M.SC., INORGANIC CHEMSITRY

MODEL SYLLABUS

AUGUST- 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

Vision

Reputable teaching – learning and research organization nationally and internationally in the area of chemical sciences with special emphasis on Inorganic chemistry filed. By doling out the competitive trained chemists for assisting the chemical world, industries and stake holders. The mission and vision of the organization help in preparation of strategic plan.

Mission

- To be one of the well recognized Department in the field of Inorganic Chemistry for higher learning in India and the world in terms of producing skilled, employable chemists, researchers, teachers and entrepreneurs
- To provide the state-of-art research facility to carry out pioneering research in the cutting-edge of Inorganic chemistry
- > To carry out key projects to solve field base problems
- Endow with student centric learning facilities for the development of overall personality of learner
- To collaborate with national and international reputed institutions/Universities for academic excellence and skill-filled research

Programme Outcomes (POs)

After completion of M.Sc. in Inorganic Chemistry successfully, the student will able to:

- 1. To endow our students with advanced knowledge and skills in different area of chemistry with special emphasis on the Inorganic chemistry filed.
- 2. To equip students to meet current industrial needs toward the development of eco-friendly protocols/procedures for chemical process in the industry.
- 3. To provide sound knowledge and experimental skills to synthesize and analyze the chemicals/advanced materials need for the society.
- 4. Analyze the inorganic chemistry problems critically to achieve sustainable solutions for energy and environment in the society.
- 5. Demonstrate the rational scientific approach for the development of advanced and novel inorganic solid materials for various applications, which needed for modern society.
- 6. To equip students to critically evaluate the practice, theories and rules based empirical evidence through rational scientific approach to achieve knowledge development in Inorganic Chemistry.
- 7. To create the ability to work effectively with diverse team and facilitate cooperative effort as a member/team leader to achieve deliverable outcome in projects.
- 8. To create the ability to identify ethical issues related to work and avoid unethical behaviours such as committing plagiarism, not adhering to intellectual property rights and adopt specific objectives and truthful action in all aspect of work.

- 9. To equip the students with more capable to use computational tools, software's and database relevant to inorganic chemistry field.
- 10. The effective communication skills both orally and writing using appropriate tools in the all the aspects of inorganic chemistry will be demonstrated.

Programme Specific Outcomes

Upon successful completion of M.Sc. Chemistry programme, the student will be able to

- Demonstrate comprehensive knowledge and problem solving skills, which is paramount importance for the development of new applications of inorganic chemistry
- To congregate the deeper understanding and critical knowledge to build strong foundation in structure, bonding and properties of transition metal complexes, organometallic compounds and p-type elements based inorganic cage molecules
- To motivate the students to prepare competitive examination, benchmark standard in writing, communications, and ethics to disseminate results of studies undertaken in inorganic chemistry
- To emphasize on integrating various disciplines of science and apply disciplinary knowledge in the interdisciplinary areas of chemistry to solve the critical problem in inorganic chemistry with well defined solutions
- Apply appropriate advanced techniques, tools and methodologies to achieve the evidence-based solution for national and international problems related to inorganic chemistry
- To get sound knowledge and transferable skills in cutting-edge-area of inorganic chemistry, which empower the student for employment opportunities in academia and research laboratories

M.Sc. INORGANIC CHEMISTRY Curriculum (For the students admitted during the academic year 2021-22 onwards)

Semester	Course Code	Title of the Course	Core/ Elective/ Soft skill	Credits
	CHE C001	Fundamentals of Analytical Chemistry	Core	3
	CHE C101	Coordination and Nuclear Chemistry	Core	3
	CHE C201	Stereochemistry and Organic Reaction	Core	3
		Mechanism		_
	CHE C301	Thermodynamics and Chemical Kinetics	Core	3
	CHE C202	Organic Chemistry Practical-I	Core	3
	CHE C302	Physical Chemistry Practical-I	Core	3
	CHE E001	Electronics and Computers for Chemists	Elective	3
Ι	UOSM115	Lab Safety and First Aid	Softskill	2
	UOMS117	Chemistry Databases-SciFinder, Mandeleef,	Softskill	2
	CHE COO2	Scopus, Web of Science and Google Scholar	Core	2
	CHE C002	Analytical Instrumentation		3
	CHE C102	Main Group Elements and	Core	3
		InorganicPolymers	G	2
	CHE C203	Organic Reaction Mechanism	Core	3
	CHE C303	Quantum Chemistry and Group Theory	Core	3
	CHE C003	Analytical Chemistry Practical-I	Core	3
	CHE C103	Inorganic Chemsitry Practical-I	Core	3
II	CHE E302	Macromolecular Chemistry	Elective	3
	UOMS116	Fire Safety and Firefighting	Softskill	2
	UOMS147	Software packages for Chemists-MATLAB, ORIGIN AND CHEMDRAW	Softskill	2
	UOMI001	Internship	Internship	2
	CHE C601	Physical Methods in Chemistry	Core	4
	CHE C104	Inorganic Chemistry Practical – II	Core	3
III	CHE C105	Inorganic Chemistry Practical – III	Core	3
	CHE E601	Biological Chemistry	Elective	3
	CHE E602	Photochemistry and Nanomaterials	Elective	3
		Elective from Other School	Elective	3
	CHE C106	Transition Metal Chemistry	Core	4
IV	CHE C107	Organometallic Chemistry	Core	4
	CHE C108	Project	Core	6
	CHE E603	Novel Reagents in Organic Synthesis	Elective	3
	CHE E004	Electroanalytical Chemistry	Elective	3
		Total Credits		91

SCHEME OF VALUATION

CORE PAPERS

CREDITS – 3 or 4; MARKS – 100 **Marks Distribution:** Internal – 40 Marks External – 60 Marks

INTERNSHIP

CREDITS – 2; MARKS – 50 **Marks Distribution:** Internal – 12 Marks External – 38 Marks

ELECTIVE PAPERS (No Practicals)

CREDITS – 3; MARKS - 100 Marks Distribution: Internal – 40 Marks External – 60 Marks

PROJECT WORK & Viva Voce

CREDITS – 6; MARKS – 100 Marks Distribution: Project Work & Viva voce (75 Marks) Thesis (25 Marks)

Semester -1	CH	IE C101	COO		TION AND) NUCLEAR Y	L	Т	Р	С	
Core/Elect /Supportiv				Сот	re		4	0	0	3	
Pre-requisi	te	•	ental y, We basics	terms erner's th of nucle	of o heory, Va eus, nucle	bout the coordination llence Bond ar	Svilahus				
Course Obj	ecti	-								1	
The main objectives of this course are to:											
	ab	out the st				bonding na	ture	of	c00	rdination	
-			conce	pt of the	ories of co	pordination c	omp	lexe	s		
			-	-		states, micro	-			rm	
symbo				8		·····					
• Under	rstar	nd orgel a	nd Ta	nabe Sug	gano diag	rams for pre-	dicti	on c	of at	osorption	
band		U			0 0	Ĩ				1	
• Illustr	rate	different t	types	of nuclea	ar models	and their fea	ature	es			
• Descr	ribe	nuclear re	eaction	ns and th	neir energ	ies					
• Study	the	applicatio	ons of	nuclear	chemistry	y in various f	ïeld	S			
Expected C	our	se Outcor	mes (CO):							
On the succ	essf	ul comple	etion o	of the cou	urse, stude	ent will be al	ole to):			
1 Unders coordin		l and conclusion complex	compa xes	are diffe	erent the	ories invol	ve	in	the	K1-K2	
2 Interpre	et th		nic and	d magnet	tic proper	ties of coord	inati	on		K2-K4	
3 Knowle	edge	e on the m	nodern			its applicati	on i	n		K2-K5	
			_		-	l complexes				K3-K4	
		uclear spi						•.	1		
		te differen hniques	nt nuc	lear react	tions and	to determine	acti	vity	by	K3-K0	
K1 - Remen Create	nber	; K2 - Un	ndersta	nd; K3 -	Apply; K	4 - Analyze;	K5	- Ev	valua	ate; K6 –	
	TRI	ICTURAL		ECTS AN	D CRYST	AL FIELD T	HEO	RY	2	0 hours	
						atterns in oc					
						FSE, Factor					
•	-	-		•		ic properties			<u> </u>		
						n and stabi					
						n –Determi	-			-	
-		-		-		and potention				-	
Hard and soft acids and bases											
UNIT:2 MOLECULAR ORBITAL THEORY 20 hours											
Theoretical failure of the Crystal Field Theory - Nephelauxetic effect - Evidences for the metal-ligand orbital overlap; the ligand field theory; Molecular Orbital - application of group theory to tetra coordinate and hexa coordinate systems - M.O. theory as applied to non-bonding and anti-bonding complexes – Calculation of Dq, B and β parameters. Colour of transition metal complexes, types of											

electronic spectra - d-d transition, Charge transfer spectra, selection rule and its relaxation, Term states for d^n ions, energy diagram, - Orgel and Tanabe- Sugano diagrams – Spin-Orbit coupling

UNIT:3 NUCLEAR CHEMISTRY 20 hours Models of nucleus – Modes of radioactive decay: orbital electron capture: nuclear isomerism, internal conversion, Nuclear reaction: Types, reactions, cross section, Q-value, threshold energy, compound nucleus theory, High nuclear reactions, nuclear fission and fusion reactions as energy sources; direction reactions, photonuclear and thermo nuclear reactions, detection and determination of activity by cloud chamber, nuclear emulsion, bubble chamber, G.M counter -Scintillation and Cherenkov counters. Application of radioactivity in the chemistry -Structure determination and mechanism of electron transfer reactions, Determination of solubility of a sparingly soluble salt, medical field, age determination and in agriculture, Neutron activation analysis, isotopic dilution analysis, radiometric titrations, Nuclear reactors, the breeder reactor, nuclear reactors in India

Total Lecture hours

60 hours

Text Book(s)

1. F.A. Cotton & G. Wilkinson - Advanced Inorganic Chemistry, 3rd and 4th Ed., John Wiley

2. Huheey, J.W. - Inorganic Chemistry, 4th Edition - Harper and Row

3. J. D. Lee, Concise Inorganic Chemistry, 5th edition, John Wiley

4. A. K. Das Vol. 1 & 2, Fundamentals of Inorganic Chemistry

5. Gregory R Choppin; Jan-Olov Liljenzin; Jan Rydberg, Radiochemistry and Nuclear Chemistry, 3rd Edition, 2002, Butterworth-Heinemann

Reference Books

1. K.F. Purcell & J.C. Kotz - Inorganic Chemistry, Saunder Company

2. S.F.A. Kettle - Coordination Compounds

3. B.N. Figgis - Introduction to Ligand Fields

4. A.B.P. Lever - Inorganic Electronic Spectroscopy, Elsevier

5. C.J. Balehausen - Introduction to Ligand Field Theory, McGraw Hill, 1962.

6. G. Friedlander, G. Herrmann (auth.), Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezső G. Lovas, Frank Rösch (eds.), HandBook of Nuclear Chemistry, 2011, springers

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. Coordination complexes : http://www.infocobuild.com/education/audiovideo-courses/chemistry/CoordinationChemistry-IIT-Kharagpur/lecture-18.html
- 2. Nuclear shell model: YouTube Videos:
- https://nptel.ac.in/courses/115/104/115104043/
- 3. GM counters lecture Notes:

https://qa.ff.up.pt/rq2020/Bibliografia/etc/geiger1.pdf

Mappir	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	М	S	М	S	М	S	L	М	L	L	
CO2	S	S	S	S	S	М	L	М	L	L	
CO3	М	М	S	S	М	М	L	S	М	L	
CO4	S	S	S	S	S	S	M	S	L	L	
CO5	S	S	L	М	М	L	S	L	М	L	

Semester-I	CHE E101	INORGANIC REACTION MECHANISM	L	Т	Р	С		
Core/Electiv /Supportive		Elective	3	0	0	3		
Pre-requisite	complexe stabilities basics of carbon bo	should aware about basic e of formation of metal ligand s, bonding and geometries and . Student should also know the chemical bonding including metal nd formation.		llab ersio		R- 2021		
Course Obje								
 Describ princip Illustra propert Describ geomet Give kn molecu Unders and the 	be the efforts les and develo ites how ligaties of central be various reactives of metal nowledge on illes to comple- tand various to bir reactivity were urse Outcom	iction pathways for mechanism of fo ligand complexes the theory of electron transfer process x molecules heory on the stability of organometa with nucleophile and electrophilic com	ntex iral rma fro: llic ipou	and and tion m si cor	l re of impi	activity various le		
1 Know m complex and them	complexes and its lability and inertness in the aspect of kinetics and thermodynamic of the coordination complexes							
to study complex	the various realong with tr	action mechanism involved in inorga ans influence of ligands	nic					
various theory, t photoche	metal complete to become far emical reaction	knowledge on the electron transfer/redox reactions in K3-K5 al complexes and understand the Marcus-Hush ecome familiar with some applications of cal reaction of coordination compounds						
4 Compre	hend the pot	ential new ligands and predict the	bine	ding	g K	2-K4		

