Nanostructures and	Formatted: Centered
9h	Dynamics of Biocompatible surfactant monolayers and bilayers – Bio- interface, Bio- conjugation, Bio-matrix based on bioinspired phospholipids polymers.	
II	Self-assembly of ionic-complementary peptides and their applications in	Formatted: Centered
10h	nano-biotechnology –from nanocluster assays to optical biochips for nano-biotechnology –bioactive nanomaterials in bone grafting and tissue	
	engineering- inorganic /polymer nano composites for dental restoration and bone replacement applications.	
III	DNA based artificial nanostructures: fabrication, properties and	Formatted: Centered
9h	applications – Nucleic acid engineered nanomaterials and their applications- RNA, DNA	
IV	Protein patterning for applications in biomaterials and biodevices.	Formatted: Centered
10h	Polymers nanofibers and their applications in bioengineering – functional polymers for bone tissue engineering applications – applications of nanotechnology in tissue engineering	
V	Vesicles and liposomes in sensor technology –Self-assembling	Formatted: Centered
10h	nanostructured injectable polymeric gels for drug delivery - Engineering surface erodable polyanhydrides with tailored microstructure for controlled drug and protein delivery	

Reading List(Print https://onlinelibrary.wiley.com											
and Online)	http://www.routledgehandbooks.co										
mmendedTexts	Challa S.S.R. Kumar (Ed) Biological and pharmaceutical nanomaterials : Wiley – VCH Verlag GmbH & Co, KgaA. Ninmeyer C.M, Mirkin C.A (Eds) 2005. Nano biotechnology										
	H.S. Nalwa (Ed) Handbook of Nanostructured Bioaterials and their applications in Nano biotechnology, American Scientific Publishers.2005										

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
trong - 3,	CO1	3	3	2	3	3	3	2	3	3	3
Medium – 2, Low - 1	CO2	3	3	2	3	3	3	2	3	2	2
	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
Mapping with Programme	CO5	3	3	2	3	3	3	2	2	3	3

Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER-II

Elective Course-3

Course Code	Course Name: NANOTOXIC	INTRODUCTION TO	Credits							
Lecture Hours : (L) per week		Lab practice Hours : (P) per week	Total: (L+T+P) Hours per week							
Course Category:	Year & Semester :	Admission Year:								
Pre requisite:	The Students who are taking this course should know about the fundamentals of biological cell and tissues and also the basic knowledge in materials.									
Links to other course	s									
Uj di of Str to Ci	Understanding differentiate be Evaluate aspects of Nand Comprehending structures usin toxicology Critically assess Demonstrate t significance in n the successful of nderstanding the fferentiate betwe Evaluate ar Nano materials omprehending to cuctures using xicology	completion of the course, stu basic of Toxoicology and Na en nanomaterials and bulk m nd critically review the theore	k materials theoretical and practical lted from the nanoscale cical principles in Nano e for nanotoxicology Nano materials and its dent will be able to ano science and naterials etical and practicalaspects ed from the nanoscale cal principles in Nano r nanotoxicology							

	43	
Course	Learn the types of hazard and its application-	
Objectives	Understand the importance of nanotoxicant and its effect inhealth -	
	Study the basics of biomolecules and its application innanotoxicology -	
	Comprehend the effect of Nanotoxicology –	
	Understand the response of nanomaterials in Nano engineeringdevices and evaluate its significance -	
U <mark>nits Total -48hr:</mark>	ç	
Ι	AREAS OF TOXICOLOGY	
10h	Introduction- definition of terms- areas of Toxicology- Toxicant- Types of Toxic hazardous materials- Physical Hazard, Chemical hazard, Biological Hazard, Toxic metabolites, Assessment of Risk- Risk assessment of Nanoparticles and Human Health.	
II	NANOMATERIALS	Formatted: Centered
10h	Nanoparticles in the Environment- Nanomaterials in the atmosphere, Particle Characterization, Types of Transport, Routes of Exposure, Deposition mechanism, Potential mechanism of Nanosize particle toxicity, Passage through biological Membranes, toxic kinetics.	
III \$ h	NANOPOLLUTION Nanomaterial's in environment, Source of pollution, Transport through environment.	Formatted: Centered
IV	NANOMATERIAL EXPOSURE MEASUREMENT Nano sized materials exposure to human, Measurement methods, Threshold values-permissible limits.	Formatted: Centered
V	PORTALS OF NANOMATERIALS ENTRY	Formatted: Centered
l 0h	Types of portals entry, Target tissue, Routes of entry of nano pollutants, Absorption, Distribution mechanism on target tissue.	
Reading List (Print and Online)	https://www.intechopen.com/books/toxicology-new-aspects	
mmendedTexts	Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, <i>CRC Press, 2008</i> Nanotechnology: Environmental Health and Safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010 Principles and Methods of Toxicology. Edited by A.W. Hayes. Taylor and Francis, 2008.	

