M.SC., ENVIRONMENAL BIOTECHNOLOGY

1

MODEL SYLLABUS

AUGUST- 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

LEARNING OUTCOMES – BASED CURRICULUM FRAME WORK GUIDELINES BASED REGULATIONS FOR POST GRADUATE PROGRAMME M C. E....

Program	me: M.Sc. Environmental Biotechnology
Program	me Code
Duration	2 years [PG]
Program	Outcomes (PO)
On succes	sful completion of the M.Sc., Environmental Biotechnology program, the students
are expect	ed to
PO1	Broad based knowledge in Environmental Biotechnology
PO2	Transforming meaningful applications for better healthcare, industries, and economic
102	development
PO3	Constant updation of knowledge
PO4	Empowering skills
PO5	Sole responsibility of contributing the public to lead better life through extension activities
PO6	Development of critical thinking and problem-solving skills
PO7	The provision of an inspiring, exciting and collaborative scientific environment
PO8	To inculcate the values of professionalism and dedication
PO9	Develop intelligent strategies and biochemical approaches in problem solving methods
PO10	To compete globally with confidence in all the sectors of life science

Prograi	n Specific Outcomes (PSO)
On succ	essful completion of the M.Sc., Environmental Biotechnology program, the students
are expe	octed to
PSO1	Ability to understand the technical aspects of existing technologies that help in
	addressing the biological and Environmental challenges faced by humankind.
PSO2	Ability to contribute effectively in the development of the ethical practices,
1502	societal contributions, and leading to responsible and competent professionals
PSO3	Acquiring the ability of leadership skills to manage projects in multidisciplinary
1505	environments
PSO4	Nurture problem solving skills, thinking, creativity through assignments, field work,
1504	seminar presentations and project work.
PSO5	Assist students in preparing (personal guidance, research papers, and books) for
1505	competitive exams e.g., NET-JRF, SLET, etc.

M.Sc. ENVIRONMENTAL BIOTECHNOLOGY

The course of study and scheme of examination

1. Name of the course: M.Sc. Environmental Biotechnology

2. Choice Based Credit System(CBCS)

Choice based credit system is a flexible system of learning. Credit" defines the quantum of contents/ syllabus prescribed for a course and determine the number of hours of instruction required.

The CBCS has unique features such as enhanced learning opportunities, ability to matchstudentsscholasticneedandaspirations, interinstitution transferability of students, part completion of an academic program in the institution of enrollment and part completion inspecialized and recognized institution, improvement in educational quality and excellence, flexibility for working students to complete Program meover an extended time and standardization and comparability of educational programs across the country.

3. The preamble of the syllabus

Master of Science (M.Sc.) in Environmental Biotechnology, the curricula, and course content were designed to meet the standards of UGC-CSIR (NET) and (SLET) examinations. The choice-based credit system of learning develops a strong base in the core subject and specializes in the disciplines of his / her liking and abilities and develops an in-depth understanding of various aspects of Biotechnology. The students develop experimental skills, design, and implementation of novel synthetic methods, and develop the aptitude for academic and professional skills, by acquiring basic concepts for structural lucidation with hyphenated techniques, and understanding the fundamental biological process and rationale of the computer. The project introduced in the curriculum will motivate the students to pursue research and entrepreneurial skill development.

Examination Pattern: Time allotted: Theory–

	External marks	Internals marks	Total marks
Theory	75	25	100
Practical	75	25	100

Marks distribution for internals:

	Test	seminars	Assignment	Total marks		
Theory	15	05	05	25		
	Test	Record	Total marks			
Practical	10	15	25			

Pattern of question paper (theory):

Study ins. Cred Components it		Cred it	Title of the Paper	Maximu Marks	m		
Course Title k				CIA	Uni.Ex	x Tot	
SI	EMEST	ERI				am	al
Core	Paper-1	5	4	Environmental Toxicology	25	75	100
Core	Paper-2	5	4	Environmental Biology	25	75	100
Core	Paper-3	5	4	Analytical Techniques	25	75	100
	Inter	nal E	lectiv	ve for same major students(Choose any or	ne)		
Core Electiv e	Electiv e–I	3	3	 A. Solid Waste Management B. Environmental Pollution C. Ggenetics 	25	75	100
Practica l-I	L	10	4	A.Lab in Biochemistry & Cell And Molecular Biology & Lab in Microbiology	25	75	100
Value Added course	VAC-1	2	2	 A. Mushroom Cultivation and Apiculture B. Vermi Culture Technology C. Validation of Medicinal Plants 	25	75	100
		30	21				
SF	EMESTI	ERII			CIA	Uni.Ex am	x Tot al
Core	Paper-4	4	4	Natural Resources	25	75	100
Core	Paper- 5	4	4	Environmental Microbiology	25	75	100
Core	Paper– 6	4	4	Environmental Chemistry	25	75	100
Core	Paper-7	4	4	Bio stastics and Modelling	25	75	100
	Inter	rnal E	Electi	ve for same major students(Chooseanyon	e)		
Core Electiv e	Electiv e-II	2	2	A. Enzyme TechnologyB. Dairy TechnologyC. Pharmaceutical Technology	25	75	100
Practica 1-III	L	10	4	A.LabinImmunology&LabinGeneticEng ineering and Bioinformatics	25	75	100
		28	22				

The course of study and the scheme of Examination–Department of Biotechnology

Study Components		ins.hrs/wee			Maximum Marks			
Course Titl	le	k	Credit	Title of the Paper		Uni Fra		
SEMESTE		RIII			CIA	m	Total	
Core	Paper-9	4	4	Immunology		75	100	
Core	Paper-10	4	4	Cell and Molecular Biology	25	75	100	
Core	Paper-11	4	4	Biotechnology	25	75	100	
Core	Paper-12	4	4	Microbial and Industrial Applications	25	75	100	
		Intern	nal Ele	ctive for same major students(Choose a	nyor	ne)		
Core Elective	Elective-III	3	3	Water and waste water treatment technology B.Genomic and Proteomics C.Herbal Biotechnology		75	100	
I	ExternalElectivef	orothermaior	student	ts(Inter/multi-disciplinarypapers)(Choo	sean	vone)		
Open Elective	Open Elective-II	2	2	A. Environmental Science B. Medicinal Microbiology C.Agricultural biotechnology	25	75	100	
Practical-V		10	4	 A. Lab in Plant Biotechnology & Animal Biotchnology & B.Lab in Microbial Technology & Environmental Biotechnology. 	25	75	100	
*MOOC			2				100	
Courses							100	
*USRR			2				100	
		31	29					
	SEMESTER	RIV			CIA	Uni.Exa m	Total	
Core	Paper-13	4	4	Genetic Engineering	25	75	100	
Core Elective	Elective-IV	3	3	A.Bioremediation B. IPR and Biosafety C. Biochemistry		75	100	
Core	Project Compulsory	23	8	8 Project with <i>viva voce</i> (75H +25		100 5Project 25viva)	100	
		30	15					
		120	91		725	2275	2900	

Extra credits for*MOOC course=2 *USSR Project=2

SEMESTER I

PAPER1:Environmental Toxicology

Subject: Environmental

Paper code: **Toxicology**

Hours/Week:5

Credits:4

Aim: To enable the students to understand the basic concepts of Toxic chemicals and also to learn the various mode of entry of toxic substance in environment.

Course Objectives

- 1. To learn thebasic concept of toxic substance in environment.
- 2. To learn the mode of entry of toxic substance.
- 3. To develop knowledge on Insecticides
- 4. To learn the possible effect of imbalance of some trace elements
- 5. To develop a piece of knowledge in biogeochemical factor in environmental health

Course Out Comes

After completing unit1, the students will be able to identify the toxic chemicals and their biochemical aspects in environment

1.After studying unit2, the students will be able to describe the mode of entry of toxic substance and carcinogenicity in environment.

2.After studying unit3, the students will be able to describe the Concept of major trace elements and its effects.

3. After studying unit4, the students will be able to explain biogeochemical factor in environmental health.

4. After studying unit5, the students will be able to explain about pollution

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Teaching hours						
	Course Contents							
UnitI	Toxic chemicals in the environment - air, water & their effects, Pesticides in water, Bio chemicals aspects of arsenic, cadmium, lead mercury, carbon monoxide, ozone and PAN pesticide.	18hours						
Unit-II	Mode of entry of toxic substance, biotransformation of xenobiotics detoxification, Carcinogens in air, chemical carcinogenicity, mechanism of carcinogenicity, Environmental carcinogenicity testing.	18hours						
Unit-III	Insecticides,MICeffects,Conceptofmajor,traceandRareEarthElement(R EE)-possible effects of imbalance of some trace elements	18hours						
Unit-IV	Biogeochemical factors in environ mental health. Epidemiological issues goiter, fluorosis, arsenic poisoning.	18hours						
Unit-V	Introductiontopollution,air,noise,water,soil,thermal,marineandradioacti vePollution, Concept of Waste management, Solid and hazardous waste management, Electrical energy generation, e-waste, flyash, plastic waste, Environmental management system standards, IPCC, UNEP, IGBP, Global environmental issues- Biodiversity loss, climate change, Ozone depletion, sea level rise	18hours						
	Total Teaching hours	90						

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

ReferenceBook:

- 1. Environmental chemistry-Sodhi
- 2. Principals of Environmental chemistry- Manhan
- 3. Environmental hazards & human health R.B.Philip
- 4. Toxicology-principles & applications-Niesink & Jondevries
- 5. Parasitology-Chatterjee
- 6. Preventive & Social medicines–Perk

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

PO-Programme Outcome, CO-Course out come,S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER I PAPER2:Environmental Biology

Paper code: Hours/Week:5 Subject: Environmental Biology Credits:4

Aim: To enable the students to understand the basic concepts of Ecosystem and also to learn thepopulation ecology and earths major ecosystem.

Course Objectives

1.To learn the basic concept of ecology and ecosystem.

2.To learn the Ecosystem structure and function.

3.To develop knowledge on Population ecology and Ecological Model.

4.To learn the earths major ecosystem and also about the man made reservoir.

5.To develop apiece of knowledge insoil micro organism.

Course Out Comes

6.After completingunit1, the students will be able to identify the origin of life and evolution.

7.After completingunit2, the students will be able to understand the ecosystem structure and ecological pyramids.

8.After completing unit3, the students will be able to explain the growth curve and models.

9. After completing unit4, the students will be able to explain the earths major ecosystem.

10. After completing unit5, the students will be able to explain the water conservation

Matching Table (Put Yes/No in the appropriate box)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

11

Units		Teaching hours					
	Course Contents						
UnitI	JnitI Definition, principles and scope of ecology, human ecology and human settlements, evolution, origin of life and specification, Ecosystem stability-cybernatics and ecosystem regulation, evolution of biosphere.						
Unit-II	Ecosystem structure and functions, abiotic and biotic component, Energy flow, food chain, food web, Ecological Pyramids-types, biogeochemical cycles, ecological succession, Ecads and ecotypes.	18hours					
Unit-III	Population ecology- density, natality, mortality, survivorship curves, age distribution, growth curves and models, r & k selection, population interactions- Mutualism, Parasitism, Predator- Prey relations, System Theory and Ecological Model.	18hours					
Unit-IV	Earths major ecosystem - terrestial and aquatic ecosystem, soil microorganism and their functions, coastal management, criteria employed for disposal of pollutants in marine ecosystem, coastal water system and man-made reservoirs, biology and ecology of reservoirs.	18 hours					
Unit-V	Waterconservation,Rainwaterharvesting&watershedmanagement,ande nvironmentalethics.Climatechange,globalwarming,acid,rain,ozone layerdepletion.Environmentalprotectionact,populationexplosion.Disast ermanagement	18hours					
	Total Teaching hours	90					

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. Basic ecology-E.P. Odum
- 2. Ecology and fieldbiology-R.L.Smith
- 3. Ecology-P.D.Sharma
- 4. Fundamentals of ecology-E.P. Odum
- 5. Principles of ecology–Rickleff

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

PO-Programme Outcome, CO-Course out come, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER I

PAPER3:Analytical Techniques

Paper code: Subject: M.sc Environmental Biotechnology

Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of techniques .

Course Objectives

1.To learn the Principle and applications of Microscopes.

2.To learn the basic concept of chromatographic techniques.

3.To develop knowledge on Chromatography

4.To learn the methods for protein interaction .

5.To develop apiece of knowledge inMolecular markers..

Course Out Comes

6.After completingunit1, the students will be able to understand the principle and application of

Spectrophotometer and Microscope.

7.After completingunit2, the students will able to understand the Chromatographic

techniques.

8. After studying unit3, the students will be able to explain the Gas liquid chromatography and

High pressure liquid chromatography.

9. After studying unit4, the students will be able to explain the methods for measuring nucleic acid and protein interaction.

10. After studying unit5, the students will be able to explain about the Electrophoresis .

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Course Contents	Teaching hours
UnitI	Principles and application of Spectrophotometry (UV-Visible	18hours
	spectrophotometry), Titrimetry, Gravimetry, Colourimetry, NMR, ESR, Microscopy-phase, light and flourscence microscopes, Scanning and Transmission electron microscopes	
Unit-II	Chromatographic techniques (Paper chromatography, thin layer chromatography, ion exchange chromatography, Column chromatography), Atomic absorption spectrophotometer, cytophotometry and flow cytometry, Fixation and staining, Principles and techniques of nucleic acid hybridization and Cot curves, Principle of biophysical method used for analysis of biopolymer structure, Hydrodynamics methods, Plasma emission spectroscopy.	18hours

Unit-III	Electrophoresis, solid and liquid scintillation, X-ray florescence, X-ray diffraction. Flame photomtery, Gas-liquid chromatography, High pressure liquid chromatography - auto radiography, Ultracentrifugation.	18 hours
Unit-IV	Methods for measuring nucleic acid and protein interactions, DNA finger printing Molecular markers RFLP, AFLP, RAPD, Sequencing of proteins and nucleic acids, southern, northern, western blotting techniques, PCR polymerase chain reaction	18hours
Unit-V	General principles. Factors affecting the migration rate – sample, electric field,buffer,andsupportingmedium.Tiseliusmovingboundaryelectropho resis.PAGE.SDS–PAGE.Pulse- fieldgelelectrophoresis.Celluloseacetatemembraneelectrophoresis.Agar osegelelectrophoresis	18hours
	Total Teaching hours	90

Distribution for Internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. Principles of Biophysical chemistry- Uppadahay-Uppadahay and Nath.
- 2. Analytical Techniques-S.K. Sahani

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

PO-Programme C	Jutcome,	CO–Course	outcome,	S-3, M-	-2, L-1
					/

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER I

ELECTIVE PAPER1: Solid Waste Management

Paper code: Subject:M.sc Environmental Biotechnology Hours/Week:5

Credits:3

Aim: To enable the students to understand the concept of Solid waste Management methods and also to understand the Control and Treatment of Hazardous Waste Management.

Course Objectives

1.To learn theSource, generation , classification & Composition of solid waste management.

2.To learn the basic concept of Solid Waste Management Plan

3.To develop knowledge on Hospital Waste Management

4.To learn the methods for Disaster Managementt

5.To develop apiece of knowledge in Hazardous Waste Management &Handlingrules,1989& 2000 (amendments)

Course Out Comes

6.After completingunit1, the students will be able to Understand the energy recovery from organic waste.

7.After completingunit2, the students will able to understand the Hazardous Waste Control & Treatment.

8.Aftercompletingunit3, the students will be able to explain the Hospital Waste Management

9. After completing unit4, the students will be able to explain the Primary, secondary & tertiary & advance treatment of various effluents.

10.After completing unit5, the students will be able to explain the process of urban waste .

11.After completing unit6, the students will be able to explain about the applied use of solid waste .

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Teaching hours
	Course Contents	
Unit-I	Sources, generation, classification & composition of solid wastes. Solid waste management methods-Sanitary landfilling, Recycling Composting, Vermicomposting, Incineration, energy recovery from organic waste.	18hours
Unit-II	Solid Waste Management Plan, Waste minimization technologies, Hazardous Waste Management, Sources & Classification, physicochemical properties, Hazardous Waste Control & Treatment.	18hours
Unit-III	Hospital Waste Management, Hazardous Waste Management &Handlingrules,1989& 2000 (amendments)	18 hours
Unit-IV	Disaster Management, Fly ash generation & utilization, Primary, secondary & tertiary& advance treatment of various effluents.	18hours
Unit-V	Processing of Urban Waste □: Methods of collection, storage, transportation. □ Material Seperation □ Processing on site and off site for source reduction, produc recovery and recycling □ Methods of disposal – Dumping, Sanitary Landfill, Incineration, Pyrolysis, Composting, Ocean Dumping. □ Leachate Management for MSW landfills	18hours
	Total Teaching hours	90

Distribution for Internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

1. Solid Waste Management CPCB. NewDelhi.

2. Eco technology for pollution control & environmental management - By R.K. Trivedi & Arvind Kr.Basic Environmental Technology-J.A. Nathanson

3. WaterAnalysis:MeasurementofTotalSolids,Total-dissolvedsolids,Total-

suspendedsolids, dissolved oxygen, total hardness, chloride, turbidity, nitrite, nitrate, fluoride and total nitrogen.