	affinity to its target								
5	Able to elucidate the different types of application in me	tal							
5	complexes and its reaction mechanism of different metal complexes								
	concerned reactions in organometallic chemistry								
V 1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Eva	luoto: V6							
Cre		iuale, Ko –							
	IT:1 INERT AND LABILE METAL CHEMISTRY	20 hours							
	activity of metal complexes – Inert and labile complexes – Explanation								
on the basis of valence bond and crystal field theories – Metal ion catalysed									
	ctions and reaction mechanism, induced reactions and their c	-							
	lications – kinetics and mechanism of induced reactions in metal								
	bilization of unusual oxidation states in solution – Survey of ox	-							
	h various electronic configuration of transition metals and inner-t								
	tals								
-	IT:2 SUBSTITUTION REACTIONS IN COORDINATION	20 hours							
	COMPLEXES								
Rea	action pathways – mechanisms of substitutions in octahedral	complexes –							
	sociative (D), Associative (A), and Interchange (I) mechanisms – A								
hyc	rolysis) – Acid catalyzed aquation reactions, Anation reac	tions. Base							
	lrolysis, CB mechanism in octahedral complexes - Substitution								
squ	are planar complexes, trans effect, theories and applications –	Isomerisation							
and	racemisation reactions of coordination complexes; Elect	tron transfer							
read	ctions or redox reactions - two electron transfer reactions, Inne	er sphere and							
out	er sphere processes, electron exchange reactions, complement	ary reactions							
and	non complementary reactions, Marcus-Hush theory and photo	chemical							
rea	ctions								
UN	IT:3 BASIC CONCEPTS OF ORGANOMETALLIC	20 hours							
	COMPOUNDS AND REACTION MECHANISM								
De	finition of Electron counting-Types of ligands and their clas	sifications in							
org	organometallic compounds, Hapto-nomenclature –16 and 18 electron rule and its								
	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida	on rule and its tive addition,							
red	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa	on rule and its tive addition, lient features							
red and	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil	on rule and its tive addition, lient features lic attack on							
red and liga	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F	on rule and its tive addition, lient features lic attack on							
red and liga	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes	on rule and its tive addition, lient features lic attack on luxional							
red and liga	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F	on rule and its tive addition, lient features lic attack on							
red and liga beh	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes	on rule and its tive addition, lient features lic attack on luxional							
red and liga beh	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours xt Book(s)	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh Tex 1.	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh Tex 1.	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh Tex 1. 2.	itations – Metal carbonyls – Metal π -cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa l evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea Eastern	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh Tex 1. 2. 3.	itations – Metal carbonyls – Metal π-cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sal evidences, ligand protonation, electrophilic and nucleophilic and s – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours tt Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea Eastern Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders	on rule and its tive addition, lient features lic attack on luxional 60 hours							
red and liga beh Tex 1. 2. 3.	itations – Metal carbonyls – Metal π-cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea Eastern Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders D.F. Shriver and P.W. Atkins, Inorganic Chemistry, Oxford Uni	on rule and its tive addition, lient features lic attack on luxional 60 hours discuss, Wiley versity Press,							
red and liga beh Tex 1. 2. 3. 4.	itations – Metal carbonyls – Metal π-cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sa evidences, ligand protonation, electrophilic and nucleophil ands – C-H activation -ortho metalation and cyclometalation, F aviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea Eastern Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders D.F. Shriver and P.W. Atkins, Inorganic Chemistry, Oxford Uni 5th Edition, 2010	on rule and its tive addition, lient features lic attack on luxional 60 hours actions, Wiley versity Press,							
red and liga beh Tex 1. 2. 3. 4.	 itations – Metal carbonyls – Metal π-cyclic compounds; Oxida uctive elimination, insertion migration and rearrangement –sal evidences, ligand protonation, electrophilic and nucleophilitands – C-H activation -ortho metalation and cyclometalation, Faviour of metal complexes Total Lecture hours t Book(s) Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Row Basolo, F. and Pearson, R.G Mechanism of Inorganic Rea Eastern Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders D.F. Shriver and P.W. Atkins, Inorganic Chemistry, Oxford Uni 5th Edition, 2010 J. D. Lee, Concise Inorganic Chemistry, Oxford University Press	on rule and its tive addition, lient features lic attack on luxional 60 hours detions, Wiley versity Press, 5, 5th Edition,							

Re	ference Books
1.	Nyholm, R.S. and Tobe M.L., - The stabilisation of oxidation state of the
	Transition metals, Advances in Inorganic and Radiation Chemistry, Volume 5
	(1963)
2.	(a) J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis,
	University: Science Books, Sausalito, CA, 2010
3.	G. L. Miessler, P. J. Fischer, D. A. Tarr, Inorganic Chemistry, 5th edn,
	Pearson, Upper Saddle River, NJ, 2014
4.	R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Vol. 4,
	John Wiley & Sons, Inc., Hoboken, NJ, 2005
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=ez40OIQrP60
2.	https://www.dalalinstitute.com/wp-content/uploads/Books/A-Textbook-of-
	Inorganic-Chemistry-Volume-1/ATOICV1-3-1-Inert-and-Labile-Complexes.pdf
3.	https://link.springer.com/chapter/10.1007%2F978-1-4419-9276-5_6
4.	https://www.schoollearningresources.com/PDF/_Lectures%208-10(1).pdf

Mappir	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	М	S	М	S	М	S	L	Μ	L	М	
CO2	S	S	L	S	S	Μ	L	Μ	L	L	
CO3	S	М	S	М	L	M	L	S	М	L	
CO4	S	S	L	S	S	S	М	S	L	S	
CO5	S	S	S	М	Μ	L	S	L	L	L	

Semester -II	CHE C102	MAIN GROUP ELEMENTS AND INORGANIC POLYMERS	L	Т	Р	С
Core/Elective /Supportive		Core	4	0	0	3
Pre-requisite	about un	should have basic knowledge it cell, lattice points, radius ratio, id structures and polymers	Syll Ver	abu sioi	IS 1	R-2021
Course Object						

Course Objectives:

The main objectives of this course are to:

- Provide introduction and overview of fundamental properties of solids
- Illustrate the importance of having defects in solids
- To interpret electrical, optical and magnetic properties of ionic solids
- Describe band theory and free electron theories
- Explain semiconductors, superconductor and magnetic properties of various compounds
- Explain different types, synthesis, structural features and applications of

silicates, silicones, isopoly and heteropoly acids of transition metals

- Make students to acquire the methods of preparation, nature of bonding, properties, applications of sulphur nitrogen and phospohorus nitrogen compounds
- Explain preparation, properties, reactivity and application of various borane compounds

Exp	ected Course Outcomes (CO):						
	the successful completion of the course, student will be able to:						
1	Learn different equations related to lattice energy calculation and analyze the structures adopted by different ionic crystals. Students are expected to explain the unique properties of solids due to various types of defects	K1-K4					
2	Analyze physical properties such as electrical, magnetic and optical aspects of solids and properties of superconductors and semiconductors	K4-K6					
3	Compare the trends in the synthesis and properties of main group elements and discuss the chemistry of Si, S, N and P based inorganic polymers	K2-K5					
4 Understand the chemistry and applications of boranes, carboranes and metalloboranes							
5	Elucidate various methods of synthesis, properties and applications of polymetallate anions, isopoly and heteropoly acids of transition metal ions	K3-K6					
K1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evalu	ate; K6 -					
Crea							
UNI		0 hours					
Bor solu anti and Elec theo elec ferr gar		ntropy of fluorite e, spinels and band ls - Solid erro and ferrites –					
UNI	T:2Si, S, N AND P BASED INORGANIC POLYMERS2	0 hours					
Syn stru Pho	Chemistry of silicon – classification and structure of silicates and silicones – Synthesis, structure, reactivity and application of polysilanes – Preparation, structure, properties, reactivity and applications of sulphur nitrogen compounds- Phosphorus nitrogen compounds						
UNI	T:3 HIGHER BORANES AND POLYOXOMETALATES 2	0 hours					
stru Min met	Chemistry of boron and its isotopes, neutron Capture Therapy – Preparation and structure of borane and higher boranes – STYX numbers – Wade's and Wade's - Mingo's rule – Preparation, structure, properties and reactivity of carboranes, metalloborane and metallocarboranes – Isopoly acids of Vanadium, Chromium, Molybdenum and Tungsten – Heteropoly acids						

	Total Lecture hours	60 hours							
Tex	xt Book(s)								
1.	Cotton, F.A. and Wilkinson, L - Advanced Inorganic Chemistry 3	Brd and 4th							
	Edition, John Wiley								
2.	Earnshaw and Greenwood - Chemistry of Elements								
3.	Huheey, J.E., - Inorganic Chemistry, 2nd Edition, Harper and Row, 1976								
4.	Concise Inorganic Chemistry, J.D.Lee								
5.	Solid State Chemistry and applications- A.R. West (John Wiley and Sons)								
6.	Principles of the Solid State- H.V. Keer (Wiley Eastern Limited)								
Ref	Reference Books								
1.	Hanney, N.D Solid State Chemistry, Prentice Hall, 1967								
2.	Greenwood, N.N Ionic Crystals, Lattice Defects and Non-Stoichiometry,								
	Butterworths, 1968								
3.	A.F. Wells - Structural Inorganic Chemistry								
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1.	https://nptel.ac.in/courses/104/104/104101/								
2.	https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cy16/								
3.	https://www.britannica.com/science/fluorocarbon-polymer								
4.	http://homes.nano.aau.dk/fp/uke/pdf/chapter12.pdf								
5.	https://www.dalalinstitute.com/books/a-textbook-of-inorganic-che	emistry-							
	volume-1/isopoly-and-heteropoly-acids-and-salts-of-mo-and-w-strue	ctures-of-							
	isopoly-and-heteropoly-anions/								
6.	https://www.britannica.com/science/coordination-compound/Isop	oly-and-							
	heteropoly-anions								

Марріі	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	S	S	M	L	М	S	М	M	М	М	
CO2	S	S	S	S	М	М	S	M	L	L	
CO3	Μ	Μ	S	Μ	S	М	L	L	Μ	S	
CO4	S	S	S	S	S	S	М	S	L	L	
CO5	Μ	S	L	L	М	L	S	L	М	М	

Semester -II	CHE C103	INORGANIC CHEMISTRY PRACTICAL - I	L	Т	Р	С				
Core/Elective /Supportive		Core	0	0	6	3				
Pre-requisite	Basic I metal c	knowledge on inorganic salts and helated complexes	Syll Ver	abu sioi	IS 1	R-2021				
Course Object	Course Objectives:									

The main objectives of this practical course is able to:

- Identify individual two common and rare cations, respectively, present in • the given mixture of inorganic salts and reactions behind it through semi micro qualitative analysis
- Develop the skill for systematic qualitative analysis with strong theoretical backround
- To develop the skill for the estimation of various metal cations from the mixtures through complexometric titrations

Expected Course Outcomes (CO):

On the successful completion of the course, student will be able to:

	r · · · · · · · · · · · · · · · · · · ·							
1	The students will develop the key technical skill related to the	K3-K4						
	quantitative determination of various metal ions through							
	complexometric titrations							
2	Learn the lab discipline and maintain high standards of	K1-K3						
	professional and scientific ethics in the laboratory							
3	Learn quick identification of nature of any unknown metal ions	K1-K4						
4	Develop the skill to prepare various unknown solutions and							
	reagents for their respective experiments							
K1	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 -							
~								

Create

(A) QUANTITATIVE ANALYSIS

30 hours

Complexometric titrations using EDTA - Estimation of zn, Ca, Ni, Mg and Hardness and softness of water

(B) QUALITATIVE ANALYSIS

30 hours

Semimicro qualitative analysis of mixtures containing two common and rare cations.

The following are the rare cations are included: Tl, Mo, W, Se, Te, Ce, Th, Ti, Zr, V, Be, U and Li.

Note: Examination to be conducted for six hours and to consist of Part-I Semimicro qualitative analysis of one mixture containing three rare cations along with one common cations.

		Total Lecture hours	60 hours						
Te	Text Book(s)								
1.	-	el's Textbook of Macro and Semimicro Qualitative Inorganic ur Israel Vogel, Arthur Israel Vogel, G. Svehla, 1979.	Analysis,						
2.	V.V.	Ramanugam, Inorganic semimicro qualitative analysis, 3 onal Publishing company, 1974.	rd edition,						
3.	ΑΤε	ext Book of Quantitative Inorganic Analysis- A.I. Vogel 6thedition	Longman						
4.	Cond	cise Inorganic Chemistry, J.D.Lee							
5.	Inorg	ganic Synthesis- R.A. Rowe and M.M. Jones (1957)5, 113 – 116	•						

Mappir	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	S	L	S	М	L	L	L	М	L	L	
CO2	L	L	L	М	L	L	M	S	S	S	
CO3	М	M	S	М	S	M	L	L	М	S	
CO4	S	M	S	L	L	L	S	L	М	L	

Semester -II	UOMS 147	SOFTWARE PACKAGE FOR CHEMISTS - MATLAB, ORIGIN and CHEMDRAW	L	Т	С						
Core/Elective /Supportive		SOFTSKILS 2 0 0 2									
Pre-requisite	chemical structures Version										
Course Objectives:											
The main objectives of this practical course is able to:											
Understa	and the ba	sic principles of MATLAB, programm	ing a	and	plot	ting					
Illustrate	es various	plotting functions and formulate the	grap	ohs y	witł	n various					
fitting a	nalysis										
Draw th	e simple	chemical structure to complex structure	ture	and	me	chanism					
		al reactions									
Expected Cou											
On the success	sful comp	etion of the course, student will be at	ole to):							
programm											
including											
3 Develop	the skill t	o draw various chemical compounds projects and research fields	s, wl	hich	is	K3-K5					
		nderstand; K3 - Apply; K4 - Analyze	: K5	- Ev	zalu	ate: K6 -					
Create	,		,			,					
UNIT:1		MATLAB			1	5 hours					
subtraction of	2x2, 3x3 programmi	LAB – Important functions – Addition and 5x5 matrix – Programming in ng – 2-D plots (two vectors) and 3-D p plots	MA	ATL	AB	– Plot					
UNIT:2		ORIGIN			1	5 hours					
-		of origin – various mathematical fu Drawing of various plots and its fun									
		plots – Plot fitting, linear, exponent le peak fitting – Bar chats- 3D plo									
UNIT:3		CHEDRAW			1	5 hours					
equations – co atoms in a mo complex, organ	Basic concepts of chemdraw – Functions – various arrows used in the chemical equations – concept of drawing of chemical equations – Concepts of valance of atoms in a molecules– Drawing of simple molecules, macro molecules, inorganic complex, organometallic complex, peptides and dendrimers – drawing of catalytic cycles and organic reaction mechanism										
		Total Lecture hours			4	45 hours					
Text Book(s)											
2. S.N. Alam		m, Understanding Matlab: A Textbook				ners,					