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	3	3	3	2	2	2	2	3	3	Formatted: Centered
	CO2	3	2	2	3	3	2	3	3	2	2 Formatted: Centered
	CO3	3	2	2	3	3	3	3	2	2	2 Formatted: Centered
	CO4	3	3	3	2	2	2	3	3	2	Formatted: Centered
s	CO5	3	2	2	3	2	3	2	2	3	Formatted: Centered

S trong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5]	
C01	3	2	3	3	3	•(Formatted: Centered
CO2	3	2	3	3	3	•(Formatted: Centered
C03	3	2	3	3	3	•(Formatted: Centered
CO4	3	2	3	3	3	•(Formatted: Centered
C05	3	2	3	3	3	•(Formatted: Centered
Weightage	15	10	15	15	15	1	
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3		

Strong - 3, Medium - 2, Low - 1

SEMESTER-III : Core-VII

Course Code	Course Name	Credits	
	AND NANO		
Lecture Hours : (L) per	Tutorial	Lab practice Hours : (P)	Total: (L+T+P)
week	Hours :	per week	Hours per week
	(T) per week		_
Course Category:	Year &	Admission Year:	
	Semester :		
Pre requisite:	The Student s	should have the fundamenta	al knowledge in
	biomaterials, I	Biological Cell, functions o	f cell, biochemistry of
	biomolecules	and its relation to cell funct	tion
Links to other courses			
Learning Objectives:	The main obje	ectives of this course are to:	
	Learning Nev	v Perspective in Nanoelectro	ones
	Explaining the	e size and shape enabled pro	perties of nanomaterials
	Understanding	g the functioning of various	electronic devices.
	Understanding	g and assessment of electron	ic properties for sensor

Formatted Table

	45	
	development and application. Compare and evaluate the nano enabled electronic properties for development of smart devices. Conceptualization of nanoscale electronic phenomena for societal applications	
Units	applications	
I	Basice Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors	Formatted: Centered
II	SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist-or - Single-Electron Transistors;; Nanorobotics And Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.	Formatted: Centered
III	ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots And Their Applications.	Formatted: Centered
IV	NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-	Formatted: Centered
V Reading List	NANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors -Pressure Sensors, Gas And Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.	
(Print and Online)	 Nano Electronics And Information Technology, W. Ranier, Wiley (2003). Nano Systems, K.E. Drexler, Wiley (1992). 	
Recommended Texts	Introduction To Molecular Electronics, M.C. Pettey The Physics And Chemistry Of Nanosolids, Frank J. Owens And Charles P. Poole Jr., Wiley Interscience (2006) 3. Nanotechnology Enabled Sensors, Kouroush Kalantar – Zadeh, Benjamin Fry, Springer (2007)	Formatted: Indent: First line: 0"

	Cos S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
trong - 3,	CO1	3	3	2	3	3	3	2	3	3	3
Medium – 2, Low - 1	CO2	3	3	2	3	3	3	2	3	2	2
	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
Mapping with Programme	CO5	3	3	2	3	3	3	2	2	3	3

Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium - 2, Low - 1

	Course Name Nanoscience Practical II	
Course Code		Credits

Lecture Hours : Tutorial Hours : Lab practice Hours : (P) per To (L) per week (T) per week week He Course Category: Year & Admission Year: He									
(ourse (otogory) Voor X = Admission Voor	ours per week								
Semester :									
Pre requisite: Fundamental and theoretical knowledge on prepa	aration and								
characterization techniques									
Links to other									
courses									
Learning The main objectives of this course are to:									
Objectives: Acquire practical skills in the use of instruments,									
methods to fabricate nano materials and their cha									
Apply the practical knowledge in understanding	the structural of the								
materials	1 1 1 22								
Provides opportunities to synthesize the material	ls using different								
approaches									
	dling lab								
equipments, characterizing the acquired da	ata and analyze using								
appropriate tool									
Understand the role of environmental	conditions on the								
preparation of nano-materials	preparation of nano-materials								
Practical-II Synthesis and Characterization of Biomolecule									
Synthesis of Silver Nanoparticles By Chemical	Reduction Method And								
Their UV-VIS Absorption Studies.									
Synthesis of Gold Nanoparticles By Chemical I	Reduction Method And								
Their UV-VIS Absorption Studies.									
Synthesis of Silver Nanoparticles By Polyol Meth	hod And Their UV-VIS								
Absorption Studies.									
Synthesis of Gold Nanoparticles By Polyol Metho	od And Their UV-VIS								
Absorption Studies.									
Study of chemical kinetics using UV-Vis spectros	Study of chemical kinetics using UV-Vis spectroscopy.								
Reading List(Print 1. Fundamentals Of Analytical Chemistry									
and Online) Holler, Saunders College, Publishing, VII Ed, (19)	96).								
2. Text Book Of Quantitative Inorganic Ana									
Elbs, IVEd., (1985).									
Physical Chemistry A Alberty And R I Silbey	Physical Chemistry, .A. Alberty And R.J. Silbey								
injoical chemistry, in inderty find R.J. Billey	1. Inorganic Chemistry : Principles Of Structure And Reactivity –								
	ture i ma recucit (ity								
	tare Thia Reactivity								
mmendedTexts 1. Inorganic Chemistry : Principles Of Struct									
mmendedTexts 1. Inorganic Chemistry : Principles Of Struct J.E.Huheey, E.A. Keiter and R.L. Keiter, IVEd.									
mmendedTexts 1. Inorganic Chemistry : Principles Of Struct J.E.Huheey, E.A. Keiter and R.L. Keiter, IVEd. Physical Chemistry, Atkins									

	Cos S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
trong - 3,	CO1	3	3	2	3	3	3	2	3	3	3
Medium – 2, Low - 1	CO2	3	3	2	3	3	3	2	3	2	2
	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
Mapping with Programme	CO5	3	3	2	3	3	3	2	2	3	3

Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER III Core-VIII

49

PROPERTIES OF NANOMATERIALS

ЕX	pected Course Outcomes:					
On	the successful completion of the course, student will be able to:					
1 Understand fundamental concepts and influence of grain size and morphology on properties of nanomaterials						
2	Apply the gained subject knowledge towards understanding the mechanisms involved in functional materials					
3	Evaluate and understand the nanomaterials superior properties by comparing with bulk materials					
4	Analyze acquired knowledge and understanding on effect various processing parameters and its needs for technological advancements					

Formatted Table

Unit:1

ELECTRONIC PROPERTIES 18 hours

Role of Size and Shape in Electronic Properties, Band Structures, Brillouin Zones, Channel Materials - Depletion region - Confinement and Transport In Nanostructure Types of conduction - Diffusive and Ballistic - Ballistic Transport - Coulomb Blockade.