4. Estimation of COD, BOD of industrial effluents.

5. Portability test of water(MPN technique).

6. Degradation of phenols. Colorimetric assay

7. Estimation of MIC and Heavy metal to clearance of chromium resistant bacteria

8. Screening of Bio surfactant activity-Oil Displacement test-Drop collapse test

9. Isolation of Thiobacillus ferrooxxidans and Thiobacillus thiooxidans from metal sulphides, rock and acidmine water.

10. Microbialdegradation, decolourzs ation and adsorption of organic dyes by free and immobilized cells

11. Studies on halophiles from seawater(pigmentation and salt to lerance **Mapping with Programme Outcomes**

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER I ELECTIVE PAPER2: Environmental Pollution

Paper code: Subject: Environmental Pollution

Hours/Week:5

Credits:3

Aim: To enable the students to understand the concept of air, water ,soil and noise pollution and also to understand the methods of monitoring and control of air pollution and also to understand the water quality and standards.

Course Objectives

- 1.To learn the natural and anthropogenic sources of pollution
- 2.To learn thetypes sources and consequences of water pollution

3.To develop knowledge on chemical and bacteriological sampling as analysis of soil quality

4.To learn the methods for sources of noise pollution

5.To develop apiece of knowledge in Effects of pollutant son human beings

Course Out Comes

6.After completing unit1, the students will be able to understand the behaviour of pollutants in the atmosphere

7.After completingunit2,thestudentswill able to understand the physico-chemical and bacteriological sampling

8. Aftercompletingunit3, the students will be able to explain the heavy metals and

their in treactions with soil components.

9. After completing unit4, the students will be able to explain the sources of marine pollution and its control

10.After completing unit5, the students will be able to explain the Biodegradation .

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Teaching hours
	Course Contents	
UnitI	Air pollution- natural and anthropogenic sources of pollution, primary and secondary pollutants, transport and diffiusion of pollutants, gas laws governing the behaviour of pollutants in the atmosphere, Methods of monitoring and control of air pollution, SO ₂ , NOx, CO, SPM.	18 hours
Unit-II	Water pollution - types sources and consequences of water pollution, physico-chemical and bacteriological sampling, Analysis of water quality, standards, sewage and wastewater treatment and recycling, water quality and standards.	18 hours
Unit-III	Soil pollution chemical and bacteriological sampling as analysis of soil quality, soil pollution control, industrial waste effluents and heavy metals and their in treactions with soil components.	18 hours
Unit-IV	Noise pollution - sources of noise pollution, measurement and indices. Marine pollution, sources of marine pollution and its control. Effects of pollutants on human beings, plants, animals and climate. Air quality standards and air pollution.	18 hours
Unit-V	Biodegradation: Biodegradation of organic pollutants: Mechanisms and factors affecting biodegradation. Pollution problems and biodegradation of simple aliphatic, aromatic, polycyclicaromatichydrocarbons,halogenatedhydrocarbons,azodyes,lig ninandpesticides.Bioenergy.	18hours
	Total Teaching hours	90

Distributionfor internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Reference Book:

- 1. Air pollution and control-K.V.S.G.Murlikrishan
- 2. Industrial noise control-Bell & Bell
- 3. Environmental engineering-Peary
- 4. Introduction to environmental engineering and science –Gilbert Masters

Mapping with Programme Out comes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

PO-Programme Outcome, CO - Course outcome, S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER I ELECTIVE PAPER 3 Genetics

Paper code: Subject: Genetics

Hours/Week:5 Credits:3

Aim: To enable us to explore many different components of living systems and the advent of proteomics will made it possible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and applications ingenomics and proteomics.

Course objectives:

- 1. Toprovide the basic knowledge of genetics in higher eukaryotic domains and over all concepts of Mendeliangenetics.
- 2. To understand about genetic in heritance and linkages
- 3. To provide the basic concept sex determination
- 4. To understand about genetic code, mutationand regulations

5. To Enrich the students' knowledge with respect to genetic engineering, trans genesis and ethics

Course Out Comes (five outcomes for each units should be mentioned)

- 1. Afterstudyingunit-1, the student will be able to know about Mendelianlaws.
- 2. Afterstudyingunit-2, the student will be able to understand how gene in herited
- 3. Afterstudyingunit-3, the student will be able to understand about sex determination.
- 4. Afterstudyingunit-4, the student will be able to gene regulations.
- 5. Afterstudyingunit-5, the student will be able to know about ethics and trans genesis.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	History of Genetics : Definition and scope of Genetics-Pre-mendelian	18hours				
	genetic concepts. Basis of Mendelian Inheritance and Mendelian					
	genetics. Chromosome theory of linkage, crossing over,					
	recombinations and mapping of geneson chromosomes					
UNIT-II	Blood Group sand their Inheritance in Human-Linkage and Crossing	18hours				
	Over:- Drosophila - Morgans" Experiments - Complete and					
	Incomplete Linkage, Linkage Groups, Crossing Overtypes,					
	Mechanisms - Cytological Evidence for Crossing Over, Mapping of					
	Chromosomes–Interference and Coincidence.					
UNIT–III	Sex Linkage in Drosophila and Man, Sex influenced and Sex Limited	18 hours				
	Genes-Non-Disjunction and Gynandromorphs-Cytoplasmic					
	Inheritance-Meternal Effecton Limnaea (Shell Coiling), Male Sterlity					
	(Rode"s Experiment)					
UNIT–IV	NIT-IV Nature and Function of Genetic Material – Genetic code – Why the 18hou					
	genetic code is comma less, non ambiguous, degenerate triplet code.					
	Fine Structure of the Gene .Gene Regulation – Operon Concept –Lac					
	Operon–Positive and Negative Regulation. Mutation–Molecular Basis					
	of Mutation, Types of Mutation, Mutagens, Mutable and Mutator					
	Genes. Chromosomal Aberrations- Numerical and Structural					
	Examples from Human.					
UNIT-V	Genetic engineering- Objectives, tools, gene cloning, and	18hours				
	geneisolation. Transgenic plants and animals, Animal Breeding-					
	Heterosis, Inbreeding, Out Breeding, Out Crossing, Hybrid Vigour.					
	Population Genetics-Hardy Weinberg Law-Gene Frequency, Factors					
	Affecting Gene Frequency, Eugenics, Euphenics and Ethenics,					
	Bioethics.					
	Total Lecture hours 65 hours	90hours				

Distribution for Internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books

- 1. Gardneretal (1991). Principles of Genetics. John Wiley.
- 2. Hartl.D.L.A primer of population genetics. IIIedition, Sinauer associates inc. Sunderland, 2000
- 3. Human genetics, A.Gardner, R.T.Howell and T.Davies, Published by Vinod Vasishtha forViva Books private limited, 2008.

4. The science of Genetics by Alan G. Atherly, Jack.R, Girton, Jhon. F, McDonald. Sounders college publishers.

Reference Book

Strachan and Read (2003).Human Molecular Genetics.Wiley.

- 1. Pasternak(2005). An Introduction to Molecular Human Genetics. Fritzgarald.
- 2. Prichard & Korf (2004). Medical Genetics at a Glance. Blackwell.

3. Manu L Lothari, Lopa A Mehta, Sadhana S Roy Choudhury (2009). Essential of Human Genetics (Universities Press Indialtd)Publishing.

Web Sources

<u>1https://www.classcentral.com/course/swayam-genetics-and-genomics-176232.https://nptel.ac.in/courses/102/104/102104052/</u> 3.https://www.coursera.org/learn/genetics-evolution

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Out comes

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium - 2, Low - 1

Practical1:Lab In Biochemistry And Cell & Molecular Biology Lab in biochemistry and Microbiology (10 credit)

- 1. Determination of Chl. a, Chl. B & total Chl. ByArnonmethod.
- 2. Estimation of Carbohydrates
- 3. Estimation of salivary amylase activity inrelation to, substrate/pH/Temperature
- 4. Estimation of blood glucose & urea
- 5. Estimation of LDH.
- 6.Estimation of total serum proteins

- 7. Estimation of creatin in urine.
- 8.Paper/thin layer chromatography
- 9. Isolation of Genomic DNA from E.coli
- 10.Isolation of plasmid DNA from E.coli
- 11.Elution&quantification of DNA from agarose gel.
- 12. Preparation of competent cells and transformation

13.PCR

- 14. Isolation of TotalRNA from bacteria
- 15.SynthesisofcDNAbyReversetranscriptionpolymerase chain reaction.
- 16.Sterilization techniques
- 17. Preparation of culture media(Selective and Enriched media)
- 18. Staining techniques-Simple, Differential, Negativestaining and Motility studies
- 19.Determination of Bacterial growth curve
- 20. Enumeration of bacteria from environmental samples-soil, water, air and milk.
- 21. Pureculturetechniques-Streak, pourplate and spreadplate.
- 22.Biochemical tests for identification of bacteria(IMViC,TSI,Catalase,Oxidase)
- 23.Antimicrobialassay, phenol coefficient, agar plate sensitivity method.
- 24. Waterqualityanalysis–MPNmethod.
- 25.Milk quality analysis-MBRT method

Reference

1.Introduction to Practical Biochemistry, E.FPlummerMu, PlummerTataMcGraw-HillEducation, 1998.

 $2. Molecular cloning: a laboratory manual, 4^{th} ed. J. Sambrook, Fritschand T. Maniatis. coldspring har borlaboratory press, New York, 2012$

3.Essential cell biology : a practical approach volume 1: cellstructure.JohnDavey,J.Michaellord.Oxforduniversitypress,USA,2003

4. Microbiology-A Laboratory manual P. Gunasekaran. New agepublications, New delhi, 1995.

5.Molecular cloning-A Laboratory manual. Sambrook, J , Fritsch. E.F, and T.Maniatis, 2ndEdition.ColdspringHarborLaboratorypress,NewYork,1989.

6.Laboratory exercise of Microbiology, J.P. Harley and L.M. Prescott, 5th Edition, theMcGraw-Hillcompanies,2002.

7. Microbiology: A Laboratory Manual, J. G. Cappuccino and N. Sherman, Addison-Wesley, 2002.

8.Laboratory Manual of Experimental Microbiology, R.M.Atlas, A.E.Brown and L.C.Parks, 1995.Mosby, St.Louis, 2002.

9. Laboratory manual in General Microbiology, N.Kannan, Panima publishers.

10.Bergey"sManualofDeterminativeBacteriology.NinthEditionJ.G.Holt,N.R.Krieg.,Lippincot tWilliams,Wilkinpublishers,2000.

(A)

MUSHROOMCULTIVATIONANDAPICULTURE

Credit

Paper code:Name of the Paper: Mushroom Cultivation and ApicultureTotal Hours perWeek:2

s:2

Aim: To exploit possibilities and assist in building up a mushroom cultivation and

apiculture industry that will make a significant contribution to the general economy.

- 1. To make the students to know about mushroom and their types.
- 2. To enable the students to learn the mushroom spawn production conditions.
- 3. To make the students learn about mushroom cultivation and maintenance.
- 4. To make the students to know about apiculture scope and bee keeping and types.
- 5. To enable the students to understand the importance of honey and applications.

Course Out Comes(five out comes for each units should be mentioned)

- 1. The student will be able to differentiate the edible and poisonous mushrooms.
- 2. The student will be able to develop mushrooms culture conditions.
- 3. The student will be able to practice the mushroom cultivation and production.
- 4. The student will be able to practice the bee keeping and culture maintenance.
- 5. The student will be able to produce and analyze the applications of honey in different Fields.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

UNITI	History of Mushroom, cultivations and its practice, Introduction to mushroom cultivation, Classification of Mushrooms and different types, Wdible Mushrooms, its types and their origin, Poisonous Mushrooms, its type sand the irorigin.	18 hours
UNIT-II	Introduction to mushroom cultivation, sources of beds and types, Spawn, Sources, spawn run, cultivation set up, Culture ventilation and humidity management, temperature, lighting, moisture, pH,CO2, Culture chamber spreparation, sterilization, Instructions, precautions, handling and sensors.	18 hours

UNIT –III	Mushroom cultivation maintenance, conditions, and duration, Spawn	18 hours
	collection, preparation, storage, Spawning techniques, Environmental	
	conditions, temperature, moist, Fruiting initiation, monitoring,	
	maintenance and harvest.	
UNIT–IV	Introduction to apiculture, definitions, history, scope, importance of	18 hours
	apiculture, Bee Keeping methods practiced in world and in India,	
	Traditional Beekeeping techniques, Modern Beekeeping methods,	
	Urban Bee keeping methods.	
UNIT-V	Introduction to nutritional product of honey and its constituents,	18 hours
	Honey properties bio logical activities, medicinal values, Applications	
	of Honey in various fields, Honey types and value	
	Added honey products.	
	Total Lecture hours 65hours	90 hours

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

1Paul Stamets, J.S.and Chilton, J.S.2004.Mushroom cultivation A practical guide to growing mushroom sathome, Agarikon Press.

2. TewanandPankajKapoorS.C. 1993. Mushroomcultivation. MittalPublication. Delhi.

3. Marimuthetal., 1991. Oyster Mushrooms. Dept. of Plant pathology, TNAU, Coimbatore.

4.NitaBahl.1988.HandbookofMushrooms,2ndEdition,VolI&II.

5. ShuFing Chang, PhilipG. Miles and Chang, S.T. 2004. Mushrooms Cultivation, nutritional value,

6.medicinaleffectandenvironmentalimpact.2nded.,CRCpress.

7. Prost, P.J. (1962). Apiculture. Oxford and IBH, NewDelhi.

8.BishtD.S., Apiculture, ICAR Publication.

9. Singh S., Beekeeping in India, Indian council of Agricultural Research, New Delhi

Reference Book:

1.Laidlaw,H.H., 1997.Contemporary queen rearing. Published by Dadantand Sons.R.

A.Morse, Rearing queen honey bees.Wicwas press, NYA lison Benjamin, By (author)

BrianMcCallum,2008. Keeping Bees and Making Honey. David & Charles, Newton Abbot.

2.KimPezza,2013.BackyardFarming:

KeepingHoneyBees:FromHiveManagementtoHoneyHarvestingandMore.HatherleighPress, U.S.

3.KimFlottum,2014.TheBackyardBeekeeper:AnAbsolute Beginner's Guide to Keeping Bees inYourYardandGarden.QuarryBooks.

4.Kannaiyan,S.Ramasamy, K.(1980). A hand

bookofediblemushroom,Today&TomorrowsPrinters&Publishers,NewDelhi.

5. Pandey B P 1996. A textbook of fungi. Chand and Company N Delhi. Course Material:

website links, e-Books and e-

journals1.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.

2.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99O

GTKEC&redirhttps://

books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99OGTKEC &redir

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course Outcome, S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

VALUEADDEDCOURSES

(B) VERMICULTURETECHNOLOGY

Name of the Paper : Vermiculture Technology

Credits:2 perWeek:2 **Total Hours**

 $\label{eq:linear} Aim: To exploit possibilities and assist in building up a Vermiculture technology insignificant contribution to the general economy.$

Course Objectives

Paper code:

- 1. To enable the students learn about Vermi culture compositing.
- 2. To enable the students to know the humus cycle, s soil transformation
- 3. To enable the students analyze the nutritional composition of vermin compost.
- 4. To enable the students to learn Vermi culture technology.
- 5. To enable the students to learn the harvest of vermi compost.

Course Outcomes (five outcomes for each units should be mentioned)

1The student will be able to understand the Vermi culture and 4R's of recycling.

- 2. The student will be able to identify the decomposing organic matter and humus formation.
- 3. The student will be able to differentiate nutritional value of vermin compost and fertilizer.
- 4. The student will be able to practice the Vermi culture composting and maintain conditions.
- 5. The student will be able to produce Vermi culture compost, harvest the compost and application.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNITI	Introduction toVermi culture technology, definition, meaning and history, Economic importance of Vermi culture, their value in soil texture, Concept of recycling, Concept of four r's reduce, reuse, recycle and restore.	18 hours
UNIT-II	Introduction to matter, types of matter, Introduction to Humus, Humus cycle, Sources, quality of products for Humus formation, Ground population, and transformation process in organic matter.	18 hours
UNIT –III	Introduction of plant fertilizers, nutritional value and their importance, Vermi compost composition and its nutritional value, Importance of vermin compost fertilizer for plants, Comparison of Vermi compost with other fertilizers.	18 hours
UNIT–IV	Introduction to vermin beds, sources, types, Preparation of vermin beds, measurements, Maintenance of vermin compost, Compositing conditions, moist, temperature, aeration.	18 hours
UNIT-V	Vermi compost identification, conditions, and separation, compost packing, sources and methods, Compost storage, conditions and durations, Vermi compos than dling and transport.	18 hours
	Total Lecture hours 65 hours	90 hours

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Textbook:

1.Kevin, A and K.E.Lee (1989)"Earthworm for Gardeners and Fisherman"(CSIRO,Australia, Division of Soils)

2.RahudakarV.B.(2004).Gandulkhatashivay Naisargeek Paryay, Atul BookAgency, Pune.