- 3. Jake Woods, Chemdraw Professional (Tutorial User Guide) Kindle Edition, 2019.
- 4. https://www.originlab.com/doc/Tutorials

Марріі	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	L	L	S	М	L	L	L	М	L	L	
CO2	L	L	L	М	L	L	М	S	S	L	
CO3	L	Μ	L	L	М	M	L	L	S	L	

Sen	nester -II	UOM 1001							Т	Р	С
	e/Elective pportive		INTERNSHIP						0	0	2
Pre	-requisite		Basic practical skill gained from two semesters						abu sior	R-2021	
Cou	ırse Object	ives:									
The	e main objec	ctives of	this practic	al cou	rse is abl	e to:					
	 Provide the industrial visit and learn the possible instrumental techniques, which will be useful for their projects and research Learn the basic analysis of the simple compounds to develop their analytical skills 									-	
Exp	ected Cou	rse Outo	omes (CO)):							
On	the success	ful comp	oletion of th	ne cou	rse, stude	ent will	be at	ole to):		
1	Be trained	simple	simple analytical testing for compound of interest K4						K4		
2	Develop the methods	p the basic understanding of the various instrumental K2							K2		

3	Gain	the	infrastructure	of	the	industries	and	K6
	institutes/Universities in the across the country, which help them							
	to pr	osper their	life in future					
K1	- Rem	ember; K2	2 - Understand; K3	- Appl	y; K4	- Analyze; K5	- Eval	uate; K6 -
Crea	ate							
		INTERNSHIP 45					45 hours	
Stu	dents	can opt for	r training program	n in an a	approp	riate industry/	corpo	orate /
Gov	/ernm	ent or pub	lic sector / repute	d unive	ersities	/research insti	tutes a	across the
cou	ntry f	for a mini	mum of three m	onths.	Prior	registration is	mano	latory for
inte	rnship	o through s	student adviser / p	orogram	nme co	ordinator with	the p	ermission
fror	n the	consent of	organization when	re stud	ents w	ill undergo th	ne inte	ernship is
requ	required and the same shall be evaluated for grading							
	Total Lecture hours4!							45 hours

Mappir	Mapping with Programme Outcomes*										
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	
CO1	L	S	М	М	L	L	L	М	L	L	
CO2	L	S	L	М	L	L	М	S	S	L	
CO3	L	S	L	L	М	M	L	L	S	L	

Semester -III	CHE C101	PHYSICAL METHODS IN CHEMISTRY	L	Т	Р	С		
Core/Elective /Supportive		Core	4	0	0	4		
Pre-requisite	Students she aspects on s in the c compounds. NMR and M be advantag				R-2021			
Course Object	ives:							
The main object	ctives of this c	course are to:						
-	-	understanding of electronic structur	ral cl	nang	ges	of metal		
	-	es upon interaction with visible light						
		theory and instrumentation involv	red i	n tl	ne	origin of		
spectroscopy								
• Understand UV, IR, NMR and Mass spectra and their significance in the characterization of organic compounds								
• Illustrate	the basic print	nciple of splitting of spectral line of	inor	zani	c c	omplexes		

• Illustrate the basic principle of splitting of spectral line of inorganic complexes in the presence of magnetic field upon interaction with electromagnetic radiation

• To understand role of spectroscopy (UV, IR, NMR & Mass spectroscopy) to determine the structure of organic compounds

	To learn ESR and their importance in the characterization of radicals To understand basic theory & instrumentation involved with anal techniques for characterization and imaging	lytical			
	ted Course Outcomes (CO):				
On the	e successful completion of the course, student will be able to:				
1	Interpretation of various absorption band in the visible, IR and microwave region to understand the structural bonding, geometry and reactivity of inorganic coordination complexes	K1-K4			
2	2 To understand the basic concept, interpretation and application of electronic spectra of hydrogen and many electron atoms also to derive angular momentum of many electron atoms and term symbols of atoms				
3					
4	Understand basic theory as well as instrumentation techniques for recording UV, IR, NMR, ESR, MS, XRD, Raman, Mossbauer and Thermal spectra of chemical compounds	K2-K5			
5	Interpretation of UV, IR, NMR, TGA, DSC, XRD, Raman, Mossbauer, ESR and MS spectra of compounds to understand their structural characteristics	K2-K6			
K1-Re	member; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Crea	ite			
UNIT:	1 ELECTRONIC SPECTROSCOPY (PHYSICAL & INORGANIC 1 CHEMISTRY)	8 hours			
diagra Intens transit symm orbit c Spectr Electro selecti	nic molecules, Representation of electronic states through potential ms-Frank Condon principle. ities of electronic transitions- theoretical treatment of absorption in ion dipole moment integral, oscillator strength, selection rules parity, etry considerations, Factors inducing forbidden transitions vibronic coupling, polarization bands. ra of formaldehyde, butadiene and benzene –group theoretical discussion onic spectra of inorganic complexes – Selection rules (Laporte, orbital on rules), band intensities, band widths, spectra in solids, spectra of ons of d ¹ -d ⁹ ions in O _h and T _d environments	tensities, spin and and spin on. and spin			
UNIT:	2 MOSSBAUER & RAMAN SPECTROSCOPY, X-RAY AND 1 THERMAL METHODS OF ANALYSES (ANALYTICAL CHEMISTRY)	8 hours			
Doppl hyperf	bauer spectroscopy: Introduction, principle, instrumentation, recoil er effect, number of MB signals, isomer shift, quadrupole splitting, fine splitting applications to ⁵⁷ Fe, ¹¹⁹ Sn and ¹²⁹ I compounds in Spectroscopy: SERS, SERRS. ATR techniques – UV, IR, Raman. Principation of ORD and CD in the identification of complexes. 3D, 4D & fing techniques; X-ray diffraction – Bragg equation, space groups an	magnetic inciple & 5D NMR			
applica imagin groups	s, diffraction methods. Thermal methods of analysis – TGA, DTA and ple and applications				

Origin of NMR spectrum-Nuclear spin states – NMR active nuclei – Nuclear magnetic moment–Larmor equation – Absorption of energy and Resonance – Population density of nuclear spin states. Saturation phenomena - Relaxation mechanisms, Bloch equation (only significance and derivation not required). Comparison of CW and FT instrument-Chemical shift - Standards in NMR - Shielding and De-shielding - Factors affecting chemical shift - electronegativity, hybridization, hydrogen bonding - anisotropic effect – double, triple bond, aromatic compounds and carbonyl compounds. Spin-spin coupling – splitting origin and rules – factors affecting coupling constant: cis, trans, gem, ortho, meta, para coupling - exchange with deuterium. Vicinity of the proton, Long range coupling, Karplus equation and curve. ¹J, ²J, ³J, ⁴J and ⁵J coupling in NMR, order of NMR spectrum. Spin systems: Two interacting nuclei: A2, AB, AX, AA'BB', dd, pair of doublet, AB quartet. Three interacting nuclei: AMX, ABX, ABC systems (only pattern is required). Simplification of complex NMR spectra-Lanthanide shift reagents, CIDNP and NOE. Basic principles and applications of VT NMR & MRI.

¹³C NMR – difficulties in recording ¹³C NMR: Homo nuclear and heteronuclear coupling. Decoupling technique: SFORD and Off Resonance decoupled spectrum identification of various types of carbon using ¹³C NMR. APT & DEPT spectra (DEPT-45, DEPT-90 and DEPT-135). ¹⁹F NMR Precessional frequency and heteronuclear coupling. Identification of organofluoro compounds (CF3CO2Et and CF3CH2OH) using NMR. ³¹P NMR – Chemical shift and heteronuclear coupling. Identification of organophosphorus compounds such as (CH3)3P, (C2H5O)2P=O and Ph3P. P-P bond in NMR. Basic principles of 2D NMR (COSY, NOSEY, HSQC & HMBC)

Unit:4	UV, IR, MS (ORGANIC CHEMSITRY) & ESR (INORGANIC	18 hours
	CHEMSITRY)	

Electronic absorption-Beer-Lamberts law, Types of electronic excitation. Chromophore and Auxochrome-Bathochromic and Hypsochromic shifts. UV-vis spectra of simple organic compounds such as alkenes, phenols, anilines, carbonyl compounds and 1,3-diketones. Woodward and Fieser rule for calculation of λ -max values of dienes and unsaturated ketones.

Infrared Spectra: Identification of functional groups in Organic Compounds, Finger print region. Inter and Intramolecular hydrogen bonding

Origin, basics and bloc diagram of Mass spectrum-Various types of Ionization techniques-Stability of Molecular ions, Meta stable ions. Base peaks and Isotope peaks. Fragmentation patterns of organic molecules such as benzenes, phenyl halides, phenols, benzyl alcohols, benzyl halides, aliphatic alcohols, aliphatic as well as aromatic aldehydes, ketones, acids, esters and amides. Fragmentation patterns of aliphatic/aromatic nitro and amine compounds. Fragmentation patterns of heterocyclic compounds (furan, pyrrole and pyridine only). McLafferty rearrangements of organic molecules.

Structural determination of Organic Compounds using UV, IR, NMR and Mass Spectra.

ESR Spectra of d¹-d⁹ Transition Metal Complexes with examples. Interpretation of g in cubic, axial and rhombohedral geometries. Calculation of g values with simple

examples. Intensities of 'g \parallel and g \perp peaks. Evidence for Metal-Ligand Bond Covalency-Cu(II)- Bis –Salicylaldimine, Bis-Salilcylaldoximato copper(II)[(NH₃)₅CoO₂CoNH₃)₅]^{5+,}Cu(II)-diethyldithiophosphinate,

Vanadyldithiophsphinate, Copper(II) tetraphenylporphyrin, Co(II)- phthalocyanine, $K_2[IrCl_6]$. Interpretation of 'g' and 'A' values from esr spectral data in- i) MnF₆ ⁴⁻, ii)

CoF ₆	$^{4-}$, and CrF ₆ $^{3-}$.	
	Total Lecture hours	72 hours
Text I	Book(s)	
1.	Chang, R (1971); Basic Principles of Spectroscopy, McGraw Hill, ISP 007010517	3N-13:978-
2.	Banwell, C. N.; McCash, E. M (1994); Fundamentals of Spectroscopy, IVth Ed, McGraw Hill, ISBN 0-07-707976-0	Molecular
3.	Kemp, W. (2016); Organic Spectroscopy, 3 rd Ed, Palgrave	
4.	Kalsi, P. S (2016); Spectroscopy of Organic Compounds, 7th Ed, New International	v Age
5.	Silverstein, R. M, Webster, F. X, Kiemble, D. J, Bryce, D. Spectrometric Identification of Organic Compounds, 8 th Ed, Wiley	
6.	Jag Mohan (2016); Organic Spectroscopy Principles & Applications Narosa Publishing House	, 3 rd Ed,
Refer	ence Books	
1.	Pavia, L, Lapman, G. M, Kriz, S, Vyvyan, JR (2015); Introduction Spectroscopy, Cengage Learning, ISBN 13: 978-81-315-2916-4	on to
2.	Russell S. Drago, R. S (2016), Physical Methods for Chemists, II Ed	
3.	Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Medhi, O. K (2006); Inorga Chemistry: Principles of Structure and Reactivity, IVth Ed, Pearson	
4.	Skoog, D. A; Holler, F.; Crouch, S (2017); Principles of Instrument 7th Ed, Brooks/Cole publisher	al Analysis,
5.	Ebsworth, E. A. V.; Rankin, D. W. H.; Craddock, S (1986); Structur in Inorganic Chemistry, Wiley-Blackwell, ISBN-13: 978-063201592	
6.	Willard, H. H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F. A. Jr. (20 Instrumental methods of analysis CBS Publishers & Distributors; 7 ISBN 13: 9780534081423	
7.	Macomber, R. S (1998); A complete introduction to Mc Spectroscopy, John Wiley, ISBN: 0-471-15736-8	odern NMR
Relat	ted Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1.	https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod	d2.pdf
2.	https://www2.chemistry.msu.edu/courses/cem351/FS16_HUANG resentation/Ch_10_Lecture_Presentation.pdf	/Lecture_P
3.	https://www.slideshare.net/siraj174/sir-aj-nmr-spectroscopy-lectu	re
4.	http://web.iyte.edu.tr/~serifeyalcin/lectures/chem305/cn_1.pdf	
5.	https://www.youtube.com/watch?v=qtpVfccYEHE&t=98s	
6.	http://www.digimat.in/nptel/courses/video/104106122/L54.htm	
7.	https://pubs.rsc.org/en/content/articlelanding/2018/cs/c6cs0056	5a
8.	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_0 y_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical ry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Electron_Pa c_Resonance/EPR%3A_Application	_Chemist

Mapp	ing wit	h Prog	ramme	Outco	mes*					
	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010
CO1	Μ	L	S	S	Μ	Μ	L	L	L	L
CO2	S	М	S	Μ	L	S	L	М	Μ	L
CO3	S	М	L	Μ	S	Μ	L	L	Μ	L
CO4	L	S	М	S	М	L	М	М	S	L
CO5	L	М	S	М	L	М	S	L	Μ	L

Semester-III	CHE C104	INORGANIC CHEMISTRY PRACTICAL - II	L	Т	Р	С								
Core/Elective /Supportive	•	Core	0	0	6	3								
Pre-requisite	Basic compl analys	knowledge on volumetric and exometric titrations and gravimetric is.	-	labu sior		R-2021								
Course Objec						1								
The main obje	ctives of	this practical course is able to:												
• Learn th	eory beh	ind the solubility and extraction of va	rious	ores	an	d alloys								
0	-	ntal procedure on ores and alloys												
• Interpret the results and demonstrates the skill of chemical analysis of different ores and alloys compounds														
different ores and alloys compounds														
Expected Course Outcomes (CO):														
On the successful completion of the course, student will be able to:														
-		for gravimetric and volumetric analy	ysis c	of or	es	K3-K4								
and alloys														
-		to present the experimental datas and				K1-K3								
_		rity of various metal and compounds	in th	e or	es									
and alloy3Learnvalue		eparation and analytical techniqu	$\frac{1}{2}$	or t	ha	K2-K4								
		imation of metal and compounds	es n	Л	ne	K2-K4								
		wledge on quantitative inorganic anal	ysis o	of or	es,	K5-K6								
-	-	sign the analysis of various compound												
in industr														
	er; K2 -	Understand; K3 - Apply; K4 - Analyze	e; K5	- Ev	valu	ate; K6 -								
Create						0.1								
		(A) ANALYSIS OF ORES				0 hours								
_	-	vsis of Dolomite, Bauxite, Ilminite,	-	_	-									
		or constituents using one of the stand												
analysis and de	etermina	tion of purity of corresponding metal of	n me	iai o										
		(B) ANALYSIS OF ALLOYS		~ • •		0 hours								
1 ,	1	es, uses and analysis of : Brass, Bro			,									
		for their major constituents using o			ne	standard								
methods of ana	aiysis de	termination of purity of corresponding	meta	IS.										