Unit:2 MAGNETIC PROPERTIES

18 hours

Size dependence - Surface magnetism - Magnetic anisotropy and domains in small particles - Magnetization and nanostructures - Substrate effects, Oscillatory exchange coupling, Spin polarized tunneling - Magnetism in reduced dimensional systems: zero, one and two – Magnetoresistance: OMR, AMR, GMR, TMR, BMR and CMR.

Unit:3

DIELECTRIC PROPERTIES 18 hours

Carrier transport through grain boundaries –Impedance spectroscopy – Grain boundary Schottky potential barrier height (Φ_b) model: effect of bias and temperature – Voltage tunable capacitors - Dielectric breakdown - Nanodielectrics: future insulating materials - Ferroelectrics and Multiferroics

Unit:4 OPTICAL PROPERTIES

18 hours

Band Gap Engineering - Morphology and size effects of nanocrystalline semiconductors and metals – Effective mass approximation theory – Nanoshells - Crystallite size distribution estimation from absorbance – Fluorescence: Stokes and Anti Stokes Shifts – Up and Down conversion.

Unit:5

MECHANICAL PROPERTIES 18 hours

Micro Hardness, Nanoindentation, Fracture Toughness, Superplasticity, Plastic Nature of Nanoceramics, Nanomembrances - Inter Connected Pores - Bulk Nanostructured Materials - Influence of Porosity. Hall-Petch Relation, Microstructure – Dislocation Interactions At Low And High Temperatures; Effects of Diffusion on Strength And Flow of Materials; Methods of Enhancing or Retarding Diffusion; Grain Boundary Sliding and Migration.

U	nit:6	CONTEMPORARY ISSUES	2 hours
E	xpert Lectures,	Online Seminars – Webinars	

TOTAL LECTURE HOURS

I

I

90 hours

	51			
Tevt	Book(s)	7		
1	Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer-Verlag (2004)	-	Formatted Table	
2	Magnetic Materials : Fundamentals And Applications by Nicola A. Spaldin, Cambridge		Tormatted Table)
Ē	University Press, 2nd Edition, (2018)			
3	The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C.N.R. Rao, A. Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)			
4	Dan Guo et al, Journal of Physics D: Applied Physics (2018) Vol. 47, 013001			
Refe	rence Book(s)	-		
1.	Impedance Spectroscopy: Theory, Experiment, and Applications, E Barsoukov and JRoss Macdonald Wiley (2018)		Formatted Table	
2.	H. Gleiter, Progress In Materials Science, Vol.33, p.223 (1989)			
Rela	ted Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	_		
1	NPTEL: Defect Structure & Mechanical Behaviour of Nanomaterials	•	Formatted Table	
	https://www.youtube.com/watch?v=bwZW96c743A			
2	YOUTUBE: Introduction to Nanomaterials	1		
	https://www.youtube.com/watch?v=qUEbxTkPIWI			

	Iviap	iping wi	ui riogi	annne	Outcom	es					
Strong - 3, Medium – 2,	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 Po	O10
Low - 1	CO1	3	3	3	2	2	2	2	3	3	Formatted: Centered
	CO2	3	2	2	3	3	2	3	3	2	Formatted: Centered
Mapping	CO3	3	2	2	3	3	3	3	2	2	Formatted: Centered
with	CO4	3	3	3	2	2	2	3	3	2	Formatted: Centered
Programme	CO5	3	2	2	3	2	3	2	2	3	Formatted: Centered
a											

Specific

Outcomes									
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5				
C01	3	2	3	3	3				
CO2	3	2	3	3	3				
CO3	3	2	3	3	3				
CO4	3	2	3	3	3				
CO5	3	2	3	3	3				
Weightage	15	10	15	15	15				
Weighted percentage (rounded of)	3	2	3	3	3				
Course Contribution to POs									

Formatted: Centered Formatted: Centered Formatted: Centered Formatted: Centered Formatted: Centered

Strong - 3, Medium - 2, Low - 1

SEMESTER-III Core-IX

Course Code	Course Name: Cha of Nanomaterials -	aracterization Techniques	Credits	
Lecture Hours : (Lab practice Hours : (P) per	Total: (L+T+P)	
L) per week	(T) per week	week	Hours per week	
Course Category:	Year & Semester :			
Pre requisite:		have the fundamental know		
		ctions of cell, biochemistry of	of biomolecules and its	
	relation to cell func	tion		
Links to other courses				
Learning	The main objective	s of this course are to:		
Objectives:		naterials to understand the mo	rnhology	
objectives.	Understand nanostr		лрпоюду	
		rostructure of materials		
		behavior of the nanomaterials	,	
	Studying bio-mater			
Course Outcome	Understanding the			
Course Outcome	Explore the propert			
	Understanding the			
	Study the propertie			
	5. Understandi	n		
	technique.			
	6. Understandi			
	particularmaterial.			
	7. Learn the in			
	characterization			
	-	Units		
Ι	Unit I Morpholo		•	Formatted: Centered
	Principles, Overv			
	Experimental techr			
		nsmission Electron Microse	copy (TEM) – HRTE	LM-
	application for ana	ysis of Nanomaterials.		
II	Unit II Materials		4	Formatted: Centered
		ng Microscopy(STM), Atomic		
		ct- Tapping- conducting m		
	Optical Microscop	rce		
	Microscopes MFM analysis of nanoma)- Chemical Force Microscop		for