3.Satchel, J.E. (1983) "Earthworm Ecology" Chapman Hall, London.

4. Wallwork, J.A. (1983) "EarthwormBiology" Edward Arnold (Publishers) Ltd. London.

Sultan Ahmed Ismail, 2005 .The Earth worm Book, Second Revised Edition. Other India Press, Goa,India.2.Bhatnagar&Patla,2007.

5.Earth worm vermin culture and vermin-composting, Kalyani Publishers, NewDelhi

Reference Book:

1. Bhatt J.V. & S.R. Khambata (1959) "Role of Earthworms in Agriculture" Indian Council of Agricultural Research, NewDelhi2.

2. Dash, M.C., B.K.Senapati, P.C. Mishra (1980) "Verms and Vermicomposting" Proceedings of the National Seminaron Organic Waste Utilization and Vermicomposting Dec. 5-8, 1984, (Part B), School of Life Sciences, Sambalpur University, JyotiVihar, Orissa.

3. Edwards, C.A.andJ.R.Lofty(1977)"BiologyofEarthworms" Chapman and Hall Ltd., London.

4. Lee, K.E. (1985) "Earthworms: Their ecology and Relationship with Soils and Land Use" Academic Press, Sydney. 5.Kevin,AandK.E.Lee (1989) "Earthworm for Gardeners and Fisherman" (CSIRO, Australia, Division of Soils)

5. MaryVioletChristy,2008.Vermitechnology,MJPPublishers,Chennai.

6. AravindKumar,2005.Verms&Vermitechnology,A.P.H.PublishingCorporation,New Delhi.

Course Material: website links, e-Books and e-journals

1.VermicultureTechnology, Earthworms, Organic Wastes, and Environmental Management Edited By Clive A.Edwards,NormanQ. Arancon,RhondaL.Sherman,

2.https://www.scirp.org/journal/paperinformation.aspx?paperid=2490,**DOI**:10.4236/ti.2010.1 3019

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Out comes

PO-Programme Outcome, CO-Course Outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium - 2, Low - 1

VALUEADDEDCOURSE(VAC-C) C)VALIDATIONOFMEDICINAL PLANTS

Paper code:	Name of the Paper: Validation of Medicinal
plants	
Credits:2	Total Hours per Week: 2

Aim: The course aims to introduce the students to the identification and validation of medicinal plant and to understand the cultivation and propagation techniques. To understand the importance of medicinal plants in human health care.

Course Objectives

1.To enable the students to understand the importance of medicinal plants.

2. To enable the students to identify the medicinal plants.

3.To enable the students to learn the techniques of validation of medicinal plants.

4. To enable the students to learn the cultivation method sand maintenance of medicinal plants.

5.To enable the students to understand the importance of medicinal plant in human health.

Course Out Comes (five out comes for each units should be mentioned)

- 1. The student will be able to gain knowledge about importance of medicinal plant parts and its medicinal value.
- 2. The student will be able to classify the medicinal plants on Bentham and Hooker and Practice her barium techniques.
- The student will be able to identify them edicinal values of plants using different validation Techniques.
- 4. The student will be able to cultivate and propagate the medic in alplants
- 5. ThestudentwillbeabletopracticetheusageofmedicinalplantsintreatmentofhumanDiseases.

	Matching Table (Tut Tes/No in the appropriate box)					
Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

UNITI		18 hours
	Introduction to Medicinal plants, meaning, definition and types	
	Medicinal properties of plants and their importance,	
	Medicinalvalues in plant parts, fruits, stem, leaves and roots, Leaf,	
	fruit, root and stem modifications, aeria land under ground.	
UNIT-II		18 hours
	IntroductiontoMedicinalplantidentification,Elementaryknowledgeof binomialnomenclature,BenthamandHookerclassification,Herbarium ,preparationandpreservation.	
UNIT –III		18 hours
	Introductiontovalidationofmedicinalplants, Macroscopiccharacteristi	
	cs of medicinal plants, Microscopic characteristics of medicinal	
	plants, Chemical compounds and tests of medicinal plants,	
	Chromatographic techniques for validation TLC, HPLC, HPTLC&	
	gas, Chromatography.	
UNIT–IV		18 hours
	Introduction to medicinal plant cultivation, Cultivation techniques,	
	and factors affecting cultivation of medicinal plants, Propagation of	
	medicinal plants and different methods of propagation,	
	Management and Maintenance of medicinal plants.	
UNIT-V		18 hours
	Importance of medicinal value in plants, Medicinal properties of	
	plants in human health and its role, advantages, Role of medicinal	
	plants in prevention and treatment of human diseases, Traditional	
	knowledge and utility of Indian medicinal plants.	
		90hours

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 1. Indian Medicinal Plants by P.C.Trivedi(2009).
- 2. Medicinal Plants of Indian Himalaya by S.S.SamantandU.Dhar.
- 3. Indian Medicinal Plants(Vol1-4)byK.R.KirtikarandB.D. Basu(2006).
- 4. Indigenous Medicinal Plants Social Forestry & Tribalsby M.P.Singhetal.(2003).
- Ayurvedic Drugs and their Plant Sources byV.V.Sivarajan& I. Balachandran, Oxford &IBH(1994).
- 6. The Hand book of Ayurveda Shantha by Godagama, Bishen Singh Mahendrpal Singh, Dehradun(2004).
- 7. Direct uses of medicinal plants and their identification by Vardhana, SarupandSons,

Ansari Road, Dariyaga NewDelhi (2008).

- 8. Medicinal plants, applied biology of domestic cation and export by K.Singh,
- S.K.Tyagi, Bishen Singh Mahendrapal Singh Dehradun.
- 9. Quality Control Methods for Medicinal Plants Materials, W.H.O.(1998).
- 10. Evaluation of her balmedicinal products by Houghton

ReferenceBook:

- 1. A Class Book of Botany .A.C.Dutta. Oxford University Press.
- 2. Cultivation of Medicinal Plants by C.K. Atal &B.M. Kapoor.
- Hartmann, H.T&Kester, D.E (1989). Plant Propagation–Principles and Practices. Prentice Hall of India.
- AwadeshN, Ghoeami A and Sharma R,Indigenous HealthCare and Ethno medicine, Sarup and Sons.
- 5. MedicinalPlantsCultivation:AScientificApproachbyS.S.Purohit,(2004).
- 6. BrunetonJean,CarolineK.Hatton,Pharmacognosy,Phytochemistry,Medicinalplants.La voisier,1999.ISBN1898298637.
- NikolausJ.Sucher, MariaC.Carles, Genome-Based Approaches to the Authentication of Medicinal Plants.PlantaMed.,74:603–623;2008.

8. WHOguidelinesongoodagriculturalandcollectionpractices(GACP)formedicinalplants, WorldHealthOrganization,Geneva,2003.

9. IqbalAhmad, FarrukhAqil, and Mohammad Owais, Modern Phytomedicine: Turning Medicinal Plants into Drugs.WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim,2006.ISBN-10:3-527-31530-6.

10. VedD.K.&Goraya,G.S.Demand & supply of medicinal plants in India, NMPB, NewDelhi & FRLHT, Bangalore, India, 2008.
Course Material: website links, e-Books and e-journals

1. PlantaMedica,Issue13.Volume79.August2013.<u>https://www.thieme-</u>

connect.com/products/ejournals

2. <u>https://www.sciencedirect.com/book/9780128008744/evidence-based-validation-of-herbal-</u>

<u>medicine</u>.3.https://www.tandfonline.com/doi/citedby/10.1080/13880200902800196?scroll=to p&needAccess=true.

Mapping with Programme Outcome

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER II

PAPER1 : Natural Resource

Paper code:

Subject: Natural Resource

Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of classification, composition, physico- chemical characteristics .

Course Objectives

- 1.To learn the solar radiations and its spectral characteristics
- 2.To learn the Principles of generation
- 3.To develop knowledge on Nuclear energy
- 4.To learn the Mineral resources and reserves

5.To develop a piece of knowledge in need areas for exploitation of Mineral resources.

Course Out Comes

- 6.After completing unit1, the students will be able to Understand source of energy
- 7. After completing unit 2, the students will able to understand the Principles of generation of hydroelectric power
- 8. After studying unit3, the students will be able to explain Impacts of large scale exploitation of solar, wind, hydro and ocean energy.
- 9. After studying unit4, the students will be able to explain the recycling of resources
- 10. After studying unit5, the students will be able to explain the recycling of resources

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units	nits Course Contents				
	Course contents				
UnitI		18 hours			
	Sun as a source of energy, solar radiations and its spectral characteristics, fossil fuels- classification, composition, physico-chemical characteristics and energy content of coal, petroleum and Natural gas.				
Unit-II	Principles of generation of hydroelectric power, tidal power, thermal energy conversion, wind, geo thermal energy, solar collectors, photovoltaic, solar ponds, oceans.	18 hours			
Unit-III	Nuclear energy- fission and fusion, bio energy -energy from biomass and biogas, anaerobic digestion, energy use patterns in different parts of the world. Impacts of large scale exploitation of solar, wind, hydro and ocean energy.	18 hours			
Unit-IV	Mineral resources and reserves, ocean ore and recycling of resources, Environmental impact of exploitation, processing and smelting of Mineral, oceans as need areas for exploitation of Mineral resources.	18 hours			
Unit-V	Forest resources: forest vegetation, status and distribution, major forest types and their characteristics. Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people, forest management. Developing and developed world strategies for forestry	18hours			
	Total Teaching hours	90			

Distribution for internalsTest(CIAI+CIA II+CIAIII)		Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. Living in the environmental-T.J.Miller.
- 2. Natural resource conservation-Owen & Chiras.
- 3. Encyclopedia Energy-I& II.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

SEMESTER II

PAPER2 .: Environmental microbiology

Paper code: Subject: Environmental microbiology

Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of organisms in nature & their importance and also the uses in Environmental management recycling &up gradation technologies

Course Objectives

1.To learn the microbes in service of nature

2.To learn the Microbial Reactors

3.To develop knowledge on microbiology of an aerobic fermentation

4.To learn the Environmental problems

5.To develop a piece of knowledge in microbes as pathological agent in plant, animal and man.

Course OutComes

6.After complete in gunit1, the students will be able to Understand organisms in nature &

their importance

7.After completing unit 2,the students will able to understand up gradation technologies and Production of products

- 8. After completing unit 3, the students will be able to explain microbiology of an aerobic fermentation.
- 9. After studying unit4, the students will be able to explain the Environmental problems & Environmental monitoring through micro organism.

10. After studying unit5, the students will be able to explain the Microbial diversity.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units		Teaching hours
	Course Contents	
UnitI		18hours
	Microbiology- organisms in nature & their importance, sampling, culture & cultivation of microorganisms, microbes in service of nature & mankind, batch culture & continuous culture of microbes for commercial use.	
Unit-II	Microbial Reactors, genetically modified microbes & their uses in Environmental management recycling &up gradation technologies, Production of products, energy form waste.	18hours
Unit-III	Biogas technology, plant design, construction, operation, biogas form organic wastes, water weeds, landfills, microbiology of anaerobic fermentation.	18hours
Unit-IV	Biotransformation, bioconversion, bioremediation, phytore mediation technology, fermentation technology, development of stress tolerant plants, Environmental problems & Environmental monitoring through micro organism, microbiology of water, air and soil, microbes as pathological agent in plant, animal and man.	18hours
Unit-V	Microbial diversity-methods to assess micro bialdi versity, Culture dependent, and culture- independent methods. Molecular analys is of bacterial community; Denatu rating Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length (TRFL) Polymorphism (T-RFLP), Amplified Ribosomal DNA and Restriction Analysis (ARDRA).	18 hours
	Total Teaching hours	90

Distribution for internalsTest(CIAI+CIA II+CIAIII)		Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

1 . Principles of microbiology - Pelzar 2.Microbialbiotechnology-A.N.Glazer 3. Microbial ecology - R.M. Atlas 4.Molecular biology - H.D. Kumar

9. Environmental bio Technology- Sayler & Fox

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

SEMESTER II

PAPER3.: Environmental Chemistry Subject: Environmental Chemistry

Papercode:

Hours/Week:5

Credits:4

Aim: To enable the students to understand the conceptStochiometry, Gibb's energy and also the Classification of elements and also the thermodynamics

Course Objectives

1.To learn the Chemical potential and solubility of gases in water

2.To learn the Chemical processes for formation of inorganic and organic particulate matter

3.To develop knowledge on law of thermodynamics

4. Tolearn the Chemistry of air pollutants

5.To develop a piece of knowledge in nitrogen pathways.

Course Outcomes

6. After completing unit1, the students will be able to Understand the Chemical potential and

equilibria reactions.

- 7. After completing unit 2, the students will able to understand the Chemical process and Thermo chemical and photochemical reactions in atmosphere.
- 8. Aftercompletingunit3, the students will be able to explain Laws of thermodynamics .

9. After completing unit4, the students will be able to explain Treatment off Water and ozone chemistry.

10. After completing unit5, the students will be able to explain about the Bio corrosion and micro bialmediated recovery.

53

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/Nointheappropriatebox)

Units	nits Course Contents							
Unit-I	Stochiometry, Gibb's energy, Chemical potential, Chemical equilibria, acid-base, reactions. Solubility product, solubility of gases in water, the carbonate system, unsaturated and saturated hydrocarbons, Radio nuclides.	18hours						
Unit-II	Classification of elements, chemical speciation, Particles, ions and radicals in the atmosphere. Chemical processes for formation of inorganic and organic particulate matter. Thermo chemical and photochemical reactions in the atmosphere.	18hours						
Unit-III	Firstlawofthermodynamics, enthalphy, adiabatic transformations, secondl awof thermodynamics, Carnot's cycle, entropy, Gibb's free energy, chemical potential, phase equilibria, Gibb's Donnan equilibrium, third law of thermodynamics, enzymes catalysis, Michaelis/ Menten equation	18hours						
Unit-IV	Oxygen and ozone chemistry, Chemistry of air pollutants, Photochemical Smog, Chemistry of water, concept of D.O., B.O.D., and C.O.D, water treatment : Sedimentation, Coagulation, Filtration, tertiary and advanced treatment, redox potential, Inorganic and organic components of soil, nitrogen pathways and NPK in soils	18hours						
Unit-V	Biocorrosionandmicrobialmediatedrecovery:Microbialcorrosionanditsc ontrol(petroleumindustryandcoolingtowersystem).Biometallurgy- Bioleaching- application,biotechnologyapproachesforheavymetaleliminationfromeff luents.Bio- mediatedrecoveryofmetals(goldandplatinum).Recoveryofpetroleum- MEOR-Biosurfactant.	18hours						
	Total Teaching hours	90						

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. .Environmental Chemistry-G.S.Sodhi
- 2. Environmental Chemistry-Mannhan
- 3. Fundamantals of soil science -HenryD. Futh
- 4. Text book of limnology-G.A.Cole
- 5. Environmental Chemistry-Sharma and Kaur

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO–Programme	Outcome,	CO–Course outcome ,	S3,M-	-2,L-1
	<i>••••••</i> ,		~ ~ ~ ~ ~	

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

SEMESTER II PAPER4. Environmental modeling and Biostatistics.

Paper code:

Subject: Environmental modeling and

Hours/Week:5

Biostatistics.

Credits:4

Aim: To enable the students to understand the concept of Measurement of central tendency and also the random variable and also the modelling in environmental sciences and also the population growth and interactions.

Course Objectives

1.To learn the Measurement of central tendency and Correlation and line arregression

2.To learn theBasic concepts of binomial and normal distributions and hypothesis and significance.

3.To develop knowledge on Model classification, Methods for formulation of dynamic balance equations mass balance procedures.

4. To learn the Models of population growth and interactions.

5. To develop a piece of knowledge instages involved in model building.

Course OutComes

6.After completing unit 1, the students will be able to Understand the Basic laws and concepts

7. After completing unit 2, the students will able to understand the tests of hypothesis and significance

8. After studying unit 3, the students will be able to explain Role of modelling in environmental sciences

9.After studying unit 4, the students will be able to explain. Models of population growth and 15 interactions

10. After studying unit5, the students will be able to explain about simple growth kinetics.

Matching Table (Put	Yes/No in the	appropriate box)
---------------------	---------------	------------------

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Teaching hours						
	Course Contents							
UnitI	UnitI Measurement of central tendency - mean (Geometric and Harmonic), median, mode, Measurement of dispersion moments, standard deviation, skewness and kurtosis, Correlation and line arregression of one independent variable, Basic laws and concepts of probability							
Unit-II	Definition of random variable, density function, Basic concepts of binomial and normal distributions, Sampling measurement and distribution of attributes, Moments, matrics and simultaneous linear equations, tests of hypothesis and significance.	18hours						
Unit-III	Role of modelling in environmental sciences, Model classification deterministic models, stochastic models, steady state models, dynamic models, Different stages involved in model building.	18 hours						
Unit-IV	Models of population growth and interactions Lotka Volterramodel, Leslies matrix model, Point source streampollution, Box model, Gaussian plume model, Linear, simple and multiple regression models, validation and forecasting.	18 hours						
Unit-V	Simple microbial growth kinetics monod equation, Methods for formulation of dynamic balance equations mass balance procedures.	18hours						
	Total Teaching hours	90						

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

ReferenceBook:

- 1. DynamicsofEnvironmentalBioprocesses-Modellingandsimulation-SnapeandDunn.
- 2. EnvironmentalModeling- Jorgense

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome,CO-Course outcome,S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

SEMESTER II

ELECTIVE PAPER5 : Enzyme Technology

Papercode: Subject: Enzyme Technology

Hours/Week:5

Credits:2

Aim:To provide knowledge of various enzymes and enzyme technology applied in the industries.