	Total Lecture hours		60 hours
Te	xt Book(s)		L
1.	Vogel's Textbook of Macro and Semimicro Qualitat Svehla, Vogel's qualitative Inorganic analysis, VI Ed 1987.	0	•
2.	V.V. Ramanugam, Inorganic semimicro qualitati National Publishing company, 1974.	ve analysis,	3 rd edition,
3.	J. Basset, R.C. Denney, G.H. Jeffery and J.Mendham quantitative inorganic analysis, IV Edition, ELBS, 19	U	book of
4.	D.N. Grindley, An advanced course in practic Butterworths, 1964.	al Inorganic	Chemistry,
5.	W.G. Palmer, Experimental Inorganic Chemistry, Co.,London, 1972.	Van Nostran	d Reinhold

Mappir	ng with	Progra	amme	Outcon	nes*					
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
CO1	S	S	S	L	L	M	L	М	L	L
CO2	S	М	L	М	L	S	М	S	S	М
CO3	М	М	S	Μ	S	M	L	L	М	S
CO4	S	S	S	L	М	L	S	L	М	L

Semester-III	CHE C105			GANIC CH PRACTICA		RY	L	Т	Р	С
Core/Elective /Supportive				Core			0	0	6	3
Pre-requisite		nation	com	bonding plexes and ntation tecl			Syll Ver			R-2021
Course Object	ives:									
The main object	ctives of	this p	ractica	al course is	able to):				

Motivate the students to understand the basic principles and synthetic skill

- for the preparation of various metal ligand coordination complexesGain familiarity with a variety of instrumental techniques to understand
- the bonding and geometry of metal complexes
- Provide the basic knowledge for the interpretation of required instrumental datas to understand the structure and bonding of metal complexes
- Develop the ability of scientific communications through oral quizzes, written reports and presentations.
- Learn the technical skill for the crystallization of metal coordination complexes

Expected Course Outcomes (CO):

On	the successful completion of the course, student will be able to:	
1	Students will gain experience in some scientific methods employed	K1-K3
1	in basic and applied inorganic chemistry	KI KS
2	The skills in writing neat experimental procedures and	K3-K6
2	instrumental methods applied in analytical and practical task of	KS KO
	inorganic chemistry will be developed	
3	Gaining experience in various synthetic methods for the metal	K2-K4
5	coordination complexes will enable the student to design the	
	advanced materials need for the society	
4	Students will learn the key instrumental techniques would greatly	K5-K6
•	assist them to solve the complex problem in their research filed	KS KO
5	The laboratory skills and interdependent working culture during	K3-K6
5	the practical session will enable the students to work in diverse	KS KO
	team to achieve deliverable outcome in a assigned research/project	
K 1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evalua	ate: K6 _
	eate	ite, 10 –
		0 hours
	1. Chromatographic techniques; paper, thin layer and ion e	
	chromatographic methods for the separation and estimation of i	-
	compounds.	norganie
	2. Study of Complex compounds:	
	A. Synthesis and analysis of complex compounds and use of spec	rtroscopic
	techniques (IR, NMR, ESR, MS, UV) for characterization of complex	lioscopie
	1. Sodium hexanitrocobalt (III)	
	2. Tris (ethylenediamine) cobalt (III) chloride	
	3. Chloropentammine cobalt (III) chloride	
	4. Bis (acetylacetanato) copper (II)	
	5. Hexamminecobalt (III) chloride	
	6. Hexamminenickel (II) chloride	
	7. Bisthiocyanato (S) pyridine Mn (II)	
	8. Bisthiocyanato (S) pyridine Cu (II)	
	9. Bis(ethylenediamine) Cu(II) chloride	
	10. Tris(ethylenediamine) Ni(II) chloride	
	10. This(entry) encontantine) W(H) entonae	
	B. Determination of composition and formation constants by absorpti	on pH -
me	tric andpolarographic techniques, magnetic susceptibility measurement	-
		0 hours
		o nours
Tex	xt Book(s)	
1.	Vogel's Textbook of Macro and Semimicro Qualitative Inorganic Ana	•
	Svehla, Vogel's qualitative Inorganic analysis, VI Edition, Orient Longn	nan,
	1987.	
2.	Chemistry Experiments for Instrumental Methods:- D.T. Sawye	er, W.R.
	Heinemanand J.M. Beebe.	
3.	J. Basset, R.C. Denney, G.H. Jeffery and J.Mendham Vogel's Text boo	k of
	quantitative inorganic analysis, IV Edition, ELBS, 1985.	
4.	D.N. Grindley, An advanced course in practical Inorganic Ch	nemistry,
	Butterworths, 1964.	
5.	W.G. Palmer, Experimental Inorganic Chemistry, Van Nostrand F	Reinhold

```
Co.,London, 1972.
```

Mappir	ıg with	Progra	amme	Outcon	nes*					
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
CO1	S	S	S	s	Μ	М	Μ	Μ	S	S
CO2	S	М	S	М	L	S	M	S	S	М
CO3	Μ	Μ	Μ	Μ	S	М	L	L	М	S
CO4	S	S	S	L	М	L	S	L	М	L
CO5	S	М	S	М	L	S	M	S	S	М

Sen -1	nester	СН	IE E601		Τ			T														F	В	BI	I	C	D		L	.(0)(0	G		I	[(0		F	1			L	•	(2				E	N	Ŋ	1	I	[5	S	5	T	Г	']	F	R	S .	Ŋ	Y	ľ								L			T	T	[Р	,		(С								
	e/Electi oportiv							_																						E	E	le	e	20	C	21	t	ti	i	1	v	7	e)																															4	ŀ			0)		0			3	}								-
Pre-	requisi	te	Student organic o about biologica analytica	c co tl cal	c t al	co tł cal	co tl al	c ti al	c tl al	c ti al	co tl al	co tl al	co tl al	co tl al	co tl al	tł	o h l)1 16	n e sj	n e sy	n y:	p 's	st	o : te	f f	u fu er	ır u	n 11	n n	d 10	ls d	s. la	a	ı	n	S r	5		tı e	u a	n	1	d t	ł	e	1	1	t	S		s a	ł	1 5]	c F		e e	u eo	1 C		d t	1	l S] 5	k	k	(1	n	10	יס 0	V 01	N n	/ 1				-			ab sic						F	2	-;	2	0)2	2	1	_	
Cou	rse Obj	ecti	ves:																																																																				_	_	_										_			_						_	_	
The	main ot	oject	tives of th	his	nis	nis	is	nis	i	iis	is	is	is	is	is	S	s		с	co	0	υ	u	ır	rs	S	e	e	ć	a	ı	re	e	•	1	t		0):	:																																																						
•	detern To un biolog Illustr and t bioma metall To un toxicit	nina ndei gical rate o g icroi loen iders ty le		ing ort re es e ro	ng e ort e s	ng e s ort e s a rc	ng ort S	ng e ort e s	ng ort e s	ng e ort e s		rt rc	ng rt	rt	ng rt		g ta a	si ai ai	s ig ir ir	si g no no e	iz gr nc ns	z n si ł	e ig of	e if gt	fi fi gl tr	a ïc o h ra ł	ai c of nt a h	n ca of ts	no a f s n		1 n t] s]	s ic i p	s ce ir	e e n		u s t r	1 5	t	l v		a a		f t			f a c f l	r	s r s			e ii	n r	le a		n a li g	a n ir	a n n e		n i e g		n	d 1 n n	d ls nt	l s tr		c s c c	of c	e F i f	in	lı ro n ia	u o m ai	1 ot t	le te tl ni	0 e h et	os ein ne ta	se ns al m	s b	r c in	nu ol :o: nv	lo n		ei ic ol v	c e ii	al X ng	a e	s s		n	ls st W	s te vi	i er it	ir m tł	1 1 2	
			se Outcor		_		_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-																																																															
· · · · · ·			ul comple																																																																																_									_		
	membr	ane	bout stru s, amino a	ac	ac	ac	ac	a	a	a	IC	ac	a	ι	a	C	c	i	ic	d	ls	s,	,	ľ	p	or	r	Ċ	D 1	t	e	ei	iı	n	ı	15	s	5,	,	ł	а	l	ľ	n	1	j	ł)	i	0	t	i	C	C	s	5	2	a	u	n	l	10	d	ł	l	١	v	vi	it	a	aı	n	n	ni	ir	ns	5		-	-		.s	,								5			
2	Unders	tand	l structure	e a	e (e a	: 8	e (: 8	: 8	а	г	ł	8	ł	a	aı	n	n	d	ł	ł	b)i	ic	0)	lo	0)8	g	ţi	ic	С	2	a	l	1		i	1	n	r	n	ł)	C	1	t	2	ı	n	C	C	e	e	(С)	f	f		ł	R	2	l	N	N	Α	4	L	8	a	n	10	1	D)[N.	A	L				k	ζ	2	!-	K	ζ.	4			
	and Cu storage	in l e, ele	d the key living systectron- and e at the acc	ste ano	ste n	ste	te ne	ste n	te n	ste n	e no	te no	te n	te	te n	e	e d	en 1	m	n F	ı, pi) pr	p rc		a ot	ar to	r1 0	t:)1	i n	ic 1	C1	u ti	ıl r	1 :2	a	a u	r	r n	1 .5	5	y f	7 Fi	e	j	1 1	n .,		t ł	r	a y	r	ı d	s r	5] (0	р о	o ol	o ly	э У	r /:	rt 'S	t: S:	si	s i	s	(S	(5,	(ε	eı e	n et	ne to		er 2.	rg	g	5У М	v a vł	ar ni	no Ic	d	C)	2)	,		ŀ	ζ	1		K	ζ4	4			
4	Toxicit	y of	metals an	and	nc	nd	ıc	10	10	10	d	d	Ċ	d	C	d	ł	t	tl	h	ne	e	i	ir	r	e	e	ef	ff	fe	e	ec	C	t	ts	s	5	1	i	r	1	L	1	t	ł	1	2	1	0	i	С)]	1	0) <u></u>	g	gi	i	c	27	а	a	ıl	1		S	s	y	/S	st	te	e	er	m	n										k	ζ	1	-	K	ζ.	4			
5	To eval	luate	e toxicity	<i>y</i> 0	0	0	0	0	0	0	0	0	0	0	0)	of	f	(d	lr	rι	u	ıĮ	g	gs	s		υ	u	IS	se	e	eĊ	d	l		i	1	n	l		(С	ł	ı	n	(e	r		a	u	n	10	d	1	1	r	ra	a	a	ι	d	li	i	0)Ċ	dj	i	а	a	g	<u>gn</u>	IC)S	i	s					ľ	k	ζ	5	,) –	K	ζ(6			
K1 - Crea		nber	; K2 - Un	nd	ıd	nde	ıd	ıd	ıd	ıd	d	d	d	d	d	d	le	eı	er	ſS	st	te	a	n	10	d	1;	;		ŀ	K		3	3		-	-		1	4	1	\]	F	2	I)		Y	;		K	ζ.	4	1		-	-		Ā	4	1		n	n	12	a	ıl	ly	<i>¥</i> Z	ZG	e	>;	;]	K	.5	, , .	-	E	ΞN	18	ılı	1	at	e	;;		k	5	6	, -		_	

UNIT:1

BIO-ORGANIC CHEMISTRY

15 hours

Carbohydrates: Pyranose and furanose forms of aldo-hexose and ketohexosemethods used for the determination of ring size-conformation of aldohexopyranose-structure and synthesis of lactose and sucrose. A brief study of starch and cellulose.

Lipids and Membranes: Molecular structure of lipids. Fatty Acids, Triglycerides. Types of membrane lipids

Amino acids and Proteins: Amino acids and Protein structure, Analysis of Nterminal and C-terminals in a polypeptide. Sanger method, Edman degradation and Enzymatic analysis. Primary, secondary and tertiary structure of proteins. Structure of collagen, myoglobin and haemoglobin.

Nucleic acids: Chemistry of nucleic acids, nucleosides and nucleotides – Structure RNA and DNA and their biological importance.