III	Unit III Microscopic characterization
	Optical microscopes- Use of polarized light microscopy – Phase contrast
	microscopy – Interference Microscopy – hot stage microscopy - surface
	morphology – Etch pit density and hardness measurements- Confocal
	Microsocopes.
IV	Unit IV Thermal analysis
	Principle and Instrumentation of Thermogravimetry; Differential Thermal
	Analysis and Differential scanning calorimetry-Importance of thermal
	analysis for nanostructures.
V	Unit V Bio-materials characterization
	New Advances and challenges in biological and biomedical materials
	characterizations- Dynamic light scattering spectroscopy. Confocal
	Microscopes - Confocal Raman – Application in Nanobiotechnology.
	Fluorescence Microscope
	nt <u>www.technologynetworks.com</u> > sem-vs-tem-331262
and Online)	onlinelibrary.wiley.com > abs > 9780470022184.hmm319
	1. <u>www.umassmed.edu > maps > confocal-explanation</u>
mmendedTexts	References:
	J.Goldstein, D. E. Newbury, D.C. Joy, and C.E. Lym, "ScanningElectron
	Microscopy and X-ray Microanalysis", 2003.
	S.L. Flegler, J.W. Heckman and K.L. Klomparens, "Scanning and
	Transmission Electron Microscopy: An Introduction",
	WH Freeman & Co, 1993.
	P.J.Goodhew, J.Humphreys, R.Beanland, "Electron Microscopy and
	Analysis",
	R.Haynes, D.P.Woodruff and T.A.Talchar, "Optical Microscopy of
	Materials", Cambridge University press, 1986.
	R.M.Rose, L.A.Shepard and J.Wulff, "The Structure and Properties of
	Materials", Wiley Eastern Ltd,

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	3	3	3	2	2	2	2	3	3	3 Formatted: Centered
Strong - 3,	CO2	3	2	2	3	3	2	3	3	2	2 Formatted: Centered
Medium – 2, Low -	CO3	3	2	2	3	3	3	3	2	2	2 Formatted: Centered
1	CO4	3	3	3	2	2	2	3	3	2	Formatted: Centered
	CO5	3	2	2	3	2	3	2	2	3	Formatted: Centered

53

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3 ·
CO2	3	2	3	3	3 .
CO3	3	2	3	3	3 ·
CO4	3	2	3	3	3 .
CO5	3	2	3	3	3 .
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Formatted: Centered
Formatted: Centered
Formatted: Centered
Formatted: Centered
Formatted: Centered

Strong - 3, Medium - 2, Low - 1

SEMESTER-III

Elective course-3

Course Code	Course Name:	Biomaterials and	Credits				
	Nanobiotechno	logy for Tissue Engineering					
Lecture Hours : (L)	Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)				
per week	Hours :	week	Hours per week				
	(T) per week		_				
Course Category:	Year &	Admission Year:					
	Semester :						
Pre requisite:	The Students	who are taking this course	should know about the				
	fundaments of	biomaterials, basics in biolo	gical cell, tissues and the				
	metabolism of o	carbohydrates and Proteins a	nd also able to understand				
	the mechanism	of cellular function					
Links to other courses							
Learning Objectives:	The main object	tives of this course are to:					
	Learn the types	of biomaterials, biomaterial u	sed in implant and its				
	application in orthopedics and dental-						
	~ ~	importance of biomaterials us	ed for cartilage and				
		and its mode of failure-					

Elective	course-3
Liccure	course 5

Course Outco	mes On the successful completion of the course, student will be able to	
	Understanding the basic of Biology and Nano science and differentiate between nanomaterials and bulk materials	
	Evaluate and critically review the theoretical and practical aspects of Nano materials application	
	Comprehending the novel function resulted from the nanoscale structures using scientific and technological principles in Nano biotechnology	
	Critically assess and outline the nanotechnology for all areas of application	
	Demonstrate the new properties of Nano materials for next generation needs	
	Study the basics of tissue engineering and its application in vitalorgans and mode of bladder implant failure-	
	Comprehend the biological response to nanomaterials –Understand the response of proteins in tissue regeneration and evaluate the significance of host defense mechanism-	
J nits Total -4	8hrs	
Jnits Total-4 I	MATERIALS FOR IMPLANT	
	MATERIALS FOR IMPLANT Orthopedic implants – material s used – modes of failure – wear debris, stress and strain imbalances at the tissue implant interface. Dental: Dental materials used – modes of dental implant failure – debris, stress and strain	
I	MATERIALS FOR IMPLANT Orthopedic implants – material s used – modes of failure – wear debris, stress and strain imbalances at the tissue implant interface. Dental: Dental	Formatted: Centered
I 10h II	MATERIALS FOR IMPLANT Orthopedic implants – material s used – modes of failure – wear debris, stress and strain imbalances at the tissue implant interface. Dental: Dental materials used – modes of dental implant failure – debris, stress and strain imbalances at the tissue implant interface	Formatted: Centered
I 10h II	MATERIALS FOR IMPLANT Orthopedic implants – material s used – modes of failure – wear debris, stress and strain imbalances at the tissue implant interface. Dental: Dental materials used – modes of dental implant failure – debris, stress and strain imbalances at the tissue implant interface CARTILAGE IMPLANT Cartilage materials used – modes of cartilage implant failure –wear debris, stress and strain imbalances at the tissue implant failure –wear debris, stress and strain imbalances at the tissue implant failure –wear debris, stress and strain imbalances at the tissue implant failure – wear debris, stress	Formatted: Centered
10h 11 0h	MATERIALS FOR IMPLANT Orthopedic implants – material s used – modes of failure – wear debris, stress and strain imbalances at the tissue implant interface. Dental: Dental materials used – modes of dental implant failure – debris, stress and strain imbalances at the tissue implant interface CARTILAGE IMPLANT Cartilage materials used – modes of cartilage implant failure –wear debris, stress and strain imbalances at the tissue implant interface; Vascular materials used – modes of vascular implant failure – wear debris; stress and strain imbalances at the tissue implant failure – wear debris; stress and strain imbalances at the tissue implant failure – wear debris; stress	