Course objectives:

- 1. To Learn about the classification and structure properties of enzymes
- 2. To Understand the kinetics, catalysis and inhibitions activities of enzymes
- 3. To understand physical properties, down stream process and purification of enzymes.
- 4. To Expedite how enzymes are used as co-factors.
- 5. To Enrich the students' knowledge with respect to different applications of Enzymes

Course Outcomes (five outcomes for each units should be mentioned)

- 6. After studying unit-1, the student will be able to know about basic knowledge of enzymes
- 7. After studying unit-2, the student will be able to understand mechanism of enzyme activities
- 8. After studying unit-3, the student will be able to understand physical properties of enzyme.
- 9. After studying unit-4, the student will be able to function of enzyme in different processes.
- 10. After studying unit-5, the student will be able to know various application of enzyme technologies.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/Nointheappropriatebox)

UNIT I	Introductiontoenzymes:Historyofenzymes,nomenclatureandclassificationofe nzymes.StructuralfeaturesofEnzymes:Chemicalnature of Enzymes: amino acids, protein structure: Primary, secondary,tertiaryandquartenerystructure.SpecificityofEnzymes:Typesofspe cificity, thekoshland"induced fit"hypothesis, strain or transition-state stabilizationhypothesis.	18 hours
UNIT-II	Enzyme Catalysis and Kinetics: Factors affecting the rate of chemicalreactions, kinetics of un catalyzed chemical reactions, kinetics of enzymescatalyzedreaction, methods for investigating the kinetics of enzyme- catalyzed reaction, nature of enzyme catalysis, inhibition of enzyme activity.	18hours
UNIT–III	Extraction and purification of microbial enzymes : Importance of enzymepurification, different sources of enzymes. Extracellular an intracellularenzymes. Physical and Chemical methods used for cell disintegration.Enzymefractionationby precipitation(using Temperature,salt,solventpH,etc.),liquid- liquidextraction,ionicexchange,gelchromatography,affinity chromatography and other special purification methods, Enzymecrystallizationtechniques.Criteriaofpurityofenzymes.Pitfallsin workingwithpureenzymes.	18hours
UNIT – IV	Enzymes inhibition and Co-factors: Irreversible, reversible, competitive,non-competitive and un-competitive inhibition with suitable examples andtheirkineticstudies.Allostericinhibition,typesofallostericinhibitionandthei rsignificanceinmetabolicregulation&theirkineticstudyVitaminsandtheirco- enzymes:Structureandfunctionswithsuitable examples ,Metallo enzymes and Metal ions as co-factors and enzymesactivators.	18hours
UNIT-V	Immobilization of microbial enzymes and Enzyme Engineering: Methodsviz. adsorption, covalent bonding ,entrapment& membrane confinementand their analytical, therapeutic & industrial applications. Applications ofmicrobial enzymes: Microbial enzymes in textile ,leather, wood industriesanddetergents.Enzymesinclinicaldiagnostics.Enzymesensorsforcli nicalprocessesandenvironmentalanalyses.Enzymesastherapeutic agents.	18hours
	Total Lecturehours	90hours

		~ .		
Distribution for	Test(CIAI+CIA	Seminars	Assignment	Totalmarks
internals	II+CIAIII)		-	
Marks	15	05	05	25

Text Book(s)

- 1. Introduction to proteins Structure by Branden and Tooze (1998):Garland Publishing Group.
- Biotechnology.Volume7A-Enzymes in Biotechnology. 1983E dited by H.J.Rehmand G.Reed.Verlag Chemie.
- 3. Methods of Enzymatic analysis by Hans Ulrich, Bergmeyer, Academic Press.
- 4. Methods in Enzymology by W.A. Wood, Acdemic Press.
- 5. Topics in Enzymeand Fermentation Biotechnology by L.N.Wiseman, JohnWiley and sons

References Books

- 1. Enzymes by palmer (2001):Horwood publishing series.
- 2. Fundamentals of Enzymology by price and Stevens (2002):Oxford University Press.
- 3. EnzymeTechnology by Helmut Uling (1998):JohnWiley.
- 4. Methods in Enzymology. Volume22-Enzyme purification and related techniques. Editedby William B.Jako by.Academic press,NewYork.
- Allosteric Enzymes Kinetic Behaviour. 1982. By B.I.Kurganov, JohnWiley and Sons. Inc., New York.
- Enzymesas Drugs Edited by JohnS.Holcen berg and Joseph Roberts, John Wiley & sons NewYork.
- 7. Advances in Enzmology byAlton Meister, Inter science Publishers.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

ELECTIVEII:(B)DAIRYTECHNOLOGY

Total Hours perWeek:3

Name of the Paper : Dairy Technology

Credits:2

Aim:Toimpartcurrentknowledgeofbasicandappliedmicrobiologicalaspectsoffluidmilksa nddairyproductsforimprovedqualityandfoodsafety.

Course objective:

Paper code:

- 1. To teach the microbial knowledge in milk
- 2. To learn the processing of milk micro biological methods
- 3. To understand how the milk products are in quality make through dairy industry
- 4. To made knowledge in differentiate the traditional and industrial make dairy products and its processing
- 5. To aware the students a bout milk borne diseases

Course outcome

- 1. Afterstudyingunit-1, the student will be able to know about basic knowledge of milk microbes and its changes in maintaining the storage of milk.
- 2. After studying unit-2, the student will be able to understand mechanism of processing of milk through micro biological methods
- 3. After studying unit-3, the student will be able to understand dairy products quality and its changes through micrbes
- 4. After studying unit-4, the student will be able to differentiate dairy products in industry and homemade.
- 5. After studying unit-5, the student will be able to know various application of milk and milk borne microbial diseases.

Matching Table (Put Yes/No in the appropriate box)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

65

UNIT I	Common microbes in milk and their significance. Sources of microbial contamination of raw milk in influencing quality of milk during production, collection, transformation and storage. Clean milk production and antimicrobial systems in raw milk. Microbial changes in raw milk during long storage. Microbiological grading of Raw milk.	18hours
UNIT-II	Microbiological processing techniques: bactofugation, the rmization , pasteurization, sterilization ,boiling ,UHT, non thermal processes and membrane filtration of milk role of psychrophilic mesophilic, the rmophilic and the rmoduric bacteria in spoilage of processed milks and prevention microbiological standards (BIS/PFA) of heat treated fluid milks.	18hours
UNIT–III	Microbiological quality of dairy products; fatrich (creamandbutter), frozen (ice cream), concentrated (evaporated and condensed milk), dried milks (roller and spray dried), infant dairy foods and legal standards. Factors affecting microbial quality of these products during processing, storage and distribution. Probiotics and prebiotics (GRAS), cloning-sanitation, control of micro organisms in Dairy processing	18hours
UNIT–IV	Microbiology quality of traditional dairy products; heat desiccated(khoa,burfi,peda,kheer),acidcoagulated(paneer,chhana,rasg ulla), fermented (lassi, srikhand)and frozen (kulfi).sources ofmicrobial contaminants and their role in spoilage. Importance of personnel and environmental hygiene on quality of traditional milk Products. Microbiological standards for indigenous dairy foods.	18hours
UNIT-V	Milk-borne diseases-vira land bacterial, zoonotic infections , pathogens associated with fluids milks, dairy products and their public health significance. sources of pathogens and their prevention .importance of bio flims, their role in transmission ofpathogensindairyproductsandpreventivestrategies.regulatorycontrol of dairy products, testing of milk and milk products, treatment of dairy wastes.	18 hours
		JUNUUS

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books:

1. Adams MRand Moss MO. (1995). Food microbiology, the royal society of chemistry, Cambridge.

- 2. Andrews AT, VarleyJ (1994) biochemistry of milk products. Royal society of chemistry.
- 3. Banwart GJ (1989), basic food microbiology, Chapman & hall, newYork.

4. Frazier WC and Westh off DC.(1988)food microbiology, TATA McGraw hill publishing company Ltd.NewDelhi.

References

- 1. HobbsBC and Roberts D. (1993) food poisoning and food hygiene, Edward Arnold (adivision of Hodder and Stoughton), London.
- 2. May JM.(1987)modern food microbiology,CBS publishers and distributors, NewDelhi.
- 3. Robinson RK.1990. the microbiology of milk. Elsevier applied Science. London
- 4. EdwardHarth, J.T.Steele. Applied dairy microbiology. 1998. Marcel DeekerInc.
- Modi, HA (2009) dairy microbiology pointer publishers, India. Marth, E.Handsteel J.L (2001) applied Dairy microbiology, 2ndEdition, Marcel Dekker, Inc.270 Madison Avenue, NewYork, NewYork 10016.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

ELECTIVEII:(C)PHARMACEUTICALTECHNOLOGY

Aim: To impart knowledge on the importance of drug during life span. To enlighten on the biotechnological modifications in drugs. To find mechanism of action of drugs used in the rapy.

Course objectives

1.To learn drugs and its involve dde toxification through phase1&2 reactions 2 To teach drug mechan is mlik epassive and active phases

2.To learn the drugs manufacture biotechnological pharmaceutical industry

3.To understand the importance of drugs in treating various metabolic disorders 5 To teach various applications of drugs in various fields.

CourseoutComes(fiveoutcomesforeachunitsshouldbementioned)

- 1. After studying unit-1,the student will be able to know about basic knowledge of drugs of phase I & II
- 2. After studying unit-2, the student will be able to understand drug mechanism and its adverse effects.
- 3. After studying unit-3, the student will be able to understand biotechnology in drug development, especially for AIDS
- 4. After studying unit-4, the student will be able to know drugs and its importance various treatment like diabetes, cancer, lipidemia and infertility
- 5. After studying unit-5, the student will be able to know various application of drug dependence and a buse-management

Matching Table (PutYes/No in the appropriate box)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Drug- structural feature and pharmacology activity, pro drug concept. Absorption–first–pass effect. distributor, metabolism- phase I, II reactions, action of cyto chrome p450 & elimination of drug receptor- localization, type and subtypes, models and their drug-receptorinte raction, against & antagonist.	18 hours
UNIT-II	Adver seresponse to drugs, drug to lerance, drug in to lerance,IdioSYNERACY (pharmacogenesis), drug allergy.Tachyphylaxis, drugabuse, vaccination against infection	18 hours
UNIT–III	Biotechnology and pharmacy: genetically engineered protein and peptide agents. Novel drug delivery systems–non conventional routes of administration. Anti AIDS drug development, on cogenestar get for drugs, multi-drugs resistance.	18 hours
UNIT–IV	Mechanism of action of drugs used in therapy of respiratorysystem-cough,bronchial- asthma,pulmonarytuberculosis.GIT –digestents, appetite suppressants. Hypolipidemia agents,, vomiting, constipation and peptic ulcer. antimicrobial drugs- sulfonamides,trimethoprim,cotrimoxazole,penicillinandmacrolide s.aminoglycosides,cephalosporinandbacterialresistance .Insulin and oral diabetic drugs, antifertility and ovulation inducing drugs.	18 hours
UNIT-V	Drugs of plant origin: drug dependence and abuse- managementofselfpoisoningcancer.Chemotherapy- cytotoxicdrug.immunosuppressivedrugtherapy.Newbiologicaltarg etsfor Drug development. Novel drugs creening strategies.	18 hours
	Total Lecture hours	90 hours

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book:

- 1. ThepharmacologyVolIandVolII–Good man and Gillman,McGraw Hill professional;12ed (2010)
- Basic pharmacology Foxter coxbulter worth "s1980.
 Pharmacology and pharmaco therapeutics –R.S.Satoskar. S.D.Bhandhhakar & S.S.AnilapurepopulPrakasharBombay.

Reference

a.

Principle so fmedical chemistry-WilliamO. Foge.B.I. Waverks Pvt

Ltd, NewDelhi.

b. Oxford tex tbooks of clinical pharmacology and drug therapy .D.G.Burger''s Medical chemistry & drug discovery.

c. Principles and practice–Manfred.E.WolfJohnWileyandsons.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3, M-2, L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Mapping with Programme Specific Outcomes

PRACTICALIII: LABINIMMUNOLOGY AND LAB INGENETIC ENGINEERING AND BIOINFORMATICS (10 credit)

1.	Blood grouping
2.	Lymphocytesub set identification and enumeration.
3.	Radialimmuno - diffusiontest.
4.	Ouchter lony double diffusion
5.	Immunoelectrophoresis
6.	Rocket Immunoelectrophoresis
7.	Latex Agglutination
8.	Quantitative Precipitinassay
9.	Complement fixationtest
10.	ELISA
11.	Western Blotting
12.	Antigen-antibodyreaction(precipitationandagglutinationreactiontests)

GENETICENGINEERING

- 1. Isolation of genomicDNA from the given sample and its molecular weight determination
- 2. Isolation of RNA from the given sample and its molecular weight determination
- 3. Isolation of plasmid DNA from the given sample
- 4. Restriction digestion fL ambdaphage DNA
- 5. Ligation of DNA and analysis by electrophoresis
- 6. DNA amplification by PCR and RAPD
- 7. Preparation of competent cellsandtransformationbyCaCl2methodand Selection of trans formed colony by X-Galmethod
- 8. Determination of molecular weight of proteins by SDSPAGE

BIOINFORMATICS

1.	Restriction mapping
2.	PCR Primer Designing
3.	ORF finding
4.	Homology search
5.	Multiple sequence alignment

References:

1. PracticalImmunology.FranckC.Hay,OlwynM.R.Westwood.Wiley-Blackwellpublications,2010.

2. Immunoassays:APracticalApproach.JamesP.Gosling(editor).Oxforduniversitypress,U SA,2010.

3. Labmanualin biochemistry, immunology and biotechnology. Arti Nigam Archanaayyagari. McGraw-Hilleducation,2008.

4. Practic alimmunology.RabindraNarain,dom& wisdompublications,2012

SEMESTER III PAPER1 .: Immunology

Papercode:

Subject: Immunology

Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of anatomy of the immune system and also Band Tlymphocytes and also the Antigen-anti body interactions and also about Vaccinology and also about the Immuno haematology.

Course Objectives

- 1.To learn the strategies for Components of immunity
- 2.To learn the Immunoglobulins
- 3.To develop knowledge onimmunological techniques
- 4.To learn the Vaccine technology
- 5.To develop a piece of knowledge in Antibody genes and antibody engineering

Course OutComes

6.After completing unit1, the students will be able to Understand the Fundamental concept of Immunology and Lymphatic system.

7. After completing unit 2, the students will able to understand the Immune response and Principle of cell signaling

- 8. After studying unit 3,the students will be able to explain. Immunoglobulin techniques
- 9. After studying unit4, the students will be able to explain Vaccine technology.
- 10. After studying unit5, the students will be able to explain Hyper sensitivity.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units		Teaching hours
	Course Contents	0
UnitI	Componentsofinnateandacquiredimmunity;Phagocytosis;Complement and Inflammatoryresponses;Haematopoesis;Organsandcellsoftheimmunesy stem- primaryandsecondarylymphoidorgans;Lymphaticsystem;Lymphocytec irculation; Lymphocyte homing;MucosalandCutaneous associatedLymphoid tissue. (MALT&CALT);MucosalImmunity; Antigens-immunogens, haptens; Major HistocompatibilityComplex- MHCgenes,MHCandimmuneresponsivenessand disease susceptibility, HLA typing.	18hours
Unit-II	Immunoglobulins-basic structure, classes and subclasses of immunoglobulins, antigenic determinants; Multigene organization of immunoglobulin genes; B-cell receptor; Immunoglobulin superfamily; Principles of cell signaling; Immunological basis of self – non- selfdiscrimination; Kinetics of immune response, memory; B-cell maturation, activation and differentiation; Generation of antibody diversity; T-cell maturation, activation and differentiation and T-cell receptors; Functional T Cell Subsets; Cell- mediated immune responses, ADCC; Cytokines-properties, receptors and therapeutic uses; Antigen processing and presentation- endogenous antigens, exogenous antigens, non-peptide bacterial antigens and super-antigens; Cell-cell co-operation, Hapten-carrier system.	18 hours
Unit-III	Precipitation, agglutination and complement mediated immune reactions; Advanced immunological techniques - RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence, flow cytometry and immunoelectron microscopy; Surface plasma resonance, Biosenor assaysfor assessing ligand –receptor interaction, CMI techniques- lymphoproliferation assay, Mixed lymphocyte reaction, Cell Cytotoxicity assays, Apoptotosis, Microarrays, Transgenic mice, Gene knock outs.	18hours
Unit-IV	Active and passive immunization; Live, killed, attenuated, sub unit vaccines; Vaccine technology- Role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; Peptide vaccines, conjugate vaccines; Antibody genes and antibody engineering- chimeric and hybrid monoclonal antibodies; Catalytic antibodies and generation of immunoglobulin gene libraries.	18hours

Unit-V	Hypersensitivity - types and mechanisms, Autoimmunity, Tumor and	18hours
	Transplantation immunology. Immune regulation mechanisms – brief	
	account on immuno-induction, immunosuppression, immuno-	
	tolerance, immuno-potentiation. Role of cytokines, lymphokines and	
	chemokines	
	90	

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. WilliamE.Paul,Fundamental Immunology,Wolters Kluwer/Lippincott Williams & Wilkins.
- 2. Stephen KWikel, The Immunology Host-Ectoparasiticarthropod relationships. Cabinternational.
- 3. Herman N.Eisen, MD, General Immunology. J.B.LippincottCompany. F.M. Burnet, Immonology. W.H. Freeman and company
- 4. Jack G. Chirikjian, Plant Biotechnology, Animal cell culture Immuno biotechnology. Jones and Bartlett Publishers.
- Pravash Sen. Gupta, Clinical Immunology. Oxford University Press. 2003. 9. Noel R. Rose, Herman Friedman, John L. Fahey. Manual of Clinical Laboratory Immunology. ASM. 3rd ed., 1986.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

SEMESTER III

PAPER2 : Cell and Molecular Biology

Subject: Cell

Papercode: and Molecular Biology Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of Genome organization and also the DNA structure , Replication , Repair and Recombination and also the Prokaryotic and Eukaryotic Transcription and also the post Transcriptional Modification and microscopic techniques .