Biomolecules: Antibiotics and vitamins: A detailed study of structure, and stereochemistry of penicillin, cephalosporin. Chemistry and physiological action of ascorbic acid, thiamin, riboflavin and pyridoxine – Elementary aspect of vitamin A, E, K and B12

UNIT:2 BIO-INORGANIC CHEMISTRY	15 hours
Essential and trace metal ions: Enzymes - Nomenclature and clas	sification –
Coenzymes - Vitamin B12, Carboxypeptidase and Superoxide dismuta	
enzyme - Peroxidase and catalases. Oxygen carriers: Hemeproteins - H	łemoglobin,
myoglobin - Structure Oxygenation and stereochemistry - Bohr effect	. Non-heme
oxygen carriers - Hemerythrin and hemocyanin. Nitrogen fixation: I	ntroduction,
types of nitrogen fixing microorganisms. Nitrogenase enzyme - Meta	l clusters in
nitrogenase - redox property - Dinitrogen complexes - transition meta	l complexes
of dinitrogen - nitrogen fixation via nitride formation and reduction o	0
to ammonia. Biological redox systems: Cytochromes -Classification,	•
a, b and c. Cytochrome P- 450. Transport of electrons: Iron-Sulph	ur Proteins:
Rubredoxins and Ferredoxins, Structural and Spectral features of In	on-Sulphur
Proteins. Photosynthesis and chlorophyll's	
UNIT:3 BIO-PHYSICAL CHEMISTRY	15 hours
Thermodynamics and biology-Basic concepts of structure and fu	inctionality-
membranes-structure, function transport properties, aspects of elec	trochemical
phenomena – active transport, ionophores, biological energy storage	•
stepwise mechanism of photosynthesis versus potential. Enzymes - No	omenclature

and classification, chemical kinetics, the free energy of activation and the effects of catalysts, kinetics of enzyme catalyzed reactions – Michaelis - Menten equation - Effect of pH, temperature on enzyme reactions, Factors contributing to the catalytic efficiency of enzymes. Membranes - Phase Equilibria, Donnan effect, Donnan Potential, Phase transition in Lipid bilayers, Free energy determination for ATP hydrolysis from sodium-potassium pump, Allosteric effects – Monod-Wyman-Changeux Theory, Assigning of Statistical weights for Helix-Coil transition in proteins, Study by spectroscopic methods

	in in proteins, study of specific memous	
UNIT:4	BIO-ANALYTICAL CHEMISTRY	15 hours
Essentia	ls of trace elements and chemical toxicology: Trace elements ir	n biological
system.	Metal ion toxicity - classes of toxic metal compounds- det	oxification.
Metals i	n medicine: Anti-arthritis drugs – Au and Cu in rheumatoid ar	thritis – Li
in psych	niatry - Pt, Au and metallocenes in anti-cancer drugs- metal	ls in radio
diagnosi	s, radio therapy and magnetic resonance imaging. Transport a	ind storage

6	
	metals: Mechanism – Fe, Cu, Zn and V storage and transport – metallothioeins.
	blecular mechanism of iron transport across the membrane – sodium and
pot	assium ion pumps. Pollution studies – Effluent and water treatment
	Total Lecture hours60 hours
Te	xt Book(s)
1.	Zubay, G, L. (1997); Biochemistry, 4th edition, Brown (William C.) Co
2.	Nelson, D, L Lehninger, A, L Cox M, M. (2008); Principles of Biochemistry, 5 th Edition, New York: W.H. Freeman
3.	John McMurray, (2008); Organic Chemistry, 8th edition, Brooks/Cole
4.	Finar, I. L. Vol 2 (2018); Organic Chemistry: Stereochemistry and the Chemistry of Natural product, III rd Ed, Pearson
5.	<u>Williams</u> D. R. (1976); Introduction to Bioinorganic Chemistry, Thomas, ISBN- 13 : 978-0398034221
Re	ference Books
1.	Kaim, W, Schwederski, B, Klein, A. (2013); Bioinorganic chemistry: Inorganic Elements in the chemistry of life, 2nd edition, Wiley
2.	Das Asim K. (2007); Bioinorganic Chemistry, 1 st edition, Books and Allied (P) Limited
3.	Mugherjee G. N, Arabinda D, (1993); Elements of Bioinorganic Chemistry, 4 th Edition, U. N. Dhur & Sons Pvt. Ltd
4.	Satake M. Mido Y. (1996); Bioinorganic Chemistry, ISBN 81-7141-301-1, Discovery Publishing House, New Delhi
5.	Eichorn, G, (1973); Inorganic Bio-Chemistry Vol. I and II, IV Ed, Elsevier
6.	Zhimin, T, (2008); Analysis of Cytotoxicity of Anticancer Drugs, VDM Verlag
	Dr. Mueller E.K.ISBN: 9783639063486, 3639063481
	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=iuW3nk5EADg
2.	https://www.youtube.com/watch?v=aeC7M9PDjQw
3.	https://www.youtube.com/watch?v=DhwAp6yQHQI
4.	https://www.youtube.com/watch?v=ZqoX2W1N6l0
5.	https://www.youtube.com/watch?v=lsNalwRnaq0&list=PLbMVogVj5nJSHhL_ cMKfzLv556ddrIT90
6.	https://www.youtube.com/watch?v=pXztk04J7u0&list=PLFW6lRTa1g83- gUOcT3ay875UG3a9Mu11
Co	urse Designed By:
I	

Mappir	ng with	Progra	amme	Outcon	nes*					
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
CO1	L	М	L	М	М	М	М	М	L	М
CO2	L	М	L	S	L	М	L	М	М	М
CO3	L	L	Μ	S	L	L	М	L	L	М
CO4	L	L	L	Μ	L	М	L	Μ	L	L
CO5	М	L	М	М	L	L	М	L	L	S

-III	CH	HE E602PHOTOCHEMISTRY AND NANOMATERIALSLTP										
Core/Elect			E	lective			4	0	0	3		
e/Supporti	ve	Students a	re expected	to have	hasic ide	a about						
			istry, vario									
		-	during				Sv	llab	116	R-		
Pre-requisi	te	-	allic comp				-	rsic		2021		
		about the		quantum		•		I JIC	,,,,	2021		
			l prelimina	ry idea of	t Nanom	aterials						
Course Obj	octi	and its pro	openy									
The main of			course are	to								
	•	and unders			al concer	nts of ph	oto	her	nist	ry and		
		of fluore			-	-				-		
pheno	-		seemee spe	een ose op j	101 11		-0	P0	·•P			
• Illust		different	photoche	emical re	eactions	of c	oor	lina	tion	and		
		tallic comp	-									
Know	ledg	ge on the fa	ster reactio	n kinetics	studies.							
• To kr	low	various tecl	nniques em	ployed for	r the cap	turing of	rea	ctiv	e tra	ansien		
specie	es in	a reaction										
Basic	und	lerstanding	of size dep	endent pro	operties	in nanos	cale	ma	teri	als		
		about na	-	is, their	propertie	es, synt	heti	с	me	ethods		
		and applica										
		e them lear	difference				c	nior	0000			
ahoro				nt analytic	cal techi	niques o	ГП	ner	JSCI	opy to		
		ize nano ma	aterials	it analytic	cal techi	niques o	1 H	ner	550	opy to		
Expected C	our	ize nano ma se Outcom	aterials es (CO):							opy to		
Expected C On the succ	our: essf	ize nano ma se Outcom ul completi	aterials es (CO): on of the co	ourse, stuc	lent will	be able t	0:					
Expected COn the succ1Disting	our essf guisl	ize nano ma se Outcom ul completi h different p	aterials es (CO): on of the co photochem	ourse, stuc	lent will sses such	be able t	0:					
Expected COn the succ1Distingphosph	our essf guisl	ize nano ma se Outcom ul completion h different p scence, non	aterials es (CO): on of the co photochem -radiative	ourse, stuc ical proces decay etc.	lent will sses such	be able t as fluor	o: esco	ence	e,	K2-K3		
Expected C On the succ Disting phosph 2 Unders	our essf guisl lores tand	ize nano ma se Outcom ul completion h different p scence, non l the effect	aterials es (CO): on of the co photochem -radiative of enviro	ourse, stuc ical proces decay etc. nments lik	lent will sses such ke solver	be able t n as fluor nts, neig	o: esco	ence	e,	K2-K3		
Expected C On the succ 1 Disting phosph 2 Unders molecu	our essf guisl lores tand les o	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche	aterials es (CO): on of the co photochem -radiative of environ emical deca	ourse, stuc ical proces decay etc. nments lik	lent will sses such ke solver	be able t as fluor nts, neig ecules	o: esco hbo	ence	e, g	K2-K3 K1-K2		
Expected C On the succ 1 Disting phosph 2 Unders molecu 3 Quanti	our essf guisl lores tand les o fy th	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche ne paramete	aterials es (CO): on of the co photochem -radiative of enviro emical deca r of decay	ourse, stud ical proces decay etc. nments lik by processe kinetics af	lent will sses such ke solver es of mol iter photo	be able t n as fluor nts, neig ecules o-excitati	o: esco hbo on	enco urin	e, g	K2-K3 K1-K2 K3-K4		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa	our essf guisl tand les o fy th re	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche	aterials es (CO): on of the co photochem -radiative of enviro emical deca r of decay	ourse, stud ical proces decay etc. nments lik by processe kinetics af	lent will sses such ke solver es of mol iter photo	be able t n as fluor nts, neig ecules o-excitati	o: esco hbo on	enco urin	e, g	K2-K3 K1-K2 K3-K4		
Expected C On the succ Disting phosph Unders molecu Quanti 4 Compa radiatio	our essf guisl lores tand les o fy th re	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche ne paramete photolytic	aterials es (CO): on of the co photochem -radiative of enviros emical deca r of decay techniques	ourse, stud ical proces decay etc. nments lik y processe kinetics af induced	lent will sses such ke solver es of mol ter photo l by lig	be able t n as fluor nts, neig ecules o-excitati tht and	o: esco hbo on ior	ence urin nizir	e, g	K2-K3 K1-K2 K3-K4 K3-K5		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid	our essf guish tand les o fy th re on ate	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche parameter photolytic	aterials es (CO): on of the co photochem -radiative of enviros emical deca r of decay techniques	ourse, stud ical proces decay etc. nments lik y processe kinetics af induced	lent will sses such ke solver es of mol ter photo l by lig	be able t n as fluor nts, neig ecules o-excitati tht and	o: esco hbo on ior	ence urin nizir	e, g	K2-K3 K1-K2 K3-K4 K3-K5		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nance	our essf guisl fores tand les o fy th re on ate o ma	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche parameter photolytic various met aterials	aterials es (CO): on of the co ohotochem -radiative of enviro emical deca r of decay techniques	ourse, stud ical proces decay etc. nments lik y processe kinetics af induced nthesis, pr	lent will sses such ce solver es of mol ter photo l by lig roperties	be able t n as fluor nts, neig ecules o-excitati tht and and app	o: esco hbo on ior lica	enco urin nizin tion	e, g ig is	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of name6To illu	our essf guisl tand les o fy th re on ate o ma stra	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various men aterials tes the basi	aterials es (CO): on of the co photochem i-radiative of enviro emical deca r of decay techniques thods of sy	ourse, stud ical proces decay etc. nments like y processe kinetics af s induced nthesis, pre-	lent will sses such ce solver es of mol ter photo l by lig roperties	be able t n as fluor nts, neig ecules o-excitati tht and and app	o: esco hbo on ior lica	enco urin nizin tion	e, g ig is	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nance6To illu system	our essf guisl tand les o fy th re on ate o ma stra ass	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various men aterials tes the basi embled in c	aterials es (CO): on of the co photochem -radiative of enviro emical deca r of decay techniques thods of sy ic compone	ourse, stud ical proces decay etc. nments like y processe kinetics af s induced nthesis, pre- ents of an ays	lent will sses such ce solver es of mol ter photo l by lig roperties	be able to a as fluor ats, neig ecules b-excitati and app al photos	o: esco hbo on ior lica	enco urin iizir tion	e, g lg ls c	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6		
Expected C On the succ 1 Disting phosph 2 Unders molecu 3 Quanti 4 Compa radiatio 5 Elucid of nanc 6 To illu system K1 - Remer	our essf guisl tand les o fy th re on ate o ma stra ass	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various men aterials tes the basi embled in c	aterials es (CO): on of the co photochem -radiative of enviro emical deca r of decay techniques thods of sy ic compone	ourse, stud ical proces decay etc. nments like y processe kinetics af s induced nthesis, pre- ents of an ays	lent will sses such ce solver es of mol ter photo l by lig roperties	be able to a as fluor ats, neig ecules b-excitati and app al photos	o: esco hbo on ior lica	enco urin iizir tion	e, g lg ls c	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nance6To illu systemK1 - Remer Create	our essf guisl tand les o fy th re on ate o ma stra ass	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various met aterials tes the basi embled in c ; K2 - Unde	aterials es (CO): on of the co photochem -radiative of enviro emical deca r of decay techniques thods of sy ic compone	ourse, stud ical proces decay etc. nments like y processe kinetics af s induced nthesis, pre- ents of an ays - Apply; 1	lent will sses such ce solver es of mol ter photo ter photo by lig roperties artificia K4 - Ana	be able to a as fluor ats, neig ecules b-excitati and app al photos	o: esco hbo ior lica ynt - E	enco urin iizir tion heti	e, g lg ls c	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 –		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nance6To illu systemK1 - Remer CreateUNIT:1	our essf guisl fores tand les o fy th re on ate o ma stra ass nber	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche photolytic various met aterials tes the basis embled in c ; K2 - Unde	aterials es (CO): on of the control of the control of enviror emical decay r of decay techniques thods of sy ic compone different waterstand; K3	ourse, stud ical proces decay etc. nments like y processes kinetics af induced nthesis, pro- ents of an ays - Apply; 1 CAL PHEN	lent will sses such ce solver es of mol ter photo l by lig roperties a artificia K4 - Ana OMENA	be able t as fluor nts, neig ecules o-excitati th and and app al photos	o: esco hbo on ior lica synt - E	enco urin iizir tion heti Evalu	e, g g s c uate	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 –		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of name6To illu	our essf guisl fores tand les o fy th re on ate o ma stra ass nber	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various met aterials tes the basis embled in c ; K2 - Under PHO of photocher	aterials es (CO): on of the co photochem i-radiative of environ emical deca r of decay techniques thods of sy ic compone different wa erstand; K3	ourse, stud ical process decay etc. nments like y processe kinetics af s induced nthesis, pro- ents of an ays - Apply; 1 CAL PHEN otochemic	lent will sses such ce solver es of mol ter photo l by lig roperties artificia K4 - Ana OMENA cal laws	be able t as fluor nts, neig ecules o-excitati ght and and app al photos alyze; K5 – emissio	o: esco on ior lica synt - F	enco urin iizir tion heti Evalu	e, g g s c uate hou dia	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 – rs		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nane6To illu systemK1 - Remer CreateCreateUNIT:1Fundamenta types of pho	our essf guisl tand les o fy th re on ate o ma stra ass nber	ize nano ma se Outcom ul completion h different p scence, non l the effect on photoche photolytic various met aterials tes the basis embled in c ; K2 - Unde PHO f photocher hysical path	aterials es (CO): on of the control of the control of environ emical decay r of decay techniques thods of sy ic compone lifferent waterstand; K3 TOPHYSIC mistry – phone ways – del	ourse, stud ical proces decay etc. nments like y processes kinetics af induced nthesis, pro- ents of an ays - Apply; 1 CAL PHEN otochemic layed fluor	lent will sses such ce solver es of mol ter photo l by lig roperties artificia K4 - Ana OMENA cal laws rescence	be able to a as fluor nts, neig ecules p-excitati th and and app al photos alyze; K5 – emissio – basic i	o: esco hbo on ior lica ynt - E	enco urin iizir tion heti 20 1 of ra	e, g g s c uate hou dia enta	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 – rs tions – tion of		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of nance6To illu systemK1 - Remer CreateUNIT:1Fundamenta types of pho steady-state	our essf guisl tand les o fy th re on ate o ma stra ass nber uls o otop	ize nano ma se Outcom ful completion h different p scence, non l the effect on photoche photolytic various met aterials tes the basis embled in c ; K2 - Unde PHO of photocher hysical path	aterials es (CO): on of the control of enviror emical decay r of decay techniques thods of sy ic compone different wa erstand; K3	ourse, stud ical proces decay etc. nments like y processes kinetics af induced nthesis, pre- ents of an ays - Apply; 1 CAL PHEN otochemic layed fluor meter – f	lent will sses such ce solver es of mol ter photo l by lig roperties a artificia K4 - Ana OMENA cal laws rescence luorescer	be able to a as fluor nts, neig ecules o-excitati th and and app al photos alyze; K5 – emissio – basic i nce emis	o: esco hbo on ior lica synt - E	enco urin iizir tion heti Evalu	e, g g us c uate hou adia enta olve	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 – rs tions – tion of		
Expected COn the succ1Disting phosph2Unders molecu3Quanti4Compa radiation5Elucid of name6To illu systemK1 - Remer CreateUNIT:1Fundamenta	our essf guisl tand les o fy th re on ate o ma stra ass aber uls o otop and tal o n er	ize nano ma se Outcom ul completion h different parameter photolytic various metaterials tes the basis embled in co ; K2 - Under PHO of photocher hysical path time-resol effects, red mission – st	aterials es (CO): on of the control of environ emical decay r of decay techniques thods of sy ic compone lifferent wa erstand; K3 TOPHYSIC mistry – pha ways – del wed fluoro -edge effect tatic and d	ourse, stud ical proces decay etc. nments like y processes kinetics af induced nthesis, pre- ents of an ays - Apply; 1 CAL PHEN otochemic layed fluor meter – f cts, effect ynamic qu	lent will sses such ce solver es of mol ter photo l by lig roperties artificia K4 - Ana OMENA cal laws rescence luorescer s of inte ienching	be able to a as fluor ats, neig ecules o-excitati and app al photos alyze; K5 – emission – basic ince emis ermolecu , Stern-V	o: esco on ior lica ynt - E on c nstr sior lar 70ln	enco urin iizir tion heti Dof ra umo n, so pho ner	e, g g s c uate dia enta olve topl kine	K2-K3 K1-K2 K3-K4 K3-K5 K5-K6 K3-K6 ; K6 – rs tion of tion of ont and hysical etics –		