\mathbf{V}	ADVANTAGE OF NANOMATERIALS	Formatted: Centered
10	Advantages of Nanomaterials used as implants - cellular recognition of	f
	Proteins Adsorbed on material surfaces - adhesion - migration	1
	differentiation - Cellular Extra cellular Matrix deposition leading to tissue	
	regeneration – foreign-body response – inflammatory response	
Reading List(Print	https://www.verywellhealth.com/tissue-engineering-4580368	-
and Online)	https://www.liebertpub.com/doi/10.1089/ten.tec.2019.0344	
mmendedTexts	William A. Goddard, Sergey Edward Lyshevski, Donald W. Brenner (Ed))
	Handbook of Nanoscience, Engineering and Technology CRC press 2003	
	Joachim Schummer, Davis Baird (Ed) Nanotechnology Challenges:	
	implications for philosophy, Ethics and society; World scientific; 2006	
	William Sims Bainbridge, Mihail C. Roco (Ed) Societal implication	1
	of Nanosciences and Nanotechnology;Springer;2001	
	Jon J. Kellar (Ed) Functional fillers and nanoscale minerals; new	7
	markets/ new horizonsSME science; 2006	
	Davis Baird, Alfred Nordmann, Joachim Schummer (Eds))
	Discovering the nanoscale; IOP press; 2004	

		a												
trong -	3.	Cos	PO1	PO2	PO3	3	PO4	PO5	PO6	PO7	PO8	PO9	PO1)
Medium	1 – 2, Low	CO1	3	3	2	2	3	3	3	2	3	3	3	
- 1		CO2	3	3	2	2	3	3	3	2	3	2	2	
Mappin	ng with	CO3	3	3	2	2	3	3	3	2	2	2	2	
Program		CO4	3	3	2	2	3	3	3	2	3	2	3	
Specific Outcon		CO5	3	3	2	2	3	3	3	2	2	3	3	
		CO	/PSO		I	P	SO1	PSO2	PSO3	PSC)4	PSO5		
	CO1						3	3	2	2		3		
	CO2						3	3	2	2		3	1	
	CO3						3	3	2	2		3	-	
	CO4						3	3	2	2		3	-	
	CO5					-	3	3	2	2		3	-	
	Weightage	<u>,</u>					15	15	10	10	1	15	-	
	0		L (- (?)		-	-	-	_		-	_	
	Weighted Course Co				DI)		3	3	2	2		3		

Strong - 3, Medium - 2, Low - 1

SEMESTER-III

OPEN ELECTIVE-2 CORE INDUSTRY MODULE

Course Code		- INDUSTRIAL	Credits						
	NANOTECHN								
Lecture Hours : (L)		Lab practice Hours : (P) per	Total: (L+T+P)						
per week	Hours :	week	Hours per week						
	(T) per week								
Course Category:	Year &	Admission Year:							
	Semester :								
Pre requisite:	The Student sh	ould have the fundamental	knowledge in						
•		iological Cell, functions of o							
		nd its relation to cell functio							
Links to other courses									
Learning Objectives:		tives of this course are to:							
	Identification o	f industrially relevant materi	als						
	с · · ·		· 1 · · · · ·						
	Summarize suit	ability of nanomaterials for	industries.						
	Interpretation a	nd employment of nanomate	rials for industrial needs.						
		critical assessment of nanon	naterials for various						
	industrial applie	cation.							
	Review the indu	ustrial development and relevant	vant nanomaterials supply						
	with required fu								
	_								
Course Outcome	1. Underst	anding the role of different r	anomaterials and their						
	importance.								
	1								
	2. Develop	oment of new combination of	f nanomaterial based on						
	theirproperties	for future needs.							
	· · · · · · · · ·								
	Assess the role	of nanomaterial for enhancing	ng the application effect.						
		L	. for an alsian in denoted at						
		ly assess nanomaterial ability	for making industrial						
	levelapplicatior	1.							
	5. Demons	strate the new properties of n	anomaterials for next						
			anomateriais for next						
	generationneed	s.							