Course Objectives

1.To learn the Organization of bacterial genome

2.To learn the Structure of DNA and Gene targeting

3. To develop knowledge on Prokaryotic & Eukaryotic Transcription

4.To learn the Post Transcriptional Modifications

5. To develop a piece of knowledgein Translation & Transport

Course OutComes

6.After completingunit1, the students will be able to Understand the Genome Organisation.

7. After completing unit2, the students will able to understand the DNA structure ; Replication.

8. After completing unit3, the students will be able to understand the Prokaryotic and Eukaryotic Transcription.

9. After completing unit4, the students will be able to understand the concept of post transcriptional modification.

10.After completing unit5, the students will be able to explain the concept of Translation machinery and transport of proteins.
Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units	Course Contents	Teaching hours
UnitI	Organization of bacterialgenome; Structure of eucaryotic chromosomes; Role of nuclear matrix in chromosome organization and function; Matrix binding proteins; Heterochromatin and Euchromatin; DNA reassociation kinetics(Cot curve analysis); Repetitive and unique sequences; Satellite DNA; DNA melting and buoyant density; Nucleosome phasing; DNase I hypersensitive regions; DNA methylation & Imprinting	18hours
Unit-II	Structure of DNA - A-,B-, Z- and triplex DNA; Measurement of properties- Spectrophotometric, CD, AFM and Electron microscope analysis of DNA structure; Replication initiation, elongation and termination in prokaryotes and eukaryotes; Enzymes and accessory proteins; Fidelity; Replication of single stranded circular DNA; Gene stability and DNA repair- enzymes; Photoreactivation; Nucleotide excision repair; Mismatch correction; SOS repair; Recombination: Homologous and non-homologous; Site specific recombination; Chi sequences in prokaryotes; Gene targeting; Gene disruption; FLP/FRT and Cre/Lox recombination.	18 hours
Unit-III	Prokaryotic Transcription; Transcription unit; Promoters- Constitutive and Inducible; Operators; Regulatory elements; Initiation; Attenuation; Termination-Rho-dependent and independent; Anti-termination; Transcriptional regulation-Positive and negative; Operon concept- lac,trp,ara,his,andgaloperons;Transcriptionalcontrolinlambdaphage; Transcript processing; Processing of tRNA and rRNA Eucaryotic transcription and regulation; RNA polymerase structure and assembly; RNA polymerase I, II, III; Eukaryotic promoters and enhancers; General Transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); Activators and repressors; Transcriptional and post-transcriptional gene silencing	18hours
Unit-IV	Processing of hnRNA, tRNA, rRNA; 5'-Cap formation; 3'-end processing and polyadenylation; Splicing; RNA editing; Nuclear export of mRNA; mRNA stability; Catalytic RNA.	18hours
Unit-V	Translation & Transport	18hours
	Translation machinery; Ribosomes; Composition and assembly; Universal genetic code; Degeneracy of codons; Termination codons; Iso accepting tRNA; Wobble hypothesis; Mechanism of initiation, elongation and termination; Co- and post-translational modifications; Genetic code in mitochondria; Transport of proteins and molecular chaperones; Protein stability; Protein turnover and degradation	
	Total Teaching hours	90

Internal Assessment Methods: (25 mark	S)
---------------------------------------	----

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Reference Book:

1. DavidFreifelder,EssentialsofMolecularBiology,NarosaPublishingHouse.

2. George M. Malacinski, Essentials of Molecular Biology, Jones and Bartlett Publishers.

3. CornelMulhard,MolecularBiologyandGenomicsAcademicPressisanimprintof Elsevier.

4. Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris-A.Kaiser, Monty Krieger, Mathew

5. P.Scott, S.Lawrence Zipursky, James Darnell, Molecular Cell Biology (Fifth adition),

W.H.Freeman and company

New York.

6. Reimer, L. and Kohl, H. (2008) Transmission electron microscopy. Springer.

7. Sharma, V. K. (1991) Techniques in microscopy and cell biology. Tata McGraw Hill

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome, CO-Course outcome, S-3, M-2, L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER III PAPER3 .: Biotechnology Papercode: Subject: Biotechnology

Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of Scope of environmental biotechnology and also the basic techniques in genetic engineering and also the Genetically modified organism.

Course Objectives

1.To learn the scope of environmental biotechnology

2.To learn the Basic techniques in genetic engineering

3.To develop knowledge on concept of genetic engineering of plants and its application

4.To learn the Liquid waste treatment, solid waste management

5.To develop a piece of knowledge in Biotechnological approaches for Fermentor and industrial process of beveage

Course Out Comes

6.After completing unit1, the students will be able to Understand the scope of environmental biotechnology and also the fermentation technology.

7. After completing unit 2, the students will able to understand the techniques in genetic engineering.

8 After completing unit3, the students will be able to understand the concept of genetic engineering in plants and its applications

9.After completing unit4, the students will be able to explain phytotechnology and biotechnological approaches.

10.Aftercompleting unit5, the students will be able to explain about the bio reactor and fermentor.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units		Teaching hours
	Course Contents	C
UnitI	The scope of environmental biotechnology; Biodegradation of macromolecules; biode gradation of genobiotics; Vermi composting. Heavy metalpollution; Bioremediation of metal contaminated soils, spilled oil and grease deposits and synthetic pesticides. Biosensors to detect environmental pollutants. Microorganisms and organic pollutants; Extremophiles. Fermentation technology (Bioreactors).	18hours
Unit-II	Basic techniques in genetic engineering: Genetic manipulation, Restriction endonucleases, Introduction of cloned genes into new hosts using plasmid and phage vector systems. RFLP, Polymerase chain reaction, Environmental genomics/metagenomics-a general account, Microbes and environmental management.	18 hours
Unit-III	Basic concept of genetic engineering of plants and its applications- herbicide and stress tolerant plant. Biotechnology strategies in forestry and wasteland management. Biotechnology in biodiversity conservation: gene banks, germplasm conservation and DNA Banks. Genetically modified organisms and Bio safety- a general account.	18 hours
Unit-IV	Bioenergy, ethanol fermentation. Liquid waste treatment; Biofilters, activated sludge systems; membrane bioreactors. Biotechnological approaches for solid waste management, Phytotechnology-terrestrial phytosystems, metal phytoremediation, Phytotechnology- aquaticphytosystems,nutrient filmtechniques,algaltreatment systems.	18 hours
Unit-V	Bioreactors / Fermentor: Types, features, operation: sterilization (Batch and Continuous), inoculation and sampling. Control of bioprocess parameters. Microbial growth and media formulation. Microbial culture - batch, fed batch, semi-continuous, continuous. Growth kinetics of microorganisms.	18hours
	Total Teaching hours	90

Internal Assessment Methods:(25 marks)

Distribution for	Test(CIAI+CIA	Seminars	Assignment	Total marks						
internals	II+CIAIII)									
Marks	15	05	05	25						

Reference Book:

- 1. Manahan, S.E. 1997. Environmental Science and Technology. Lewis, New York.
- 2. MetcalfandEddy(Eds).2003,WastewaterEngineering:TreatmentandReuse, Tata McGraw-Hill, New Delhi.
- 3. Nelson,G.C.2001.GeneticallyModifiedOrganismsinAgriculture:Economics and Politics. Academic Press.
- 4. Evans, G.M. and Furlong J.C. 2003. Environmental Biotechnology: Theory and Application. John Wiley and Sons.
- 5. Thomas, J.A. and Fuchs, R.2002. Biotechnology and Safety Assessment. Academic Press.
- 6. Wang L.K. Hung Y.T. nad Shammas N.K.(Eds). 2006. Advanced Physico chemical Treatment Processes. Springer-VerlagNewYork,LLC
- 7. Industrial Microbiology, Reed C., Prescott and Dann's, 1982. Macmillan publishers.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER III

PAPER4.: Microbial and Industrial application

Papercode: Subject: Microbial and Industrial application Hours/Week:5

Credits:4

Aim: To enable the students to understand the concept of microbial diversity and

also the microbial growth and also the microbial Interaction and also the Industrial applications.

Course Objectives

1.To learn the Classical and modern methods and concepts of microorganisms2.To learn the Microbial Growth & Physiology3.To develop knowledge on Microbial Interactions and Infection

4.To learn the Microbes and Environment5.To develop a piece of knowledge in Industrial Applications

Course OutComes

6.After completing unit1, the students will be able to Understand the Kingdom concepts in

classification of microorganisms; Molecular methods.

7. After completing unit 2, the students will able to understand the Microbial growth

8. After completing unit 3, the students will be able to understand the Microbial Interactions and Infection

9. After completing unit4, the students will be able tounderstand the concept of Microbes and environment.

10.After completing unit5, the students will be able to under stand the concept of basic principles of bio process.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units	Course Contents	Teaching hours
UnitI	Microbial Diversity & Systematics Classical and modern methods and concepts; Domain and Kingdom concepts in classification of microorganisms; Criteria for classification; Classification of Bacteria according to Bergey's manual; Molecular methods such as Denaturing Gradient Gel Electrophoresis (DGGE), Temperature Gradient Gel Electrophoresis (TGGE), Amplified rDNA Restriction Analysis and Terminal Restriction Fragment Length Polymorphism (T-RFLP) in assessing microbial diversity;16S rDNA sequencing and Ribosomal Database Project.	18hours
Unit-II	.Microbial Growth & Physiology Ultra structure of Archaea (Methanococcus); Eubacteria (<i>E.coli</i>);Unicellular Eukaryotes (Yeast) and viruses (Bacterial, Plant, Animal and Tumor viruses); Microbial growth: Batch, fed-batch, continuous kinetics, synchronous growth, yield constants, methods of growth estimation, stringent response, death of a bacterial cell. Microbial physiology: Physiological adoption and life style of Prokaryotes; Unicellular Eukaryotes and the Extremophiles (with classical example from each group).	18 hours
Unit-III	Microbial Interactions and Infection Host–Pathogen interactions; Microbes infecting humans, veterinary animals and plants; Pathogenicity islands and their role in bacterial virulence	18hours
Unit-IV	Microbes and Environment Role of microorganisms in natural system and artificial system; Influence of Microbes on the Earth's Environment and Inhabitants; Ecological impacts of microbes; Symbiosis (Nitrogen fixation and ruminant symbiosis); Microbes and Nutrient cycles; Microbial communication system; Quorum sensing; Microbial fuel cells; Prebiotics and Probiotics; Vaccines	18 hours
Unit-V	Industrial Applications Basic principles in bioprocess technology; Media Formulation; Sterilization; Thermaldeathkinetics; Batchand continuous sterilization systems; Primary and secondary metabolites; Extracellular enzymes; Biotechnologically important intracellular products; exopolymers; Bioprocess control and monitoring variables such as temperature, agitation, pressure, pH Microbial processes- production, optimization, screening, strain improvement, factors affecting down stream processing and recovery; Representative examples of ethanol, organic acids, antibiotics etc Total Teaching hours	18hours

Internal Assessment Methods:(25 marks)

Distribution for internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference Book:

- 1. MichaelJ.Pelczar,Microbiology, Tata McGraw-Hill
- 2. L.ECasida, JR, Industrial Microbiology, NewAgeInternational, PJLimited, Publisher.
- 3. Prescott and Dunn, Industrial Microbiology, CBS Publisher and Distributor
- 4. GerandJ.Tortora, BerbellR. Funke, Christine L.Case, Microbiology, Pearson

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-Programme Outcome,CO-Course outcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER III

ELECTIVE PAPER1.: Water and Waste water Technology

Papercode: Subject: Water and Waste water Technology

Hours/Week:5

Credits:3

Aim: To enable the students to understand the concept Water microbiology and analytical tools in assessment of water pollution.and also the water pollution monitoring and also the effluent treatment system and also the removal of specific pollution.

Course Objectives

1.To learn the standards of water in relation to public health

2.To learn the Principal forms of Water Pollutants

3.To develop knowledge on Water Pollution Monitoring

4.To learn the Development and optimization of membrane bioreactor process

5. To develop a piece of knowledge Effluent treatment systems

Course Outcomes

6.Aftercompletingunit1, the students will be able to Understand the Methods of water sampling

for pollution analysis and Biosensors and also Biological treatment

7.Aftercompletingunit2, the students will able to understand the Biological methods,

Chemical methods for Monitoring Water Pollution

8.Afterstudyingunit3,thestudentswillbeable to understand the Sewage and waste water treatments systems

9. Afterstudyingunit4, the students will be able to explain biotechnological application of hazardous waste management of water

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriatebox)

Units	CourseContents	Teaching hours
UnitI	Overview of standards of water in relation to public health - Detection and control of micro-organisms inenvironmentalfresh water, insource and drinking water; Potable and nonpotable water; Methods of water sampling for pollution analysis; Biosensors - types and applications in environmental pollution detection and monitoring; Biological treatment: stabilization pond, aerated lagoon, activated sludge process, trickling filter anaerobic treatment. WaterPollution Principal forms of Water Pollutants and their sources; Pollution of stream, lakes and phenomenon of eutrophication; Water pollution monitoring and water quality standards; Ocean pollution – oil pollution; Ground water pollution and its control;Water pollution prevention.	18hours
Unit-II	.Methods of monitoring;Biological methods; Detection methods for DO, BOD, Pathogen monitoring by heterotrophic plate count; Multiple tube method; Membrane filtration methods; Other emerging techniques such as enzyme detection, hybridization, PCR,Gene probe technology etc.; Strategies for controlling pathogen transfer; Chemical methods- Detection methods for COD, pH, alkalinity, TSS, TDS, Total organic carbon, oil, grease etc.; Biosensors of pollution	18 hours
Unit-III	Sewage and waste water treatments systems; Primary, secondary and tertiary treatments; Measurement of treatment efficiencies; Biological treatments - aerobic versus anaerobic treatments;Environmental pollution control- Bioremediation, Bioaugmentation and Biostimulation; Biofilms in treatment of waste water; Biofilm development and biofilm Kinetics; Aerobic Biofilms; Bioreactors for waste water treatments; Reactors types and design; Reactors in series; Development and optimization of membrane bioreactor process for use in sanitary and industrial sewage treatment.	18hours
Unit-IV	Physicochemical characteristics and treatment strategies for effluent generated by Distillary and fermentation industry; Fertilizers and pesticide manufacturing industries; Dyes and dye intermediate producing industries and textile industries; Paper and pulp industries; Tanneries; Pharmaceuticals; Thermalpower plants; Food and dairy industries; Iron and steel industries; Organic solvents; Chlorinated minerals and inorganic chemical industries and petrochemicals; Biotechnological application of hazardous waste management of water; Use of microbial systems; Phytoremediation: Waste water treatment using aquatic plants; Root zone treatment; Development of new biocatalysts to be applied in waste water biotechnology.	18hours

Unit-V		18hours
	Water Quality and Preliminary treatment.	
	Water Quality-physical- chemical and biological parameters of	
	water- water quality requirement - potable water standards -wastewater	
	effluent standards -water quality indices. Water purification systems in	
	natural systems- physical processes-chemical processes and biological	
	processes- primary, secondary and tertiary treatment-Unit operations-	
	unit processes. Mixing, clarification - sedimentation; Types; aeration	
	and gas transfer – coagulation and flocculation, coagulation processes	
	- stability of colloids - destabilization of colloids- transport of colloidal	
	particles, clariflocculation.	
	TotalTeachinghours	90

Internal Assessment Methods:(25 marks)

Distribution for Internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Reference Book:

- 1. NicolasPCherewsinott,HandbookofwaterandwastewaterTreatmentTechnology, Boston Oxford Auckland Johannesburg Melbourne ,N Delhi
- 2. FrederickWPontinus,WaterQualityandTreatment.Americanwaterworks Association, MC Graw Hill Inc.
- 3. SKAgarwal, WaterPollution, APHPublishingCorporation.
- 4. Ronald LDooste, Theoryand Practical of water and wastewater Treatment.
- 5. BillT.Ray,EnvironmentalEngineering,PWSPublishingcompany.
- 6. W. Wesley Eckenfelder, Jr., "IndustrialWater Pollution Control", 2ndEdn.,McGraw Hill Inc., 1989

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-3, M-2, L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

COREELECTIVEIII(B):GENOMICS&PROTEOMICS

Papercode: Genomics&ProteomicsHoursofteaching:3 Paper name: Credits:3

Aim:To

enable

ustoexploremanydifferentcomponentsoflivingsystemsandtheadventofproteomicswillmad eitpossible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and application singenomics and proteomics.