acc	eptors			
UN	IT:2	PHOTOCHEMISTRY OF INORGANIC COMPLEXE	S	20 hours
sub	stitution	photochemistry – photoredox and isomerization n reactions– photosensitization reactions – photoch	emis	stry in energy
org	anomet	, application of metal complexes in solar er allic photochemistry –photochemical reactions in floch photochemical in photoch	me	tal carbonyls;
		ical techniques – flash photolysis – lasers in photoch - primary processes – track effects – dosimetry – pulse		
UN	I T:3	NANOSCALE MATERIALS		20 hours
and	size c	of a nano system - classification of nanoscale materia lependent phenomena – Quantum effect – Nanosca variation in mechanical, physical and chemical, m	ale	effects in size
tran app	isport, i roach	reactivity – Methods of preparation. Top to down – Mechanical, Physical and Chemical me	an anothoc	d Bottom up ls; Structural
con	npositio	ation; different types of electronic spectrosco on; Electron spectroscopies – Morphological characte c; SEM – TEM – Force microscopies; Application of na	rizat	tion – Electron
me	10000py	Total Lecture hours		hours
Тех	t Book	S		
1.	Physic	cal Chemistry: D.W. Ball		
2.	Trusco	photolysis and pulse radiolysis- R.V. Bensasson, E. J. ott, Pergamon Press		
3.	Interna	mentals of photochemistry- K. K. Rohtagi and Mukher ational (P) Ltd. Publishers		_
4.	photoc	xploration of Supramolecular systems and Nanostruct chemical techniques, Volume 78, Paola Ceroni editor,	Spri	inger
5.	Dieter	naterials: An introduction to synthesis, properties and Vollath, WILE-VCH, 2008		- · ·
6.	Photoc	son, A. W-, and Fleischauer, P. D., (Editors) "Concepts chemistry," Wiley-Interscience, New York, 1975.	s of .	Inorganic
	erence			
1.		etical Chemistry by S. Glasston		<u>01</u>
2. 3.		n Aspects of Inorganic Chemistry-H.J. Emeleus and A mentals of Radiation Chemistry- A. Mozumder, Acade		=
<i>3</i> . 4.	Nanos	tructures & Nanomaterials: Synthesis, Properties & mperial College Press, 2004		
5.	Acade	ni, V., and Carassiti, V. "Photochemistry of Coordina mic Press, New York, 1970		-
	1	nline Contents [MOOC, SWAYAM, NPTEL, Websites	s etc	:.]
1.	-	/www.youtube.com/watch?v=hIHNUVBvVkU	tor	a with light
2.	sensiti	ennig, D. Rehorek, R.D. Archer. Photocatalytic system ve coordination compounds and possibilities of their zation—an overview. Coordination Chemistry Review	spe	ctroscopic
3.		//nptel.ac.in/courses/104/103/104103069/	517	,,
4.	https:	//nptel.ac.in/courses/104/105/104105038/		
5.	-	/onlinecourses.nptel.ac.in/noc21_cy04/preview		
6.	https:	//nptel.ac.in/courses/104/106/104106077/		

Mappir	Mapping with Programme Outcomes*												
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010			
CO1	Μ	Μ	S	S	M	Μ	S	L	L	L			
CO2	S	L	M	S	S	Μ	S	L	L	L			
CO3	S	S	M	S	S	S	Μ	L	L	L			
CO4	S	S	S	S	S	S	S	L	М	L			
CO5	S	S	L	Μ	М	L	S	L	S	L			

Sen IV	nester- CH C1	RY	L	Т	Р	С							
	e/Elective pportive				Со	ore				4	0	0	4
Pre	Syllabus Version R-202												
Cou	ırse Objecti	ves:											
The	main object	tives	of this c	course	e are to	o:							
•	Provide m complex a Perceptive structural	nore b and th e of h and r critic inorg cate th	basic and heir reac- how liga- reaction cal think ganic ch he abilit	d unco ctivity ands p pathw king a nemist ty to c	omplic towas blay th way of and an try in s desigr	cated ards the vir f met analyt meta	he lig tal ro tal spe tical s ical s	gand and le in the ecies skills to aplexes.	metal meta solve	l intera l com	actio plex vled	on sta lge	ibility,
•	Cram th magnetoc	e m hemis	nagnetic stry and	pro deriv	operty ve the			tal con 's equation		in	the	ра	art of
_	the successf				-	urce	stude	ont will k	a abl	e to:			
1	Demonstra metals con kinetics an reactions a	tes m nplex id the ind th	nost com kes and ermodyn neir mec	nmon natur namic chanis	and i re of aspe sms	impor inert	rtant t and of co	futures of lability mplexes	of oxio in te form	dation erms ation	of		-K2
2	Understand mechanism describe th constants a	i invo e stal and to	olved wi bility of o calcula	ith tra f meta ate the	ans inf al con ermoc	fluen nplex dyna	ice of kes by mic p	ligand. y the use paramete	In add e of fo ers	dition, ormati	, to ion		2-K5
constants and to calculate thermodynamic parameters3Demonstrate broad knowledge of descriptive electron transfer/redox reactions in various metal complex formation reaction and understand fundamental aspect of Marcus-Hush theory its applications in photochemical reaction of coordination compounds											ion ush	K1	-K4

	D.F. Shriver and P.W. Atkins, Inorganic Chemistry, Oxford	University Press
	Purcell, K.F. and Kotz, J.C Inorganic Chemistry, Saunders	
	Basolo, F. and Pearson, R.G Mechanism of Inorganic Eastern	xeactions, whey
	Huheey, J.E Inorganic Chemistry, 4th Edition, Harper and Resola E and Pearson P.C. Machanism of Inorganical	
	Book(s)	
<u> </u>		12 nours
-anothermal anothermal methods and the method of the methods are a set of the methods are a se	omalous magnetic moments, magnetic exchange coupling and Total Lecture hours	72 hours
	anides and actinides- ferro, ferri and antiferromagnetic inte	
	i- and polynuclear transition metal complexes, magnetic	
	d T ground terms, effect of spin orbit coupling antiferromag	
	mination, quenching of orbital angular momentum, magnetic	I I
	Vlek's equation, Magnitude of magnetic moments	-
		18 hours
	ciples of synthesis of ligand design – dendrimers	10 hours
	t - Design and synthesis of various chelating and mach	rocyclic ligands
	nodynamics – chelating agents which bind to two metal ato	
	ion at donor and non-donor atoms - template reaction	
	ancillary ligands, cooperative ligands – extension of ligand	-
	netrical consequences of the metal ion and the donor atoms -	
UNIT		18 hours
	non complementary reactions, Marcus-Hush theory, photoche	
	sphere processes, electron exchange reactions, complem	
	ions or redox reactions – two electron transfer reactions, Ir	_
	-	lectron transfer
squar	re planar complexes, Ttans effect, theories and applications	– Isomerisation
	olysis, CB mechanism in octahedral complexes - Substitu	
	olysis) – Acid catalyzed aquation reactions, Anation r	
	ociative (D), Associative (A), and Interchange (I) mechanisms	-
Reac	tion pathways – mechanisms of substitutions in octahed	ral complexes -
UNII	COMPLEXES	
meta UNIT		18 hours
	various electronic configuration of transition metals and inn	er-transition
	lization of unusual oxidation states in solution – Survey of	
	cations – kinetics and mechanism of induced reaction in me	-
	ions and reaction mechanism, induced reactions and thei	
	ne basis of valence bond and crystal field theories - Met	-
	tivity of metal complexes - Inert and labile complexes - Expla	
UNIT		18 hours
Creat	te	
	Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - I	Evaluate; K6 –
	quenching in A, T and E terms	
	various metal ions and complexes and understand the orbital	
	Derive the spin, orbit and spin-orbit magnetic dipole moment	
	of ligands design and synthesis its application in various field	-
	Design and tailor various types of chelating ligands an binding affinity to the target metal and provide the basic con	

	5th Edition, 2010
5.	J. D. Lee, Concise Inorganic Chemistry, Oxford University Press, 5th Edition,
	2014
6.	B.N. Figgis - Modern Coordination Chemistry Ed. by Lewis & Wilkins (Unit IV)
7.	Bourdeax, E.A. and Mulay, M.N., - Theory and application of Molecular
	Paramagnetism, John Wiley
8.	F.A. Cotton and G. Wilkinson Advanced inorganic Chemistry, John Wiley &
	Sons, 6th Edition, 1999
Re	ference Books
1.	Nyholm, R.S. and Tobe M.L., - The stabilisation of oxidation state of the
	Transition metals, Advances in Inorganic and Radiation Chemistry, Volume 5
	(1963)
2.	(a) J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis,
	University; Science Books, Sausalito, CA, 2010
3.	G. L. Miessler, P. J. Fischer, D. A. Tarr, Inorganic Chemistry, 5th edn,
	Pearson, Upper Saddle River, NJ, 2014
4.	D.S.C. Blade and Hartshon, A.J., - Ligand, Design and Synthesis Coord.
	Chem. Rev.9 (1972) 219
5.	Nyholm., R.S. and Tobe. M.L., - The Stabilization of oxidation states of the
	transition metals, Advanced Inorganic and Radiation Chemistry, 5 (1963).
6.	R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Vol. 4,
	John Wiley & Sons, Inc., Hoboken, NJ, 2005
7.	Maabs, F.D. and Machin, D.T., Magnetism and Transition Metal Complexes
Re	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=ez40OIQrP60
2.	https://www.dalalinstitute.com/wp-content/uploads/Books/A-Textbook-of-
	Inorganic-Chemistry-Volume-1/ATOICV1-3-1-Inert-and-Labile-Complexes.pdf
3.	https://link.springer.com/chapter/10.1007%2F978-1-4419-9276-5_6
4.	https://www.youtube.com/watch?v=_eak-XY3Vx8
5.	https://onlinecourses.nptel.ac.in/noc20_cy19/preview

Mappir	Mapping with Programme Outcomes*												
COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010			
CO1	M	S	S	S	S	M	L	M	L	S			
CO2	S	S	S	S	М	S	Μ	М	L	L			
CO3	S	S	M	S	М	L	L	S	L	S			
CO4	M	S	S	M	S	S	Μ	S	М	L			
CO5	S	Μ	S	M	М	L	S	L	S	М			