		Units	
	I	SEMICONDUCTOR NANOSTRUCTURES AND DEVICES	Formatted: Centered
		Fabrication and Applications of different types of semiconductor Nanostructures- Silicon horizontal and vertical core shell Nanowires- Integrated circuits- Sensors- Electro optical devices. Semiconductor Quantum dots (QDs) – QD LASER- Quantum cascade LASER-QD	
		optical memory-Present and future trends.	
	п	NANOSCALE MAGNETIC MATERIALS Application In Magnetic Storage Devices - Storing And Reading Device - Current Trends Of Spin Based Electronic Devices. Optical Storage Devices: Near Field Optical Recording- Holographic Data Storage- AFMBased Recording Technology.	Formatted: Centered
	III	NANO ELECTRO MECHANICAL SYSTEMS	Formatted: Centered
		Overview- Nano-Electromechanical Systems - Fabrication Process- Choice of Materials, Performance Of Different Structures - Advantages and Disadvantages of Different Approaches. Applications In Sensors, Micro Actuators - Extension To The Nanoscale.	
	IV	INDUSTRIAL APPLICATIONS OF NANOMATERIALS	Formatted: Centered
		Nanoparticles And Micro Organism, Nano-Materials In Bone Substitutesand Dentistry, Food and Cosmetic Applications,	
	V	INDUSTRIAL APPLICATIONS OF NANOMATERIALS	Formatted: Centered
		Textiles, Paints, Catalysis, Drug Delivery and Its Applications, Biochips -Analytical Devices, Biosensors.	Formatted: Centered
Readin	g List(Prin	t 1. Nano Electronics, Parag Diwan and Ashish Bharadwaj, Pentagen	
and	l Online)	 Press(2006) Principles of Superconductive Devices Aad Circuits, C.W. Turner and T. Van Duzer (1981) 3. Principles of Optical Electronics, A. Yariv, Wiley(1984) 	
mmend	ledTexts	 Introduction To Molecular Electronics, M C Petty, M R Bryce, D Bloor(Eds.), Edward Arnold (1995) Current Opinion In Solid State & Materials Science, D.D.C. Bradley, Vol. 1, 789 (1996) Nano Electronics And Information Technology, Rainer Waser, Wiely (2003) 	

01 02	3	3	3	2	2	2	2		2	
Ω^2	2					2	2	3	3	Formatted: Centered
02	3	2	2	3	3	2	3	3	2	2 Formatted: Centered
03	3	2	2	3	3	3	3	2	2	Formatted: Centered
04	3	3	3	2	2	2	3	3	2	Formatted: Centered
O5	3	2	2	3	2	3	2	2	3	Formatted: Centered
	-									

S trong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	2	3	3	3	Formatted: Centered
CO2	3	2	3	3	3	Formatted: Centered
CO3	3	2	3	3	3	Formatted: Centered
CO4	3	2	3	3	3	Formatted: Centered
CO5	3	2	3	3	3	Formatted: Centered
Weightage	15	10	15	15	15	
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3	

Strong - 3, Medium - 2, Low - 1

Course Code	Course Name Na	noscience Practical III	Credits					
Lecture Hours : (Lab practice Hours : (P) per	Total: (L+T+P)					
L) per week	(T) per week	week	Hours per week					
Course Category:	Year & Semester :	Admission Year:						
Pre requisite:		Fundamental and theoretical knowledge on preparation and haracterization techniques						
Links to other courses		*						
Learning								
Objectives:	The main objectives of this course are to: Acquire practical skills in the use of instruments, technologies and methods to fabricate nanomaterials and their characterization Apply the practical knowledge in understanding the structural of the materials Provides opportunities to synthesize the materials using different approaches Master the technical skills in handling lab equipments, characterizing the acquired data and analyze using appropriate tool Understand the role of environmental conditions on the preparation of nanomaterials							
Part:1	Characterization of CompoundNanomaterials							
	Characterize Using Synthesis of Ceria XRD And SEM A X-Ray Diffraction Nanoparticles And	Nanoparticles By Sol-Gel I g XRD And SEM Analysis. Nanoparticles And Characten nalysis. Studies Of Synthesised Of Measuring The Crystallite S a Nanoparticles By Co-Precis	erizeUsing Tio2 Size.					
Part:2	Characterisation	of Specific Surface Propert	ies					
	SERS Studies Of Gold and Silver Nanoparticles Synthesis Of Quantum Dots AndPhotoluminescence Studies. Characterization of Carbon dots using UVSpectroscopy							
	Band gap studies of using UV-Vis Spec	of Metal oxide semiconductor ctroscopy	rs					
Reading List(Print and Online)								

mmendedTexts	4. Inorganic Chemistry : Principles Of Structure And Reactivity –
	J.E.Huheey, E.A. Keiter and R.L. Keiter, IVEd.
	Physical Chemistry, Atkins
	6. Text Book Of Quantitative Chemical Analysis – A.I. Vogel,
	VI Ed, Pearson Education Ltd, 2001

Mapping with Programme Outcomes

	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
trong - 3,	Č01	3	3	2	3	3	3	2	3	3	3
Medium – 2, Low - 1	CO2	3	3	2	3	3	3	2	3	2	2
	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
Mapping with Programme	CO5	3	3	2	3	3	3	2	2	3	3

Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Strong - 3, Medium - 2, Low - 1