Course objectives:

1.	Toprovide the basic knowledge of genecharacteristic feature and mapping concepts
2.	To understand about these quenching technologies
3.	To provide the basic concept for protein analysis
4.	To understand about protein sequencing
5.	To Enrich the students' knowledge with respect to metagenomic and applications

CourseOutComes(fiveoutcomesforeachunitsshouldbementioned)

- 11. Afterstudyingunit-1,thestudentwillbeabletoknowaboutgenesfunctionalproperties.
- 12. Afterstudyingunit-2, the student will be able to understand how genese quencing are done
- 13. Afterstudyingunit-3,thestudentwillbeable tounderstandProteinanalysis.
- 14. Afterstudyingunit-4,thestudentwillbeable to protein sequencingmethods.
- 15. Afterstudyingunit-5, the student will be able to know about metagenomics and

itsapplication.

	· · · · · · · · · · · · · · · · · · ·	/			
i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Cr
Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes	No
Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	No	No
Yes	Yes	Yes	No	Yes	Yes
	i.Remembering Yes Yes Yes Yes Yes Yes	i.Rememberingii.UnderstandingYesYesYesYesYesYesYesYesYesYesYesYesYesYes	i.Rememberingii.Understandingiii.ApplyingYes	i.Rememberingii.Understandingiii.Applyingiv.AnalyzingYes	i.Rememberingii.Understandingiii.Applyingiv.Analyzingv.EvaluatingYesNoYesYesYesYesNoYes

Matching Table (Put Yes/Nointheappropriatebox)

genes, overlapping genes, alternative genes, (RNA editing and RNASplicing) etc. identification and characterization of insert DNAfragments, genecontentand Cvalue paradox –	
RNASplicing) etc. identification and characterization of insert DNAfragments, genecontent and Cvalue paradox –	
DNAfragments, genecontent and Cvalue paradox –	
geneclusterandgenefamilies	
restriction mapping, chromosome walking and	
chromosomallocalizationofgenes.RFLPandotherusesofclonedseque	ence
s,cloningofmicrobialgenes.	
UNIT-II Methods of preparing genomic DNA, DNA sequence	18 hours
analysismethods, Sanger Di deoxy method, next generation	
sequencing, SNP – single nucleotide polymorphism, expressed	
sequencedTags(ESTs).Genediseaseassociation, sitedirectedmutager	nesi
sandmolecular chimeras, gungal genome and genomics.PCR	
basedAnalysis,DNAFingerprinting.	
UNIT–III Scope of proteomics, protein separation techniques – ion	18 hours
exchangechromatography, size – exclusion and affinity	
chromatographytechniques,size-	
exclusionandaffinitychromatographytechniques	
,proteinanalysis(includesmeasurement of concentration, aminoacid	
composition, N-terminal sequencing); SDS-PAGE,	
twodimensionalgelelectrophoresisandimageanalysis.	
UNIT-IV Introduction to mass spectrometry; strategies for proteinidentificati	on 18 hours
; protein sequencing ; protein modifications and proteomics ;	
applications of proteome analysis to drug; protein –	
proteininteraction(Twohybrid	
interactionscreening), analysis and sequencing individual spots by m	ass
spectrometry (Maldi toff) andproteinmicroarrays.	
INIT V aganomics construction vector designands creenings fractagenemic	18 hours
libraries biotechnological applications of metagenomics	, 10 110015
instance- biotechnological applications of metagenolines.	

InternalAssessmentMethods:(25 marks)

Distributionfor	Test(CIAI+CIA	Seminars	Assignment	Totalmarks
internals	II+CIAIII)		_	
Marks	15	05	05	25

TextBooks

1. Introducingproteomics(2011)Josiplovric.JohnWileyPublication

2. Principlesofproteomics(2013). R.MTwyman.Taylorand Francispublish

ReferenceBooks

1. ExpressionGenetics:accelerated andHighThroughputMethods(1999). EditedbyM.McClelland and

A.Pardee,EatonPublishing,MA.

2. MicrobialFunctionalGenomics(2004).J.Zhou,D.K.Thomson,Y.XuandJ.M.Tiedje,WileyL iss.

3. ReviewsandarticlesfromJournalssuchasNature,Science,PNAS(USA),NucleicAcidsResea rch, Trends andCurrentOpinionSeries.

- 4. PrinciplesofGeneManipulationandGenomics(2013)SandyB.Primrose,RichardTwyman–BlackwellPublishing.
- 5. An

Introduction to Genetic Engineering 3rd Edition Desmond S.T. Nicholl Cambridge University Press

6. Molecular Biotechnology: Principles and Applications of Recombinant DNA 4th Edition Bernard R. Glick, Jack J.Pasternak, CherylL.PattenASMPress

7. Post-

translationalmodificationsinhostcellsduringbacterialinfection, D.Ribert, P.Cossart, FEBSletters, 2010.

- 8. Proteomicsinpractice:alaboratorymanualofproteomeanalysis(2002).Westermeier,R.,&Na ven,T.JohnWiley&Sons,Inc.
- Proteomicsforbiologicaldiscovery.Veenstra,(2006).TimothyD.andJohnR.YatesJohnWile y& Sons,
- 10. Plantproteomics:methodsandprotocols.(2007).Thiellement,H., Zivy,M.,Damerval,C. andMéchin,V.eds.Totowa(NJ):HumanaPress.

MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO
CO1	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	3	3	3	2	3
CO3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

COREELECTIVEIII(C):HerbalBiotechnology

Papercode: Subject: Herbal Biotechnology Hours/Week:3

Credi

t:3

Aim:Togivethedetails of plant-derivedvalueaddedcompoundsandtheirfunctions.ToprovideknowledgeonbiotechbasedproductionofHerbalmedicines

CourseObjectives

1. Toenablethestudentstolearnaboutthe

biochemical parameters used in the identification and utilization of medical plants

- 2. To enable the students to learn about the extraction of phytochemicals and procedures
- 3. To exploit and explore the medicinal values of plants
- 4. knowtheevaluationtechniquesfortheherbaldrugs
- 5. Toprovideknowledge onbiotech-basedproductionofHerbalmedicines

CourseOutcomes (fiveoutcomesforeachunitshouldbementioned)

- 1. Afterstudyingunit-1,thestudentwillbeableto-knowtheStudyofonhistoryandscopeofherbals
- 2. Afterstudyingunit-2,thestudentwillbeableto-

understand the Important medicinal herbs intreating diseases

3. Afterstudyingunit-3, the student will be able to-

learn the Biotechnological methods of plant propagation

4. Afterstudyingunit-4, the student will be able to-

exploremethods Involved in secondary metabolite production

5. Afterstudyingunit-5, the student will be able to-

know about pharmaceutical applications and Intellectual Property Rights

Matching Table (Put Yes/Nointheappropriatebox)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Cre
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	No	No	No
3	Yes	Yes	No	No	No	No

4	Yes	Yes	No	No	No	No
5	Yes	Yes	No	No	No	No

Units		Tea
	CourseContents	h
UnitI	Studyofonhistoryandscopeofherbals-IntroductiontotheIndiansystemofmedicine– Herbaldrugsandimportance-HerbalCosmeticandCosmeceuticals -FormulationDevelopmentofherbalpreparations- HerbalDrugdiscoveryandNoveldrugdeliverysystems.	18 ho
Unit-II	Important medicinal herbs in treating diseases- Phytochemistry of medicinalplants-alkaloids-flavones-flavonoidsandxanthones-furocoumarins-glycosides-naphthoquinones-phenolsandacylphloroglucinols-resins, oleoresins and gum resins. Saponins - sterols and steroid-like compounds - tanninsandterpenes.	18 ho
Unit-III	Biotechnological methods of plant propagation Micropropagation – SomaticEmbryogenesis and somoclonal variation. Herbal gardening and maintenance-Standardization of cultivation protocols of selected medicinal plants; <i>in vitro</i> productionofsecondarymetabolites.PolyhouseTechnology-Important diseasesofmedicinalplantsandtheirmanagement.	18 ho
Unit-IV	MethodsInvolvedinsecondarymetaboliteproduction- Organculture,Cellculture,Biotransformation(MicrobialandPlantcells)-Scaleup- Enhancement of product formation by elicitation-Immunodiagnostics and moleculardiagnosticsinselectionofelite plantspecies.	18 ho
Unit-V	Introduction to analysis and quality controls of herbal products (TLC, HPLC,IR, NMR, and mass spectroscopy). Pharmaceutical application of alkaloids,terpenoids, glycosides, volatile oils, tannins and resins Intellectual PropertyRights-RegulatoryAffairherbalpharmaceuticals-Entrepreneurship Management.	18 ho
	TotalTeachinghours	90 ho
		•

InternalAssessmentMethods:(25 marks)

Distributionfor internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Reference&TextBooks:

- 1. Harborne, J.B., 1998. Phytochemical methods to modern techniques of plantanalysis. Chapma n & Hall, London.
- 2. Trease G.E,M.C.Evans,1979.TextbookofPharmacognosy12thed. Balliere-Tindal, London.
 - 3. IrfanA.KhanandAtityaKhanum(Eds.).2004. RoleofBiotechnologyin

medicinalandAromaticplants,Vols. I-

X.UkaazPublications,Hyderabad.AnalyticaltechniquesinDNA

sequencingeditedbyBrianK.Nunnally.

- 4. AgrawalS.S.andM.Paridhavi,HerbalDrugTechnology,Universitypress2007.
- 5. Henry, R.J. 1997. Practical Applications of Plant Molecular Biology. Chapman & Hall, London,

90

UK.

- 6. Bidlack,W.R.,Omaye,S.T.,Meskin,M.S.andTopham,D.K.W.,"Phytochemicals as BioactiveAgents",1St Edition,CRCPress,2000.
 - 7. SharolTilgner, N.D. 1999. Herbalmedicine-

Fromtheheartoftheearth.Edn.1, PrintedintheUSA byMalloyLithographingInc.

- 8. Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in Biotechnology, University, Press, 1996.
- 9. Anderson, F.JIIlustratedHistoryoftheHerbals.NewYork:ColumbiaUniversitypress.2009.
- 10. Callow, J.A., Ford-Lloyed, B.V. and Newbury,

H.J.1997.BiotechnologyandPlantGeneticResources:ConservationandUse,CAB International,OxonUK.

11. Gokhale, S.S, C.K. Kokateand A.P. Purohit (1994). Pharmacognosy. Niraliprakashan, Pune.

12. Faroogi, A.A. and B.S. Sreeramu (2004), Cultivation of Medicinal and Aromatic crops. Univer sity Press (India) P.Ltd., Hyderabad.

13. Pal.D.CandS.K.Jain(1998), Tribalmedicine, Naya Prakash, 206, BidhanSarani, Calcutta.

14. Thirugnanam, Akbarsha and Krishnamurthy (2010), Indian Medicinal plants and Home
 Remedies, Selvi Pathipagam, Trichy.

CourseMaterial:

- 1. Rasheeduzzafar(2006), Medicinal plants of India, CBS publication.
- 2. InternationalJournalofHerbalMedicine
- 3. JournalofHerbalmedicineElsevier en.wikipedia.org/wiki/Herbalmedicine

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO
CO1	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	3	3	3	2	3
CO3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2

MappingwithProgrammeOutcomes

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

104

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

OPEN ELECTIVEII (A):ENVIRONMENTALSCIENCES

Paper code:	Name of the Paper: Environmental Sciences
TotalHours perWeek: 2	Credits:2

CourseObjectives

- 1. TointroducestudentstothebasicsofEnvironment.
- 2. Toenablethestudents learnbasicstructureand functionsofecosystem.
- 3. Tomakestudentsunderstandthedistributionoflifeandlifeformsonearth.
- 4. Tomakestudentsawareofthedifferentformsofenergyinenvironment.
- 5. Tomakethestudentsunderstandthedifferent pollutantsandpollutionandtheirManagement.

CourseOutComes(fiveoutcomesforeachunitsshouldbementioned)

- 1. Thestudentwillbeabletounderstandtheprinciplesandscopeofenvironment.
- 2. ThestudentwillbeabletounderstandthedistributionandcyclingofenergyandmatterinEnviron

ment.

- 3. Thestudentwillbeabletoidentifyandcharacterizetheearthsciences.
- 4. Thestudentwillbeableexplorate thesourcesofenergyfromenvironment.
- 5. Thestudentswillbeabletoapplymethodstocontrolandmanagetheenvironmentpollution.

Matching Table (Put Yes/Nointheappropriatebox)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Cre
1	Yes	Yes	No	Yes	Yes	
2	Yes	Yes	Yes	Yes	Yes	
3	Yes	Yes	No	Yes	Yes	
4	Yes	Yes	Yes	Yes	Yes	
5	Yes	Yes	Yes	Yes	Yes	

UNITI		18 hours
	Definitions, principles and scope of environmental science. Structure and	1
	composition of atmosphere, hydrosphere, lithosphere, biosphere	
	Meteorological parameters. Environmental education	ı
	andawareness.EnvironmentalEthics.	
UNIT-II	Introductiontooriginoflifeandspeciation, Ecosystemstructureandfunctio	18 hours
	ns,foodchainsandwebs,Basisofecosystem	
	classification, Biotransformation, water and air borne	
	microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosen	
	sors.	
UNIT –III	Introduction to origin of earth, components of earth, zones of	18 hours
	earth, Climates of India, weather reactions, erosion, transport,	
	depositionofsediments,Soilformingmineralsandprocess,identificationa	
	nd	
	characterizationofclayminerals, Groundwaterquality, pollutionof ground	l
	waterandmitigationofitsimpacts.	
UNIT–IV	Sources of energy, Sun as source of energy, Solar radiation and	118 hours
	itsspectralcharacteristics, Characteristics and energy content	
	ofcoal, petroleum, and natural gases, Energy usage pattern inworld and	
	India,Pollutants,emissionsofCO ₂ andGlobalwarming.	
UNIT-V	Introductiontopollution, air, noise, water, soil, thermal, marine and radioact	18 hours
	ivePollution, Concept of Waste management, Solid andhazardous	
	waste management, Electrical energy generation, e-	
	waste,flyash,plasticwaste,Environmentalmanagementsystem	
	standards, IPCC, UNEP, IGBP, Global environmental issues-	
	Biodiversityloss, climate change, Ozonedepletion, sealevel rise.	
	TotalLecturehours	90 hours

InternalAssessmentMethods:(25 marks)

Distributionfor internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

Textbook:

- 1. Hardy, J.T.2003. Climate Change: Causes, Effects and Solutions. John Wiley & Sons.
- 2. Harvey, D.2000.ClimateandGlobalClimateChange.PrenticeHall.
- **3.** Minkoff,E.C.1983.EvolutionaryBiology. AddisonWesley.PublishingCompany.
- 4. Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.
- **5.** Pepper,I.L.,Gerba,C.P.&Brusseau,M.L.2006.EnvironmentalandPollutionScience.Elsevie rAcademicPress.
- 6. Purohit, S.S.&Ranjan, R.2007. Ecology, Environment & Pollution. Agrobios Publications.
- 7. Owen,O.S,Chiras,D.D,&Reganold,J.P.1998.NaturalResourceConservation– ManagementforSustainable Future(7thedition).PrenticeHall.
- 8. Elliott,D.1997.SustainableTechnology.Energy, SocietyandEnvironment(Chapter3).

NewYork,RoutledgePress.

9. Bagchi,A.2004. DesignofLandfillsand

IntegratedSolidWasteManagement.JohnWiley&Sons.

- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Sounders.
- 11. Barry, R.G. 2003. Atmosphere, Weather and Climate. RoutledgePress, UK.
 - 12. Mitra, A.P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S. & Sen,

K.2004.ClimateChangeandIndia.UniversitiesPress,India.