Semester -1V	CH C1	IE 07	ORGA	NOMET	L	Т	Р	С			
Core/Elective /Supportive				Сот	re			4	0	0	4
Pre-requisi	Student	s must aware of fundamentals of						abu	S	R-2021	

organometallic compounds such as 16 and Version 18 electron rule, basic terms such as σ -	
donor, π -donor, π -acceptor ligands.	
Course Objectives:	
The main objectives of this course are to:	
• Know about the nomenclature and bonding of organometallic compour	nds
• Understand the synthesis and structure of complexes with σ - donor,	
π -donors and π acceptor ligands	5
• Study the vibrational spectra of metal carbonyl and metal n	itrosyl
complexes	5
• Study the fluxional nature of organometallic compounds	
• Describe applications of organometallic compounds as catalyst	
• Know the mechanism of Wilkinson's hydrogenation, oxo process, Fi	scher-
Tropsch process etc.	
Expected Course Outcomes (CO):	
On the successful completion of the course, student will be able to:	
	1-K2
compounds	1 112
	2-K3
and π acceptor ligands	
	3-K4
complexes	
1	4-K5
	5-K6
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	
Create	, 110
	nours
Nature of bonding in organometallic compounds and coordination complex-	
of ligands and their classifications in organometallic compounds,	• •
nomenclature -16 and 18 electron rule and its limitations $-$ Carbon σ -	
Synthesis, nature of bond, structure, reactivities and applications of alkyl Li	
Al and Zn, Cd	
UNIT:2 COMPLEXES WITH CYCLIC π DONORS 18 I	nours
Synthesis, nature of bond, structure, reactivities and applications of c	olefins,
acetylenes, π -allyl and dialkene, Cyclobutadiene, cyclopentadiene, be	nzene,
cycloheptatriene and cyclo octatetraene - Metallocenes and sandwich complete	exes –
Classification of fluxional organometallic Compound, mechanism and analy	ysis of
fluxionality in compounds	
UNIT:3 COMPLEXES OF π - ACCEPTOR LIGANDS 18 I	nours
Mono-and polynuclear metal carbonyls: preparation, structure and read	ctivity,
carbonylate anions and carbonyl hydrides, carbonyl halides, vibrational spec	ctra of
metal carbonyls - Nitrosyls: Mono -polynuclear nitrosyl complexes; linear	
and bridging nitrosyl, cyano complexes - Phosphine, Arsine and c	
and bridging nitrosyl, cyano complexes – Phosphine, Arsine and c complexes: Complexes of trivalent P and As derivatives. Methods of synthes	
complexes: Complexes of trivalent P and As derivatives. Methods of synthes structure	

Hy	drogenation of olefins - Hydroformylation of olefins - oxidation of	olefins to
ald	lehydes and ketones - polymerization of alkenes - Cyclooligomeriz	ation of
ace	etylene and Fischer-Tropsch process – isomerization – water gas shift react	tion
and	d supported organometallic catalysis	
	Total Lecture hours '	72 hours
Te	xt Book(s)	
1.	F.A. Cotton & G. Wilkinson - Advanced Inorganic Chemistry, 3rd and	d 4th Ed.,
	John Wiley.	, i i i i i i i i i i i i i i i i i i i
2.	Huheey, J.W Inorganic Chemistry, 4th Edition - Harper and Row.	
3.	K.F. Purcell & J.C. Kotz - Inorganic Chemistry, Saunder Company	
4.	Coats et al Organometallic compounds, Vol. I and II.	
5.	A. K. Das Vol. 5 & 6, Fundamentals of Inorganic Chemistry	
Re	ference Books	
1.	Robert H. Crabtree, The Organometallic Chemistry of the Transition N	Metals,
-	7 th edition, Wiley.	
2.	Shaw, B.L. and Tucker, N.L Organotransition metal compounds an	
	aspects of homogeneous catalysis in comprehensive Inorganic C	hemistry,
-	Vol.4. Bailer, J.C. et. al (Eds) Pergamon.	
3.	Zuckermann, H., - Basic Organometallic Chemistry, Walter de Gru	uyter and
	Co.	
4.	Wade, K., - Structure and bonding pattern in cluster Chemistry in A	Advances
	in Inorganic Chemistry and Radiochemistry 18 (1976) 1.	
5.	Wilkinson, Stone and Abel (eds) - Comprehensive Organometallic C	chemistry,
-	Volume 1	
6.	Edward Maslowsky Jr., Vibrational Spectra of Organometallics, Theor	retical
D	and Experimental Data	
	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1.	Organometallic chemistry :	
-	https://nptel.ac.in/courses/104/101/104101079/	
2.	Introduction to organometallic chemistry :	
-	https://nptel.ac.in/courses/104/108/104108062/	
3.	Advanced transition metal chemistry:	
	https://freevideolectures.com/course/4311/nptel-advanced-transition	n-metal-
~	organometallic-chemistry	
Co	ourse Designed By:	

Mappir	Mapping with Programme Outcomes*												
COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010			
CO1	Μ	Μ	S	Μ	М	S	L	Μ	М	L			
CO2	S	Μ	S	Μ	S	M	L	L	М	L			
CO3	S	Μ	S	S	S	S	Μ	L	L	L			
CO4	S	S	S	S	S	S	S	Μ	L	М			
CO5	S	S	S	S	Μ	M	S	L	L	М			

Semester -IV	CHE E603	NC	OVEI		EAGE SYN'			ORG	ANIC	L	Т	Р	С
Core/Elective e/Supportive			I	ELEC	стіv	Έ				4	0	0	3
Pre- requisiteStudents should learn about the basics of metal-catalyzed organic synthesis, including understanding mechanism, role of catalyst and other additives. In addition, students must be aware of the difference in the reaction mechanism involving typical organic reaction Vs carbon-metal catalyzed reaction.Syllabus NersionR-2021													R-2021
Course Obje													
includi molecu • To kno ortho-c • To u trifluor • To stu various • Unders catalyz	derstand van ing Ring C ales, new car ow utility of s quinodimetha anderstand romethylation dy the corr s types metal standing the zed reactions	rious closif rbon- silic ane a the on us relati d car e ho us and omes	s typ ng -carb on c and i e r ing I ion bon bon bon d the (CO	pes Meta bon & comp its ap mech Rupp betw bond geneo eir m	of athes & C- pounc pplican nanis pert-I ween d cor ous necha	iis, N bo Is in atior m Praka stru npou and anisu	synt ond f the and ash i actur unds hete m	thesis forma gener 1 sy reage re, pr s eroge	of of ation a ration ynthet nt coperti	cycli ind C of re ic ies a s me	c an 2-H a eacti app and etal-c	nd activ ve c licat reac	liene like tion of ctivity of
On the succe	-):		
	atalyzed orga						-			-			K1-K4
synthesi	ne various types of cyclic ar	nd a	cycli	ic fra	amew	vork	S						K2-K5
	ly specific nental data	rea	ction	n b	by co	omp	aring	g the	eoretic	cal	and/	or	K2-K4
	ew ideas or i ry and their a									llic			K1-K6
highly s for intermed	diates/compo	ymme ynthes ound	etric sis .s	al m	of	ules i	sucl ndus	h as (striall	CO ₂ aı y	nd m im	etha porta	ant	K3-K6
K1 - Remem	ber; $K\overline{2} - Un$	nders	stand	l; K3	3 - A	pply	; K4	- Ar	nalyze;	; K5	- Ev	valua	ate; K6 –
Create												-	F 1.
UNIT:1 Application	of following	<u>а</u> д	87 -	hla	vek e	lom	anto	in c	rannia	0.170	thee		5 hours
utility of San (Schwartz's r organic syn Homogeneou Murry coupl	narium iodid reagent) and nthesis. As as hydrogena ling. Tin in	de, R Cob symr ation orga	authe balt (metri a. Ap anic	eniun (Paus ic oplica synt	n (Ri son-H Refo ation thesis	ing (Khar orma 1 of ' s. U	Closi nd re tsky Titai (se c	ing M eactio rea nium of – 1	letathe n and action in org Bu ₃ Sn	esis-l Nicl us ganic iH ar	RCM nolas sing c syr nd 7	1) Z s rea Sa the Tin	action) in action) in amarium. sis – Mc mediated
carbon-carbo	n bond form	natio	n in	the s	synth	nesis	of c	cyclic	and a	lcycl	ic m	olec	cules

UN	IT:2		15 hours						
Ro	le of	Palladium and Nickel catalyst in organic reactions. Both Pd(0)							
		Ni(II) complexes are included. Typical reaction involving Hec							
		Aiyaura, Kumada, Sonogashira, Stille and Hiyama coupling for							
carbon bond formation. Buchwald-Hartwig coupling for the carbon- heteroatom									
		rmation reactions. Transition-metal catalyzed C-H bond							
		on in organic synthesis							
	IT:3		15 hours						
Sili	icon c	compounds. Use of trimethylsilyl chloride and t-butyldimethylsi	lyl chloride						
		ductive group. Use of trimethylsilyl iodide and trimethylsily	•						
		anes-Silyl Peterson olefination reaction. Trichloro silane and tri							
	-	ing agents. Role of trimethylsilyl group in the generation of rea	-						
like	e orth	o-quinodimethane. Generation and reactions of α and β silyl-	carbanions.						
Co	njuga	te addition using lithium organocuprates (Gilman's reagent)	1,2 vs 1,4						
adc	lition	. Umpolung-aldehyde ketone and acid synthesis from 1,3	dithiane.						
Tri	fluoro	pmethylation using Ruppert-Prakash reagent							
UN	IT:4	BONDING AND APPLICATIONS OF METAL CARBONYL	15 hours						
		COMPOUNDS							
		arbonyl reactions-substituted metal carbonyls, cis-labilising ef							
		onded carbonyl and cluster-insertion reaction-CO insertion, CO							
		ertion, methyl migration, phenyl migration, carbon hydr							
		n-Oxo reaction, Wacker process and Reppe synthesis-photocl							
		of metal carbonyls-Chromium, Manganese, Iron, Rhen							
Ru	theniu	m. Oxidative addition-Hydrogen, organic halides-Fischer Trop	al managana						
		Total Lecture hours	60 hours						
Тех	t Boo	Total Lecture hours							
Tex 1.	t Boo	Total Lecture hours ok (s)	60 hours						
	t Boo Colv	Total Lecture hours bk (s) in, E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Elsev</u>	60 hours						
1.	t Boo Colv Carr	Total Lecture hours ok (s)	60 hours						
1.	xt Boo Colv Carr Cam	Total Lecture hoursok (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseyuthers, W. (2015); Modern Methods of Organic Synthesis, 4	60 hours						
1. 2.	ct Boo Colv Carr Cam Smit	Total Lecture hours bk (s) in, E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Elsev</u> uthers, W. (2015); Modern Methods of Organic Synthesis, 4 bridge University Press	60 hours						
1. 2. 3. 4.	ct Boo Colv Carr Cam Smit Huho	Total Lecture hoursTotal Lecture hoursMain Statein, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseyuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearson	60 hours						
1. 2. 3.	ct Boo Colv Carr Cam Smit Huho Purc	Total Lecture hoursTotal Lecture hoursok (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elsevuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Edition	60 hours						
1. 2. 3. 4. 5.	ct Boo Colv Carr Cam Smit Huho Purc Lear	Total Lecture hoursTotal Lecture hoursbk (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseyuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Edition	60 hours						
1. 2. 3. 4. 5. Ref	at Boo Colv Carr Cam Smit Huha Purc Lear feren	Total Lecture hours bk (s) in, E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Elsev</u> uthers, W. (2015); Modern Methods of Organic Synthesis, 4 bridge University Press h,M, (2016); Organic Synthesis, 4 th Edition, Academic Press ee, J. E, (2014); Inorganic Chemistry, 4 th Edition, Pearson ell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1 st Edition ning ce Books	60 hours vier 4 th Edition, , Thomson						
1. 2. 3. 4. 5.	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web	Total Lecture hoursTotal Lecture hoursbk (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseyuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Edition	60 hours vier 4 th Edition, , Thomson						
1. 2. 3. 4. 5. Ref	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuji	Total Lecture hoursok (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Editionningce Bookser, W. P. (1983); Silicon Reagents for Organic Synthesis, SpringN 978-3-642-68661-0i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 97	60 hours vier 4th Edition, , Thomson er-Verlag,						
1. 2. 3. 4. 5. Ret 1. 2.	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuji 8503	Total Lecture hoursok (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Editionningce Bookser, W. P. (1983); Silicon Reagents for Organic Synthesis, SpringN 978-3-642-68661-0i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 9782-9	60 hours vier 4 th Edition, , Thomson er-Verlag, 8-0-470-						
1. 2. 3. 4. 5. Ref 1. 2. 3.	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuji 8503 Hege Mole	Total Lecture hours bk (s) in, E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Elser</u> uthers, W. (2015); Modern Methods of Organic Synthesis, 4 bridge University Press h,M, (2016); Organic Synthesis, 4 th Edition, Academic Press ee, J. E, (2014); Inorganic Chemistry, 4 th Edition, Pearson ell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1 st Edition ning ce Books er, W. P. (1983); Silicon Reagents for Organic Synthesis, Spring N 978-3-642-68661-0 i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 97 32-9 edus, L. S. (2009); Transition Metals in the Synthesis of Comple ecules, 3 rd Edition, University Science Books	60 hours vier 4th Edition, , Thomson er-Verlag, 8-0-470- x Organic						
1. 2. 3. 4. 5. Ret 1. 2.	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuj 8503 Hege Mole Crab	Total Lecture hoursbk (s)in, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseuthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Editionningce Bookser, W. P. (1983); Silicon Reagents for Organic Synthesis, SpringN 978-3-642-68661-0i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 9782-9edus, L. S. (2009); Transition Metals in the Synthesis of Compleecules, 3rd Edition, University Science Booksotree. R. H. (2019); The Organometallic Chemistry of the Transition	60 hours vier 4th Edition, , Thomson er-Verlag, 8-0-470- x Organic						
1. 2. 3. 4. 5. Ref 1. 2. 3. 4.	t Boo Colv Carr Cam Smit Huha Purc Lear feren Web ISBN Tsuj: 8503 Hege Mole Crab Meta	Total Lecture hours in , E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Else</u> uthers, W. (2015); Modern Methods of Organic Synthesis, 4 bridge University Press h,M, (2016); Organic Synthesis, 4 th Edition, Academic Press ee, J. E, (2014); Inorganic Chemistry, 4 th Edition, Pearson ell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1 st Edition ning ce Books er, W. P. (1983); Silicon Reagents for Organic Synthesis, Spring N 978-3-642-68661-0 i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 97 32-9 edus, L. S. (2009); Transition Metals in the Synthesis of Comple ecules, 3 rd Edition, University Science Books tree. R. H. (2019); The Organometallic Chemistry of the Transit ls, Wiley	60 hours vier 4th Edition, , Thomson er-Verlag, 8-0-470- x Organic						
1. 2. 3. 4. 5. Ref 1. 2. 3. 4. Re	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuji 8503 Hege Mole Crab Meta Iated	Total Lecture hours in , E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, Elsee uthers, W. (2015); Modern Methods of Organic Synthesis, 4 bridge University Press h,M, (2016); Organic Synthesis, 4 th Edition, Academic Press ee, J. E, (2014); Inorganic Chemistry, 4 th Edition, Pearson ell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1 st Edition ning ce Books er, W. P. (1983); Silicon Reagents for Organic Synthesis, Spring N 978-3-642-68661-0 i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 97 32-9 edus, L. S. (2009); Transition Metals in the Synthesis of Comple ecules, 3 rd Edition, University Science Books tree. R. H. (2019); The Organometallic Chemistry of the Transit ls, Wiley Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	60 hours vier 4th Edition, , Thomson er-Verlag, 8-0-470- x Organic						
1. 2. 3. 4. 5. Ref 1. 2. 3. 4. Re 1.	t Boo Colv Carr Cam Smit Huho Purc Lear feren Web ISBN Tsuj: 8503 Hego Mole Crab Meta Iated https	Total Lecture hoursin, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseruthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Editionningce Bookser, W. P. (1983); Silicon Reagents for Organic Synthesis, SpringN 978-3-642-68661-0i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 9782-9edus, L. S. (2009); Transition Metals in the Synthesis of Compleecules, 3rd Edition, University Science Bookstree. R. H. (2019); The Organometallic Chemistry of the Transitls, WileyOnline Contents [MOOC, SWAYAM, NPTEL, Websites etc.]s://www.youtube.com/watch?v=s8VqAqibrr8	60 hours vier 4th Edition, , Thomson er-Verlag, 8-0-470- x Organic						
 1. 2. 3. 4. 5. Ref 1. 2. 3. 4. Ref 1. 2. 	t Boo Colv Carr Cam Smit Huho Purc Lear fereno Web ISBN Tsuji 8503 Hege Mole Crab Meta Iated https	Total Lecture hours Total Lecture hours in, E. W. (1981); Silicon in Organic Synthesis, 1 st Edition, <u>Elser</u> uthers, W. (2015); Modern Methods of Organic Synthesis, 4 th bridge University Press h,M, (2016); Organic Synthesis, 4 th Edition, Academic Press ee, J. E, (2014); Inorganic Chemistry, 4 th Edition, Pearson ell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1 st Edition ning ce Books er, W. P. (1983); Silicon Reagents for Organic Synthesis, Spring 9 edus, L. S. (2009); Transition Metals in the Synthesis of Comple cules, 3 rd Edition, University Science Books tree, R. H. (2019); The Organometallic Chemistry of the Transit tree, R. H. (2019); The Organometallic Chemistry of the Transit s://www.youtube.com/watch?v=s8VqAqibrr8 s://www.youtube.com/watch?v=YAkAKsHsLyU	60 hours						
1. 2. 3. 4. 5. Ref 1. 3. 4. Re 1.	t Boo Colv Carr Cam Smit Huha Purc Lear feren Web ISBN Tsuj: 8503 Hege Mole Crab Meta Iated https https	Total Lecture hoursin, E. W. (1981); Silicon in Organic Synthesis, 1st Edition, Elseruthers, W. (2015); Modern Methods of Organic Synthesis, 4bridge University Pressh,M, (2016); Organic Synthesis, 4th Edition, Academic Pressee, J. E, (2014); Inorganic Chemistry, 4th Edition, Pearsonell K. F, Kotz, J. C. (1980); Inorganic Chemistry, 1st Editionningce Bookser, W. P. (1983); Silicon Reagents for Organic Synthesis, SpringN 978-3-642-68661-0i, J. (2004); Palladium Reagents and Catalysts, Wiley, ISBN: 9782-9edus, L. S. (2009); Transition Metals in the Synthesis of Compleecules, 3rd Edition, University Science Bookstree. R. H. (2019); The Organometallic Chemistry of the Transitls, WileyOnline Contents [MOOC, SWAYAM, NPTEL, Websites etc.]s://www.youtube.com/watch?v=s8VqAqibrr8	60 hours						