Lab	Manuals
1	Das, S. and Saha, R. 2020. Microbiology Practical Manual. CBS Publishers and
	Distributors
	(P) Ltd., New Delhi, India.
2	Arora, B. and Arora, D.R. 2009. Practical Microbiology. 2 nd ed. CBS Publishers and
	Distributors (P) Ltd., New Delhi, India.
3	Jha, D. K. Laboratory Manual on Plant Pathology. 2 nd ed. Pointer Publishers, Jaipur, India.
4	Chmielewski, J. G. and Krayesky, D. 2013. General Botany laboratory Manual.
5	AuthorHouse, Bloomington, USA. Jha, D. K. 2018. Laboratory Manual on Plant Pathology (English). Pointer Publishers,
5	Jaipur.
6	McMahon, K., Levetin, E. and Reinsvold, R. 2001. Laboratory Manual for Applied
U I	Botany.
	McGraw-Hill Education, New York, USA.
7	Bendre, A. M. 2010. A Text Book Of Practical Botany – 1. Rastogi Publications,
	Meerut,
	India.
8	Sivakumar, K. 2016. Algae- A Practical Approach. MJP Publishers, Chennai, India.
9	Gupta, V.K., Tuohy, M.G., Ayyachamy, M., Turner, K.M. and O'Donovan, A. 2013.
	Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology.
	Springer,
	London, UK.
10	Garg, N., Garg, K. L. and Mukerji, K. G. 2010. Laboratory Manual of Food
	Microbiology.
	IK International Publishing House Pvt. Ltd., New Delhi, India.
11	Morello, J.A., Mizer, H.E., Granato, P.A. 2004. Laboratory Manual and Work
	Book in
	Microbiology. McGraw-Hill Education, New York, USA.

I

SEMESTER-IV Core-XII

Course Code	Course Name:	Diamadical	Credits 4				
Course Coue	Nanotechnolog		Creans 4				
Lecture Hours : (L		Lab practice Hours : (P) per	Total: $(\mathbf{I} + \mathbf{T} + \mathbf{P})$				
	Hours :						
per week	(T) per week	week	Hours per week				
Course Category:	Year &	Admission Year:					
course cutegory.	Semester :						
Pre requisite:	The Student sh	nould have the fundamental l	knowledge in				
- To Toquisitor		iological Cell, functions of c					
		nd its relation to cell function					
Links to other cours		ould know about the fundam					
		ncept of Nano materials fabri					
Learning Objectives		the basic of Bioceramics in N					
Loui mig O Sjoon (o	Ŭ	tween nanomaterials and bul					
	Evaluate and cr	itically review the theoretica	1 and practical aspects of				
		ring methods and its applicat					
	Comprehending the novel function resulted from the nanoscale						
	structures using scientific and technological principles in Nano						
		biotechnology –					
	Critically assess and outline the nanotechnology in the area of Drug						
	delivery-	ss and outline the nanoteening	logy in the area of Brag				
Course Outcomes		completion of the course, stu	dent will be able to				
		basic of Biomedical sciences					
		en nanomaterials and bulk m					
	Evaluate and critically review the theoretical and practical aspects of						
	Nano materials application.						
	Summarize the concepts in Biomedical nanotechnology						
	Critically assess and outline the nanotechnology for all areas of						
	biomedical applica						
	* *	ew properties of Nano materi	als for nextgeneration				
	needs						
Units Total-90hrs							
I	BIO	CERAMICS FOR IMPLAN	COATING				
-		es - hydroxy epilates Ti_6Al					
		tissue interfacing – metal					
		ate – biomimetic and solu					
		eoplastic – regeneration of bo					
	compactable ceran		inter cy using bio				
	compactable certain	105					

1

II	TISSUE ENGINEERING	Formatted: Centered
6h	Scaffolds for tissue fabrications – materials for scaffolds – materials for	
	hydrogel scaffolds – scaffolds fabrications technologies – textile	
	technologies – particulate –leaching techniques – phase separation –	
	design of three-dimensional pore architecture – nano-featured and	
	bioactive scaffolds – nano-fiber scaffolds – nanocomposite scaffolds –	
	– scaffolds for stem cells – micro and nanopatterned scaffolds -scaffolds	
	and stem cells - Engineering biomaterial to control cell function -	
	fibrous proteins and tissue engineering	
<u>I</u> II I	DRUG DELIVERY	Formatted: Centered
8h	Diagnosis of diseases, treating and preventing of diseases – targeted for	
	drug delivery - ligand coupled nanoparticle features - methods for	
	coupling targeting ligands to nanoparticles – targeting modalities –	
	barriers to tumor targeting in vivo - MRI contrast enhancement -	
	future line of action – Gene delivery	
IV	NANOPHARMACY	Formatted: Centered
8h	Bio interactive hydro gels – PEG coating and surface modifications –	
	PEG hyrogels patterned on surfaces – PEG based hydrogels-	
	Nanopharmacy- multi-targeted drugs – delivery of nucleic acids- barriers	
	to therapeutic applications – interaction of organic molecules	
	of the drug with pathological tissue – ligand targeted nanoparticles	
	drug delivery	
\mathbf{V}	NANOMEDICINE	Formatted: Centered
8h	Formation of nucleic acid core particle – protective steric coating –	
	surface exposed ligands targeting specific tissues -biocompatible core-	
	shell nanoparticles for medicine – configuration of core – shell structure	
	with different cores, shells and biomolecules-least toxicity-	
	nanocapsules-methods of changing surface characteristics- future	
	prospects.	
	nt https://link.springer.com/content/pdf/10.10090Fs11834-013-6063- 0.pdf	
and Online)	http://nopr.niscair.res.in/bitstream/123456789/5224/1/IJEB2045(2)2	
	0160-165.pdf	

Recommended	Robert.W.Kelsall, Ian.W.Hamley, Mark Geoghegan (Ed), Nano Scale
Texts	Science And Technology, John Wiley and son, ltd., 2005
	H.Fujita (Ed), Micromachines As Tools For Nanotechnology, Springer,
	2003
	Mick Wilson Kamali Kannangara Geooff Smith Michelle, Simmons
	Urkhard Raguse, Nano Technology, Overseas India private Ltd., 2005.
	Gunter Schmid, Nano Particles, Jhon wiley and sons limited, 2004
	K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
	Malsch, N.H., "Biomedical Nanotechnology", CRC Press. (2005).
	Mirkin, C.A. and Niemeyer, C.M., "Nanobiotechnology II: More
	Concepts and Applications", Wiley-VCH. (2007)
	Kumar, C. S. S. R., Hormes, J. and Leuschner C., "Nanofabrication
	Towards Biomedical Applications: Techniques, Tools, Applications, and
	Impact", WILEY -VCH Verlag GmbH & Co. (2005).