ReferenceBook:

- 1. Botkin, Daniel B. (2011). Environmental Science: Earthasaliving Planet, John Wiley and Sons, New Delhi.
- 2. Chapman.J.L.andReiss,M.J.(2005).Ecology,PrinciplesadApplictions,CambridgeUniversi tyPress,London.
- 3. Dash,M.C.(1994).FundamentalsofEcology, TataMcGrawHill,NewDelhi.
- 4. Gunther, O. (1998) Environmental Information Systems. Berlin, New York, Springer.
- 5. MillerG.TaylorandScotSpoolman.(2011).EssentialsofEcology,Books/ColeLearning,sU.S .A.
- 6. Odum,E.P.(1971).FundamentalsofEcology, W.B.SaunderCompany, Philadelphia
- 7. SharmaP.D.(1996).EnvironmentalBiology, RastogiPublications, Meerut.
- 8. VermaP.S.andV.K.Agarwal.(1985).PrinciplesofEcology.S.ChandandCompany(Pub.),Ne wDelhi.
- 9. Strahler, A.V. and Strahler, A.A (1973). Environmental Geoscience, Wiley International.
- 10. PrimackR.B.2014.EssentialsofConservationBiology, OxfordUniversityPress,USA.

CourseMaterial:websitelinks,e-Booksande-journals

- 1. <u>https://www.hzu.edu.in/bed/E%20V%20S.pdf</u>.
- 2. https://www.intechopen.com/books/1882.

MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 P
CO1	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	3	3	3	2	3
CO3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

11

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

OPENELECTIVEII(B):MEDICALMICROBIOLOGY

Paper code: NameofthePaper: MedicalMicrobiology TotalHours perWeek:2 Credits:2

Aim:Toenablethe studentstounderstandthebasicsofMedicalMicrobiology

CourseObjectives

- 1. Tointroducestudentstothebasicsofcollectionandtransportofmicrobialsource
- 2. Toteachstudentsabouthostparasiterelationship.
- 3. Tomakestudents understandthatbacterialpathogens and its related diseases of phase I.
- 4. Tomakestudents understandthatbacterialpathogensanditsrelateddiseasesofphase II.
- 5. TomakethestudentsunderstandthatNosocomialandZoonoticdiseases

CourseoutComes(fiveoutcomesforeachunitsshouldbementioned)

- 1. Afterstudyingunit-1,thestudentwillbeabletoknowthebasicsofcollectionandtransportofmicrobialsource
- 2. Afterstudyingunit-2,thestudentwillbeableto–understandthehostparasiterelationship
- 3. Afterstudyingunit-3,thestudentwillbeableto– learnbacterialpathogensanditsrelateddiseasesofphaseI
- 4. Afterstudyingunit-

 $\label{eq:4} 4, the student will be able to bacterial pathogens and its related diseases of phase II$

5. Afterstudyingunit-5,thestudentwillbeableto-knowaboutNosocomialandZoonoticdiseases

Matching Table (Put Yes/Nointheappropriatebox)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Cre
1	Yes	Yes	No	Yes	Yes	
2	Yes	Yes	Yes	Yes	Yes	
3	Yes	Yes	No	Yes	Yes	
4	Yes	Yes	Yes	Yes	Yes	
5	Yes	Yes	Yes	Yes	Yes	

Collectionsandtransportofspecimens:Collectionsandtransportofspecim	18hours
ens.PrimaryMediaforisolationandtheirqualitycontrol.	
Antibioticsensitivitytestingprocedure.	
HostParasiteRelationship:Normalmicrobialfloraofhumanbody,Virulen	18hours
ce factors of bacteria causing infection, Microbial	
Infections, HostParasiteRelationships.	
Bacterial pathogens and associated diseases part I	18hours
Classification, Morphology, cultural & Biochemical characteristics,	,
pathogenicity,Lab diagnosis&Prophylaxis and treatmentof disease	
caused byStaphylococci,Streptococcai,Neisseriae,Mycobacteria,	
Corynebacteria, Bacillus, Clostridium.	
Bacterialpathogensand associated diseases part II	18 hours
E,coli,Samonella,Shigella,Vibrio,pseudomonas,Spirochaetes,Rickettis	
iae.GramNegativeanaerobes.	
NosocomialandZoonoticdiseases,Hospitalacquiredinfection-	18 hours
infectioncontrolcommittee,Zoonoticdiseases-Anthrax,Plague.	
TotalLecturehours	90hours
	Collectionsandtransportofspecimens:Collectionsandtransportofspecim ens.PrimaryMediaforisolationandtheirqualitycontrol. Antibioticsensitivitytestingprocedure. HostParasiteRelationship:Normalmicrobialfloraofhumanbody,Virulen ce factors of bacteria causing infection, Microbial Infections,HostParasiteRelationships. Bacterial pathogens and associated diseases part I, Classification,Morphology, cultural &Biochemical characteristics, pathogenicity,Lab diagnosis&Prophylaxis and treatmentof disease caused byStaphylococci,Streptococcai,Neisseriae,Mycobacteria, Corynebacteria,Bacillus,Clostridium. Bacterialpathogensand associateddiseasespartII E,coli,Samonella,Shigella,Vibrio,pseudomonas,Spirochaetes,Rickettis iae.GramNegativeanaerobes. NosocomialandZoonoticdiseases,Hospitalacquiredinfection– infectioncontrolcommittee,Zoonoticdiseases-Anthrax,Plague.

InternalAssessmentMethods:(25 marks)

Distributionfor internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

TextBooks&References

1. DavidGreenwood,RichardC.B,Slack,JohnForestpeuthere"MedicalMicrobiology"14t hEdn.ELBS withChurchillLivingstone.

AnanthanarayananRand JayaramPanicker,C.K.Textbookofmicrobiology-

Orient Longman

2.

3. ColleJC, DuguidJP, FraserAC, Marimon(Bp)1996. Mackie

and McCartney Practical Medical Microbiology 14 th Edn. Churchill Living stone.

4. Baron L.J, Peterson

L. RandFine god S. M (1994) Bailey and Scott Diagnostic Microbiology, 9 th Edn. Mos by Publication s.

5. Cowan and Steel

(1995) Manual for identification of Medical Bacteria. 4 th EDN, Cambridge University Press London.

11

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 P
CO1	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	3	3	3	2	. 3
CO3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2

MappingwithProgrammeOutcomes

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

M	lapping	with l	Programme	Specific	Outcomes
---	---------	--------	-----------	----------	----------

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

11

OPENELECTIVEII(C):AGRICULTURALBIOTECHNOLOGY

Papercode: DDOBT13C NameofthePaper: AgriculturalBiotechnology

112

TotalHours/Week:2

Credits: 2

- Aim: To make the students learn the fundamental principles of biotechnology, various developments and their applications and scope in agricultural Biotechnology. To provide knowledge in biotechnologic
 - alinnovationspertainingtoissuesinagriculture.

CourseObjectives

1. Toprovide the students the knowledge

inbiotechnologicalinnovationspertainingtoissuesinagriculture

- 2. Toenablethestudents learnbasicsof geneticsintheplantevolution.
- 3. Toenablethestudentstounderstand theconcepts of molecularbiology.
- 4. Tomakethestudentsawareofadvancedmoleculartechniquesin plantbiotechnology.
- 5. Tomakethestudentsunderstandthedifferent waysof

genetransfermethods and Identification of transgenic genes.

CourseOutComes

- 1. Thestudentwill beabletoappreciatetheimportanceof agricultureandneedforBiotechnologyinagriculture.
- 2. Thestudentwill beabletolearnthebasicsconcepts of plantsystem and their genetics.
- 3. Thestudentwill beabletodifferentiate genome, plasmids and vectors and their translation.
- 4. Thestudentwill beabletoselectthedifferentways
- ofgenetransfermethods for Plant transgenesis, various developments and their applications.
- 5. Thestudentswillbeabletoapplysuitablemethodsofbiotechnologyinagriculture and identification of planthybridization.

Matching Table (Put Yes/Nointheappropriatebox)

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Cre
1	Yes	Yes	No	Yes	Yes	
2	Yes	Yes	Yes	Yes	Yes	
3	Yes	Yes	No	Yes	Yes	
4	Yes	Yes	Yes	Yes	Yes	
5	Yes	Yes	Yes	Yes	Yes	

UNIT I	History, scope and importance of biotechnology in Agriculture-	18 hours
	ApplicationofbiotechnologyinAgriculture	
UNIT-II	Mendeliangenetics, allosomes, linkage and extrachromosomal inheritanc	18hours
	e-Introductiontogenetics-Earlierconceptsofinheritance	
	-cell andcellorganelles-Cell division,Mendel"slaws	
UNIT–III	Nucleic acid structure and its function-Modes of DNA replication Genetic code - Central dogma of life – Transcription – Translation RecombinantDNAtechnology-DNAmodifyingenzymes– CloningVectors–Plasmids-cosmids-phagemids-Shuttlevectors-BAC- YAC-HAC-applications.	-18hours
UNIT–IV	Gene transfer methods – <i>Agrobacterium</i> - mediated gene transfer, direct gene transfer, gene silencing – Principles of QTL and MarkerAssistedSelection(MAS)–Achievements-Transgenicplants– Achievements–Current trends.	e18 hours
UNIT-V	Geneisolation,synthesisandcloning,genomicandcDNAlibraries,PCRba sedcloning,positionalcloning-Nucleicacidhybridization andimmunochemicaldetection-DNAsequencing.	18 hours
	TotalLecturehours	90hours

InternalAssessmentMethods:(25 marks)

Distributionfor	Test(CIAI+CIA	Seminars	Assignment	Totalmarks				
internais	II+CIAIII)							
Marks	15	05	05	25				

Textbook:

- 1. Benjamin Lewin, GeneIX, 9th Edition, Jones and Barlett Publishers, 2007.
- 2. J.D.Watson, N.H.Hopkins, J.WRoberts, J.A.Seitz&A.M.Weiner; MolecularBiologyoftheG ene,6thEdition, BenjaminCummingsPublishingCompanyInc, 2007.
- 3. Albertsetal;MolecularBiologyoftheCell,4thedition,Garland,2002.
- 4. Esau'sPlantAnatomy;Meristems,Cells,andTissuesofthePlantBody:
- TheirStructure,Function,andDevelopment,3rdEdition,JohnWiley&Sons,2006.
- 5. MartinJIngrouilleandWilliamEddie,Plants:DiversityandEvolution
- 6. BingruHuang,Plant-EnvironmentInteractions,3rdEdition,CRCPress,2006.
- 7. R.H.Smith,PlantTissueCulture:TechniquesandExperiments,AcademicPress,SanDiego.19 92.
- 8. SSBhojwaniandMKRazdan,PlantTissueCulture,ElsevierPubl.
- 9. S.B.Primrose,R.M.Twyman
 - and R.W.Old; Principles of Gene Manipulation. 6th Edition, S.B. University Press, 2001.
- 10. J.SambrookandD.W.Russel;MolecularCloning:A LaboratoryManual,Vols1-3,CSHL,2001.

ReferenceBook:

1. BrownCM,Campbell

IandPriestFG.2005.IntroductiontoBiotechnology.PanimaPublications.

- 2. Bhojwaniand Dantu, 2013.Planttissueculture:Anintroductorytext,Springer,NewDelhi.
- 3. Singh, B.D., Fundamentalsofgenetics2014, KalyaniPublishers, NewDelhi.
- 4. Gardner, E.J. & Snustad, D.P. 1991. Principles of Genetics. John Wiley & Sons, USA.
- 5. Chawla,H.S.2008.IntroductiontoPlantBiotechnology,3rdEd.OxfordIBH,India.69.
- 6. Dale, J.W. and VonSchantz, M.2002. From Genesto Genomes: Concepts and Applications of DNA Technology. John Wiley & Sons. New york. USA.
- 7. Snustad, D.P. & Simmons, M.J. 2006. Genetics. 4thEd. John Wiley & Sons, USA.
- 8. Strickberger, M.W.2005.Genetics(IIIEd).PrenticeHall,NewDelhi,India

CourseMaterial:websitelinks,e-Booksande-journals

1. https://www.isaaa.org/resources/publications/agricultural_biotechnology/download /A gricultural_Biotechnology.pdf.

2. https://www.researchgate.net/publication/267338355_Book_Review_Agriculture_Bi otechnology_and_Develop me

MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC
CO1	3	3	3	2	3	3	3	3	2	
CO2	3	3	2	3	3	3	3	2	3	
CO3	3	3	3	3	3	2	3	3	3	
CO4	3	2	3	3	2	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	2	

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3

Weightage	15	10	15	15	15
Weighted percentage (rounded of)	3	2	3	3	3
Course Contribution to POs					

Strong - 3, Medium – 2, Low - 1
PRACTICALV:LABINPLANTBIOTECHNOLOGY & ANIMALBIOTECHNOLOGY AND LABINMICROBIALTECHNOLOGY & ENVIRONMENTALBIOTECHNOLOGY

PlantBiotechnology

(10 credit)

1.	Introductiontoplanttissueculture-inductionofcallusand suspensioncultures.
2.	Isolationandpurifytheprotoplastsandcheckitsviability.
3.	Induction of somaticembry ogenesis and analysis of different stages.
4.	Extractthegenomic DNA from plants by CTAB
5.	Cultureandselection of Agobacterium on Agarmedium
6.	Agrobacteriummediatedgenetransformation
7.	UseofAgroinfilterationforTransient ExpressioninPlant
8.	Gusassay
9.	AnalysisofWT/Transgenicplant byPCR
10.	IsolationofTotalRNAfromleaves
11.	Genegunmethodoftransformation
12.	Syntheticseedpreparation

Lab inAnimalBiotechnology

1.	Development of primary cell lines/maintenance of established cell lines.
2.	Cellcountingandcellviability.
3.	Trypsinizationofmonolayerandsubculturing.
4.	Genetransferbytransfection
5.	Preparationofmetaphasechromosomesfromculturedcells.
б.	Isolation of DNA and demonstration of apoptosis of DNA laddering
7.	MTTassayforcellviabilityandgrowth

11

116

1.	Studyoffermentor-Demonstration.
2.	Productionandisolationofantibiotics(Penicillin andStreptomycin)
3.	ProductionandanalysisofSinglecell protein(Spirullinaandyeast)
4.	Production of yoghurtandestimation of lacticacid.
5.	Estimationofpercentageofalcoholof givensample
6.	Productionandassayofα- amylasefromAspergillusnigerbysolidsubstratefermentation.
7.	Immobilizationofgivenenzyme/wholecells
8.	Estimationofamountofcitricacidinthegivensample.

References

1. PracticalApplicationsofPlantMolecularBiology.RobertJ.Henry.RoutledgeChapman&H all,2008.

2. MolecularPlantBiology:Apracticalapproach(Vol.IandII).GilmartinandBowler.Oxford Universitypress,UK,2002.

3. PlantCellCulture:EssentialMethods.MichaelR.Davey,PaulAnthony.Wiley,2010.

4. PlantTissueCulture,ThirdEdition:Techniquesand Experiments.RobertaH.Smith.AcademicPress,2012.

5. PlantcellcultureProtocols(MethodsinMolecularBiology,3rdEd).VictorM.Loyola-Vargas,NeftaliOchoa-Alejo.HumanaPress,2012.

6. PlantCell,TissueandOrganCulture:FudamentalMethods(SpringerLabManuals).OlufL.Ga mborg(Editor),GregoryPhillips(Editor),Springer,2013

7. WaterAnalysis:MeasurementofTotalSolids,Total–dissolvedsolids,Total-suspendedsolids,dissolvedoxygen,totalhardness,chloride,turbidity,nitrite,nitrate,fluoride andtotalnitrogen.

8. EstimationofCOD, BODofindustrialeffluents.

9. Potabilitytestofwater(MPNtechnique).

10.Degradationofphenols. Colorimetricassay

11. Estimation of MIC and Heavy metal tolerance of chromium resistant bacteria

12. ScreeningofBiosurfactantactivity-OilDisplacement test-Dropcollapsetest

13.

Isolation of Thiobacillus ferrooxxidans and Thiobacillus thio oxidans from metal sulphides, rock and acid minewater.

14. Microbialdegradation,decolourzsationandadsorptionoforganicdyesbyfree andimmobilizedcells

15. Studiesonhalophilesfrom seawater(pigmentationandsalttolerance)

MOOC-MASSIVEOPENONLINECOURSES

USRR(UNIVERSITYSOCIALRESPONSIBILITYREPORT)

The aim of the Field Study is to help students connect with the society in the respective discipline. Following are the important features of the Field Study and the USRR:

1. Aim: The Field Study must aim at relating the subject of study with the society in so far as theapplication and the useful ness of the study are concerned

2. **Topic selection:** The topic for the Field Study must be chosen by the student in the second semester in the month of February; the process for the same shall begin on 1st February and shall end on the lastworking day of the month of February. Students are free to select the topic for the Field Study inconsultation with the Experts and Faculty Members of their choice, both from within and outside theUniversity

3. Period and duration: The Field Study shall be undertaken for a duration of 15 days in the summervacation that falls immediately at the end of the second semester of the program and the same should beaccountedfortheThirdSemesteroftheprogram

4.USRR: The USSR (University Social Responsibility Report) must be prepared
by
everystudentofbyeverystudentoftheprogramwrittenin50to75pages.Thereportshallbewrittenbasedonthestandardresearchmethod
ology.ology.