Mapping with Programme Outcomes*														
COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010				
CO1	M	M	L	S	М	Μ	M	M	L	L				
CO2	M	M	Μ	S	S	Μ	M	L	М	М				
CO3	M	M	Μ	M	S	Μ	S	L	М	L				
CO4	L	M	L	S	М	L	M	M	L	L				
CO5	M	Μ	М	S	М	L	M	L	М	М				

Sei IV	emester- CHE E004											L	Т	I	Р	C													
	·e/Elect																									-			
	ELECTIVE 3 0											0	3																
Pre	Basic knowledge of electrochemistry is essentialSyllab Versic																												
Course Objectives:													<u> </u>																
	e main ol			f tl	thi	is	co	our	se	are	e t	to	:																
		arn the												ct	ro	ocł	he	emi	ica	al t	ecl	hni	qu	les a	nd	tl	neii	r	
		cations		-	-																		-						
	 Desig 	n and fu	unct	ctic	ior	nir	ng	of	f el	lec	ctro	oc	he	m	ic	cal	l s	sen	SO	ors									
		luction											-					-											
		ibe the				/ a	nd	l pı	rac	ctic	cal	1 8	app	oli	CE	ati	or	ns	0	fv	vol	tan	net	tric	tec	h	niq	ue	S
	and polarography																												
•	• Understand the principles and applications of coulometry and																												
Even		ogravin	-				0.0.1	(<u>.</u>																			
	the succ							-	-		00		raa		141	ud	lor	nt	****	11	ha	ah	10	to					
1				_																					20		K1	V	1
T	Working spectros	-	leug	ge	e	or	II S	sei	nsc	ors	5 2	an	u	eı	e	cu		CIIC	en	nc	ai	1111	ipe	an	ce		N I	-17	4
2	Types o		odes	es a	a	nd	l th	nei	ir f	fun	nct	io	ns													+	K3	-K	5
	Electric														r	orc	op	ert	tie	S						_	K2		
4	Disting			-	-										_		_				ra	phi	С			_	K2		
-	techniqu		0101			-71				.01							ω J	P ⁰	1	5	,	2111	•						
5	Interpre	et and ap	pply	yе	el	lec	etro	oa	na	ılyt	tic	cal	l te	ech	n	nic	qu	les	ir	n re	ese	arc	h				K3	-K	4
6	Fundaln	nentals	of c	co	ori	ro	sio	on	an	nd i	its	5 F	ore	ve	en	tic	on	1									K5	-K	6
K1	- Remen	nber; K2	2 - U	U	Jn	nde	erst	tan	nd;	K.	3		Ap	pl	y	; ŀ	K4	1 -	А	na	lyz	ze;	K:	5 - I	Eva	lu	ate	; K	<u> </u>
Cre													-	-	-						•								
UNI	IT:1	ELEC																				A	NI		15	h	our	'S	
L										NE																			
	ctrical d		•													•								-					
	rmodyna																					0						-	llary
-	nomena,								-	-						-	-				-								of fied
	face char erfaces,																												
me	maces,	1 CHIIII	JILZ-	/ - 1				, `	00	Juy	y		Ľ		պ	211	i i a	.11	a	nu	с С		11	me	ue	ь,	3	PU	

adsorption. Corrosion - Thermodynamic criteria of corrosion of metals – Dry and wet corrosion, homogenous (Wagner and Traud's) and heterogenous theories, classification of corrosion –Uniform, Galvanic, Crevice, Pitting and Intergranular corrosion- Povrbaix diagram. Corrosion prevention - passivation and inhibitors. Electrokinetic phenomena - overview of Zeta Potential – Principles, Mechanism and applications. Conversion and storage of electrochemical energy. Fuel cells and Lithium-ion battery

UN	IIT:2 POTENTIOMETRIC AND SENSING TECHNIQUES	15 hours								
Po	otentiometry - standard and formal potentials - Nernst ec	uation. Types of								
ele	ectrodes -indicator and reference electrodes. Ion selective elect	rodes - crystalline								
and non crystalline electrodes - glass electrode for pH measurements, mechanism										
of	electrode response and evaluation of selectivity coeffic	ient, asymmetry								
pot	tential, alkaline and acid errors, applications of ion sel	ective electrodes.								
Ch	ronoamperometry and Chronopotentiometry. Potentiometry	tric titrations -								
ma	nual and automatic titrators, titrations including diff	erential methods								
titr	ations in non-aqueous systems, titrations with pola	rized electrodes.								
Bij	poteniometry - principle, instrumentation and applications. A	Amperometric and								
Po	tentiometric sensors - Gas Sensors, Bio sensors. Impedance s	spectroscopy,								
RE	DE, RRDE, sensors									
UN	IIT:3 VOLTAMETRIC TECHNIQUES	15 hours								
V	oltammetry–Polarography- DME, polarograms, currents	in polarography,								
pol	larographic maxima, effect of dissolved oxygen and applic	ation to chemical								
ana	alysis, amperometeric titrations, pulse polarography	– normal and								
dif	ferential pulse, square wave polarography, stripping meth	ods – cathodic								
and	d anodic stripping, linear sweep voltammetry, cyclic v	oltammetry, types								
of	electrodes and chemically modified electrodes. Coulometric	analysis - Theory,								
Fa	raday's laws, types of coulometres, coulometric titrations; El	ectrogravimetry -								
Th	eory, electrogravimetry, order of deposition, constant pe	otential, constant								
cui	rrent deposition and deposition of complex ions									
	Total Lecture hours	45 hours								
		10 110 110								
Te	xt Book(s)									
Te	xt Book(s) Douglas A. Skoog, Donald M. West, F. James Holler, Stanley									
	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley	R. Crouch,								
1.	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition	R. Crouch,								
1.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Chemistry 	R. Crouch, emistry, Marcel								
1. 2.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Chemistry Inc., 1980 	R. Crouch, emistry, Marcel								
1. 2.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, 1 	R. Crouch, emistry, Marcel F. Holler, Stanley								
1. 2. 3.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry :								
1. 2. 3.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, 1 Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial 1 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry :								
1. 2. 3.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry :								
1. 2. 3. 4.	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company,								
 1. 2. 3. 4. 5. 	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts,1975. P.T. Kissinger and W.R. Heineman, 8. Laboratory T 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company,								
 1. 2. 3. 4. 5. 	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. P.T. Kissinger and W.R. Heineman, 8. Laboratory T Electroanalytical chemistry, Marcel Decker Inc., 1984 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company, Fechniques in								
 1. 2. 3. 4. 5. Re 	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. P.T. Kissinger and W.R. Heineman, 8. Laboratory 7 Electroanalytical chemistry, Marcel Decker Inc., 1984 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company, Fechniques in								
 1. 2. 3. 4. 5. Re 1. 	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. P.T. Kissinger and W.R. Heineman, 8. Laboratory T Electroanalytical chemistry, Marcel Decker Inc., 1984 ference Books John O'M. Bockris, Amulya K. N. Reddy, "Modern Electroanal I, Plenum Publishing, 2008 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company, Fechniques in chemistry", Vol. I								
 1. 2. 3. 4. 5. Re 	 Douglas A. Skoog, Donald M. West, F. James Holler, Stanley Fundamentals of Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Che Decker Inc., 1980 Principles of Instrumental Analysis – Douglas A. Skoog, I Crouch, 7th Edn Brooks/Cole publish; 7th edition, 2017 E. Gileadi, E. Kirowa- Eisner and J. Penciner, 3. Interfacial I An Experimental Approach, Addison-Wesley Publis Massachusetts, 1975. P.T. Kissinger and W.R. Heineman, 8. Laboratory T Electroanalytical chemistry, Marcel Decker Inc., 1984 ference Books John O'M. Bockris, Amulya K. N. Reddy, "Modern Electroanalytical 	R. Crouch, emistry, Marcel F. Holler, Stanley Electrochemistry : shing Company, Fechniques in chemistry", Vol. I								

3. Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr., CBS Publishers &

	Distributors; 7th edition (2004).								
4.	Modern polarographic methods in Analytical Chemistry- A. M Bond, Marcel								
	Decker Inc., 1980								
5.	Laboratory Techniques in Electroanalytical chemistry - P.T. Kissinger and								
	W.R. Heineman, Marcel Decker Inc., 1984								
6.	Chemical Instrumentation – H.A. Stoubel, Addison- Wesley, 1976 Stripping								
	analysis – J. Wang, VCH Publication, 1985								
Re	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1.	https://www.youtube.com/watch?v=3olOk_xNq8g								

Mapping with Programme Outcomes*														
COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010				
CO1	Μ	S	S	Μ	М	S	M	Μ	L	S				
CO2	S	M	S	S	S	M	S	Μ	М	L				
CO3	S	S	S	Μ	L	M	S	L	L	L				
CO4	Μ	S	S	S	М	S	M	L	М	S				
CO5	S	S	S	Μ	S	L	S	Μ	L	L				