Strong - 3, Medium – 2, Low	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
- 1	CO1	3	3	2	3	3	3	2	3	3	3
I	CO2	3	3	2	3	3	3	2	3	2	2
I	CO3	3	3	2	3	3	3	2	2	2	2
	CO4	3	3	2	3	3	3	2	3	2	3
	CO5	3	3	2	3	3	3	2	2	3	3

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER-IV

Formatted: Centered, Indent: First line: 0" Formatted: Body Text, Centered

Elective Course-4

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Cre	dits	Fc	ormatted Table
IV Sem		NANOTECHNOLOGY FOR FOOD AND AGRICULTURE	Elective	4			
	nano an 2. ofnanor Underst 4. applicat 5.	Understanding the basic of Nanoscie d bulk materials Evaluate and critically review the th nerials preparation and application. canding the concepts and techniques Critically assess and outline the nan- cion Demonstrate the new properties of m ionneeds	eoretical and practi in nanotechnology otechnology for all	ical a	spect	_	ormatted Table

Title of the	- NANOTECHNOLOGY FOR FOOD AND	Formatted Table	
Course:	AGRICULTURE		
Credits:	4		

Course Objective	s 1. Define and identify functional materials for food industry.
course o'sjeen e	2. Understand and describe food and agricultural processes.
	3. Interpretation and application of the theories and protocols for soil
	andfood nutrient management.
	4. Differentiate different types of nanomaterials food sensing, nutrient
	management and packaging application.
	5. Evaluation and assessment of various functional materials for
	sensing, nutrient management and packaging processes.
	6. Development and employment of new nanoenabled functional
	materials and protocols for societal applications.
	international process for socional approximations.
	Units
I	SENSORS FOR SOIL, SEED AND FOOD MONITORING Formatted: Centered
	Introduction and Importance, Various Sensing Methods, Chemical and
	Biosensors, Sensors For Monitoring Soil, Seed and Food, Nanomaterials
	For Intelligent Sensors.
II	FUNCTIONAL MATERIALS
	Functional Materials For Food And Agriculture Use - Super Absorbent
	Polymers, Coatings, Aerosols. Zeolites, Nano-Clays, Nano Emulsion,
III	NANOFERTILIZERS
	Nanofertilizer, Synthesis And Characterization. Fungicides, Herbicides –
	Pesticides. Types Of Nano-Formulations – Encapsulation Of Pesticides.
	Release Studies, Smart Delivery, Bio- Efficacy And Bio-Safety.
IV	MICRO-NANO ENCAPSULATION
	Encapsulation – Principles – Micro And Nano-Encapsulation – Release
	Mechanism – Encapsulation Versus Traditional Delivery Method - Sorption
	And Release Of Nutrients. Encapsulation Technologies – Extrusion – Spray
	Chilling – Spray Coating – Spray Drying – Emulsion – Gel Particles.
V	NANOCOMPOSITES AND FOOD PACKAGING
	Introduction And Scope. Polymer Films And Nano Composites – Bio-Nano
	Composites - Fabrication Process – Equipments Used - Testing Standards
	- Nano Material In Food Packaging - Solid And Liquid Food - Safety Issues
	Of Nano Food Systems
Reading List	1.Nano And Microencapsulation For Foods, Hae-Soo Kwak, Wiley (2018 Formatted: Indent: First line: 0.03"
Print and Online)	Formatted: Indent: Hanging: 0.03"
Recommended	1. Nanotechnologies In Food And Agriculture, Mahendra Rai, Cau Formatted: Indent: First line: 0"
ſexts	Ribeiro, Luiz Mattoso, Nelson Duran, Springer (2015)
	2. Nanotechnology Applications In Food, Alexandru Grumezescu,
	Alexandra Oprea, Academic Press (2017)

1

I

I

I

11 0	0													
Strong - 3, Medium – 2, Low	Cos	PO1	PO2	PO3		PO4	PO5	PO6	PO7	PO8		PO9	PO10	
- 1	CO1	3	3	2		3	3	3	2	3		3	3	
	CO2	3	3 2			3	3	3	2	3		2	2	
Mapping with Programme	CO3	3	3	2		3	3	3	2	2	2 2		2	
Specific	CO4	3	3	2		3	3	3	2	3		2	3	
Outcomes	CO5	3	3	2		3	3	3	2	2		3	3	
	CO/PSO				PSO1		PSO2	PSO3	PSC	4 P		805		
CO1	CO1					3	3	2	2			3		
CO2	CO2					3	3	2	2		3			
CO3	CO3					3	3 2		2		3			
CO4	CO4					3	3	2	2		3			
CO5					3		3	2 2		2		3		
Weightage						15	15	15 10			15			
Weighted percentage (rounded of) Course Contribution to POs				of)		3	3	2	2			3		
a		-												

Strong - 3, Medium - 2, Low - 1

PROJECT (8 credit)