- 5. Reviewandevaluationschedule:
- a. *ReviewingtheFieldwork:*FirstweekofJuly
- b. *ReportReview:* SecondweekofAugust
- c. *Reportsubmission:*FirstweekofSeptember
- d. *ReportEvaluation:* ThirdweekofSeptember

6. Faculty Composition: The following members may be nominated for confirming the topic and forevaluating the USRR:

- a. ProfessorandHeadoftheconcernedDepartment
- b. OneFacultymemberwithrelatedfieldofspecializationfrom theconcernedDepartment
 - c. OneseniorfacultymemberfromtheDepartmentofSociologyfromotherInstitution

SEMESTER IV

PAPER1: Genetic Engineering

Papercode:

Subject: Genetic

Engineering

Hours/Week:5

Credits:4

Aim: To enable the students to understand the basic concept and also the cloning vector and also the cloning methodology and also the sequencing methods.

CourseObjectives

1. TolearntheDNA Structure and properties

2. Tolearn the CloningVectors and plasmid based vector

3.TodevelopknowledgeonCloningMethodologies and PCR and Its Applications

4. Tolearn about the swquencing method and gene silencing

5. Todevelopapieceofknowledgeabout gene expression .

CourseOutComes

and

6.Aftercompletingunit1,thestudentswillbeabletounderstand the Basic concept and DNA structure and properties .

7.Aftercompletingunit2, the students will able to understand the cloning vector

methodologies to reduce formation of inclusion bodies.

8.Aftercompleting unit3,thestudentswillbeable to understand Cloning methodologies and PCR and its applications.

 $$9.\ensuremath{A}\xspace{ftercompleting}\xs$

10.Aftercompleting unit5, the students will be able to explain about the sequencing method.

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/Nointheappropriatebox)

Units		Teaching hours
	CourseContents	
UnitI	DNA Structure and properties; Restriction Enzymes; DNA ligase, Klenow enzyme, T4 DNA polymerase, Polynucleotide kinase, Alkaline phosphatase; Cohesive and blunt end ligation; Linkers; Adaptors; Homopolymeric tailing; Labeling of DNA: Nick translation, Random priming, Radioactive and non-radioactive probes, Hybridization techniques: Northern, Southern and Colony hybridization, Fluorescence in situ hybridization; Chromatin Immunoprecipitation; DNA-Protein Interactions-Electromobility shift assay; DNaseI footprinting; Methyl interference assay	18hours
Unit-II	Plasmids; Bacteriophages; M13 mp vectors; PUC19 and Bluescript vectors, Phagemids; Lambda vectors; Insertion and Replacement vectors; EMBL; Cosmids; Artificial chromosome vectors (YACs; BACs); Animal Virus derived vectors-SV-40; vaccinia/bacculo & retroviral vectors; Expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.; Intein-based vectors; Inclusion bodies; Methodologies to reduce formation of inclusion bodies;Baculovirus and pichia vectors system, Plant based vectors, Ti and Ri as vectors, Yeast vectors, Shuttle vectors	18 hours
Unit-III	Insertion of Foreign DNA into Host Cells; Transformation; Construction of libraries; Isolation of mRNA and total RNA; cDNA and genomic libraries; cDNA and genomic cloning; Expression cloning; Jumping and hopping libraries; Southwestern and Far- western cloning; Protein-protein interactive cloning and Yeast two hybrid system; Phage display; Principles in maximizing gene expression	18 hours
Unit-IV	PCR and Its Applications Primer design; Fidelity of thermostable enzymes; DNA polymerases; Types of PCR – multiplex, nested, reverse transcriptase, real time PCR, touchdown PCR, hot start PCR, colony PCR, cloning of PCR products; T-vectors; Proof reading enzymes;PCR ingene recombination;Deletion;addition;Overlapextension;and SOEing; Site specific mutagenesis; PCR in molecular diagnostics; Viral and bacterial detection; PCR based mutagenesis, Mutation detection: SSCP, DGGE, RFLP, Oligo Ligation Assay (OLA), MCC (Mismatch Chemical Cleavage, ASA (Allele-Specific Amplification), PTT (Protein Truncation Test).	18 hours

Unit-V	Sequencing methods; Enzymatic DNA sequencing; Chemical sequencing of DNA; Introduction of DNA into mammalian cells; Transfection techniques; Gene silencing techniques; Introduction to siRNA; siRNA technology; Micro RNA; Construction of siRNAvectors; Principle and application of gene silencing; Gene knockouts and Gene Therapy; Creation of knock out mice; Disease model; Somatic and germ-line therapy- in vivo and ex-vivo; Suicide gene therapy; Gene replacement; Gene targeting; Transgenics; cDNA and intragenic arrays; Differential gene expression and protein array.	18hours
	TotalTeachinghours	90

InternalAssessmentMethods:(25 marks)

Distributionfor	Test(CIAI+CIA	Seminars	Assignment	Totalmarks	
internals	II+CIAIII)				
Marks	15	05	05	25	

ReferenceBook:

- 1. DavidP.Clark,NanetteJPazdernik,BiotechnologyApplyingtheGenetic Revolution, Elsevier.
- 2. JackG.Chirikjian,GeneticEngineeringMutagenesisSeparationTechnology, Jones and Bartlett Publishers.
- 3. U.Satyanarayana,Biotechnology,BooksandALLIED(p)Limited.
- 4. Michael P. Tombs, Biotechnology and Genetic Engineering Reviews volume 10. Intercept.
- 5. DannielL.Hart,ElizabethW.Jones,essentialGenetic(SecondEdition)Jones and Batlett Publishers.

11

6. EJohansenNange,ArthurPNange,BasicHumanGenetics(SecondEdition) Sinauer Association, Ins Publisher Sunderland, Massachusetts.

MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 F) (
CO1	3	3	3	2	3	3	3	3	2	
CO2	3	3	2	3	3	3	3	2	3	
CO3	3	3	3	3	3	2	3	3	3	
CO4	3	2	3	3	2	2 3	3	3	3	
CO5	3	3	3	3	3	3	3	3	2	

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

SEMESTER IV

ELECTIVE PAPER1.: Bioremediation

Papercode:Subject: Bioremediation

Hours/Week:5

Credits:3

Aim: To enable the students to understand the basic concept of bio remediation I and II and also the Hazardous waste management and also the concept of phyto remediation.

CourseObjectives

1. TolearntheIntroduction, Bioremediation and Bioaugumentation.

2. Tolearn the Solid phase bio remediation and Biosparging.

3.Todevelopknowledgeon Hazardous waste management

4. Tolearn the Concept of bioremediation and also Conceptsofphytoremediation

5. TodevelopapieceofknowledgeBioremediation of toxic metal ions- biosorption

and bioaccumulationprinciples. And also about the microbial remediation and ecological restoration

and bio remediation.

CourseOutComes

6.Aftercompletingunit1,thestudentswillbeabletoUnderstand the concept of bio

remediation and bio augmentation.

7.Aftercompletingunit2,thestudents will able to understand the solid phase bio remediation.

8.Aftercompletingunit3, the students will be able to understand the hazardous waste management.

9. After completing unit4, the students will be able to explain the concept of bio remediation and also the use of micro organism in augmentation.

10.Aftercompletingunit5, the students will be able to explain the concept of microbial remediation

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	nits CourseContents						
UnitI	Bioremediation- I Introduction, constraints and priorities of Bioremediation, BiostimulationofNaturallyoccurring microbialactivities, Bioaugmentation, insitu, ex situ, intrinsic & engineered bioremediation	18 hours					
Unit-II	Bioremediation – II Solid phase bioremediation- land farming, preparedbeds, soilpiles, Phytoremediation.Composting,Bioventing&BiospargingLiquidphaseb ioremediation -suspendedbioreactors,fixedbiofilmreactors.	18 hours					
Unit-III	Hazardous Waste Management biotechnology application to hazardous waste management - examples of biotechnological applications to hazardous wastemanagement–cyanidedetoxification-detoxificationofoxalate, urea etctoxic organics -phenols.	18 hours					
Unit-IV	Concept of bioremediation (in-situ & ex-situ), Bioremediation of toxic metal ions- biosorptionand bioaccumulationprinciples. Conceptsofphytoremediation. Microbial leaching of ore-direct and indirect mechanisms. Mining and metal. Use of microorganisms in augmentation of petroleum recovery. Biotechnology-with special reference to Copper and Iron.	18 hours					
Unit-V	Microbial remediation of phenolics-sewage nutrients(phosphate and nittare). Impact of bioremediation in the petroleum industry,paperindustry,marineoilpollutantsandchemicalindustry.Phytor emediationadvantagesandapplications(agriculture)	18hours					
	TotalTeachinghours	90					

InternalAssessmentMethods:(25 marks)

Distributionfor internals	Test(CIAI+CIA II+CIAIII)	Seminars	Assignment	Totalmarks
Marks	15	05	05	25

ReferenceBook:

- 1. EnvironmentalBiotechnologybyS.K. Agarwal
- 2. Biodegradation&Bioremediation(1999), MartinAlexander, Academicpress.
 - 3. StanierR.Y.,IngramJ.L.,WheelisM.L.,PainterR.R.,GeneralMicrobiology, McMillan Publications, 1989.
 - 4. FosterC.F., JohnWareD.A., EnvironmentalBiotechnology, EllisHorwoodLtd., 1987.
 - 5. Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation,
 - AdvancesinAppliedBiotechnologySeries,Vol.4,GulfPublicationsCo.London, 1989.
 - 6. Bioremediationengineering;designandapplication1995John.T.cookson, Jr. Mc Graw Hill, Inc.
- 7. EnvironmentalBiotechnologybyA.K.Chatterjee
- 8. EnvironmentalBiotechnologybyS.N.JogdandHimalayaPublishing

.MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC
CO1	3	3	3	2	3	3	3	3	2	
CO2	3	3	2	3	3	3	3	2	3	\$
CO3	3	3	3	3	3	2	3	3	3	\$
CO4	3	2	3	3	2	3	3	3	3	\$
CO5	3	3	3	3	3	3	3	3	2	2

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

PSO1	PSO2	PSO3	PSO4	PSO5
3	2	3	3	3
3	2	3	3	3
3	2	3	3	3
3	2	3	3	3
3	2	3	3	3
15	10	15	15	15
3	2	3	3	3
	PSO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PSO1 PSO2 3 2 3 2 3 2 3 2 3 2 3 2 15 10 3 2	PSO1 PSO2 PSO3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 15 10 15 3 2 3	PSO1 PSO2 PSO3 PSO4 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 15 10 15 15 3 2 3 3

SEMESTER IV ELECTIVE PAPER2: IPR and Biosafety

Papercode:

Subject: IPR and Biosafety

Hours/Week:5

Credits:3

11 Aim: To enable the students to understand the basic concept of Introduction of intellectual property and also the basic patterns and concepts of prior art and also patent filing procedure and biosafety.

CourseObjectives

1. Tolearnthe Introduction to intellectual property and types of IP.

2. Tolearn the basic patent and concept of Prior art and International Databases.

3.Todevelopknowledge about the patent filling procedure and infringement .

4. Tolearn the Concept of bio safety levels and bio safety guidelines .

5. Todevelopapieceofknowledgeabout the biological safety cabinets and risk analysis.

CourseOutComes

6.Aftercompletingunit1,thestudentswillbeabletoUnderstand the concept of Intellevtual property and agreement and treaties .

7.Aftercompletingunit2,thestudents will able to understand the concept of patents .

8. Aftercompletingunit3,thestudentswillbeable to understand the patent filing procedure

and patent licensing

9. Aftercompletingunit4,thestudentswillbeabletoexplainthe concept of biosafety levels .
 10. Aftercompletingunit5,thestudentswillbeabletoexplainthe concept of biosafety guidelines.

Matching Table (Put Yes/Nointheappropriatebox)

Unit i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
--------------------	------------------	--------------	--------------	--------------	-------------

1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Jnits						
	CourseContents						
UnitI	Introduction to Intellectual Property Types of IP: Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of GMOs IP as a factor in R&D IPs of relevance to Biotechnology and few Case Studies Agreements and Treaties History of GATT & TRIPS Agreement; Madrid Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty; PCT; Indian Patent Act 1970 & recent amendments	18hours					
Unit-II	Basics of Patents and Concept of Prior Art Introduction to Patents; Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and complete; Forms and fees Invention in context of "prior art"; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, esp@cenet(EPO), PATENTScope(WIPO), IPO, etc.)	18hours					
Unit-III	Patentfilingprocedures	18hours					
	National & PCT filing procedure; Time frame and cost; Status of the patent applications filed; Precautions while patenting – disclosure/non-disclosure; Financial assistance for patenting - introduction to existing schemes Patent licensing and agreement Patent infringement-meaning, scope, litigation, case studies						
Unit-IV	Biosafety	18hours					
	Introduction; Historical Backround; Introduction toBiological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals;						
Unit-V	Biosafety guidelines - Government of India; Definition of GMOs & LMOs; RolesofInstitutional BiosafetyCommittee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs;	18hours					
	TotalTeachinghours	90					

issessmentivietnous.(25 marks)										
Distributionfor	Test(CIAI+CIA	Seminars	Assignment	Totalmarks						
internals	II+CIAIII)									
Marks	15	05	05	25						

InternalAssessmentMethods:(25 marks)

ReferenceBook:

- 1. P.Narayanan, Intellectual Property Laws, Eastern Law House.
- 2. MeenuPaul, Intellectual Property Laws, Allahabad Law Agency.
 - IntellectualPropertyLawcontainingActsandRules,UniversalLawPublication Company. 3.

.MappingwithProgrammeOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 P
CO1	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	3	3	3	2	3
CO3	3	3	3	3	3	2	3	3	3
CO4	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	11 15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

g - 3, Medium -2, Low -1

ELECTIVE PAPER3: Biochemistry

Papercode: Subject: Biochemistry

Hours/Week:5

Credits:3

Aim: To enable the students to understand the basic concept of bio molecules and also the classification of lipids and also about the amino acids and also the IUB classification and nomenclature .

CourseObjectives

1. Tolearntheconcept and organisation of biomolecules and Carbohydrates.

2. Tolearn the concept of classification of lipids.

3.Todevelopknowledge about the classification of amino acids

 $\label{eq:4.1} \mbox{4.Tolearn the Concept of IUB classification and nomenclature of enzymes and $nucleic acids $.}$

5. Tounderstand the structure of proteins and also the structue of purine and prymidine bases.

CourseOutComes

6. Aftercompletingunit1, the students will be able to Understand the concept of bio molecules and carbohydrates structure and classification..

7..Aftercompletingunit2, the students will able to understand the concept of

classification of lipids and properties of fatty acids.

8. Aftercompletingunit3,thestudentswillbeable to understand the concept of classification and structure of amino acids.

9.Aftercompletingunit4,thestudentswillbeabletoexplainthe concept of IUB classification and nomenclature of enzymes .

10.Aftercompletingunit5,thestudentswillbeabletoexplainthe basic concept of nucleic acid

Unit	i.Remembering	ii.Understanding	iii.Applying	iv.Analyzing	v.Evaluating	vi.Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes/No in the appropriate box)

Units	Course Contents	Teaching hours
UnitI	Organisation of Biomolecules , Buffers, Principle and biological application of diffusion osmosis, viscosity and Donnan membrane equilibrium. Carbohydrates: structure and classification of carbohydrates, metabolism of carbohydrates : glycoysis, TCA ycle HMP pathways.	18 hours
Unit-II	Lipids : Classification, structure and nomenclature of lipids, Biological significance of lipids, physico- chemical properties of fattyacids and triacyl glycerol.	18hours
Unit-III	Aminoacids : classification, structure and nomenclature of aminoacids, physico-chemical properties of aminoacids. proteins: confirmation of proteins and polypeptides secondary, tertiary and quartenary and domain structure of proteins, denaturation of proteins and Ramchandran plots	18hours
Unit-IV	IUB Classification and nomenclature of enzymes , general properties of enzymes, enzyme kinetics- Michaelis Menten equations, Coenzymes - structure and biological fucntion of coenzymes A, TPP, FMN, FAD, NAD and lipoic acid, structure of purine and pyrimidine bases, nucleosides and nucleotides. Primary structure of nucleic acid, Three dimensional structure of t-RNA.	18hours

Unit-V	Nucleic acids	18hours
	Nature of genetic material, structure of purine and pyrimidine nucleotides. Composition of DNA and RNA-Watson crick model of DNA. Types of nucleic acid (DNA and RNA).Properties of nucleic acids-Tm, denaturation and renaturation, hypo and hyper chromicity.	
	Total Teachinghours	90

Internal Assessment Methods:(25 marks)

	 ()			
Distribution for	Test (CIAI+CIA	Seminars	Assignment	Totalmarks
internals	II+CIAIII)			
Marks	15	05	05	25

ReferenceBook:

1. Principles of Biochemistry, Lehninger.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	3	2
CO3	3	3	3	3	3	2	3	3	3	3
CO4	3	2	3	3	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

PO-ProgrammeOutcome,CO-Courseoutcome,S-3,M-2,L-1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	11 3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15

Weighted percentage (rounded of)	3	2	3	3	3
Course Contribution to POs					

Strong - 3, Medium – 2, Low - 1

PROJECT.

(8 CREDIT)