M.SC., BIOTECHNOLOGY

MODEL SYLLABUS

AUGUST- 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

The following details should be given each Programme - MSc BiotechnologyProgramme Objectives: (5

Points Compulsory)

- 1. To produce competent Biotechnologists who can employ premium processes and applications which will profoundly influence existing paradigm of agriculture, industry, healthcare and restoration of environment providing sustainable competitive edge to present society
- 2. To establish ourselves as a premier biotechnology education, research, and entrepreneurialhub and to impart Biotechnology engineering program based on quality education, researchand training
- 3. To impart quality education to the students and enhance their skills which will make them globally competitive
- 4. To develop trained biotechnology professionals who can contribute to the continuous improvement of biotechnological services and products
- 5. To develop scientific and/or technical resources as per biotechnology industry demands

Programme Educational Objectives: (5 Points Compulsory)

- 1. Enable the students to pursue Higher Education such as doctoral & Post doctoral research inreputed National and International Institutes
- 2. Enable the students to carryout multidisciplinary research activities to execute national & international research projects
- 3. Find employment opportunities in R&D of Biotech/Pharma industry.
- 4. To impart knowledge on the importance of intellectual property rights, biosafety and bioethics, information technology for biologists, communication and management skills.
- 5. This Programme will in turn sculpt the students to fit into the expectation criteria i.e. strategies to achieve company goals and objectives of several biotech industries. In addition, this Programme will enlighten the students to pursue research as their profession.

Programme Specific Outcomes: (10 Points Compulsory)

- 1. To enhance student proficiency and encourage them to pursue higher education at reputableNational and international levels
- 2. The goal of the department is to produce competent, easily employable biotechnologists for the academic, service, healthcare, food, and agricultural sectors.
- 3. To foster an innovative and creative mindset in the minds of the next generation in order todirect them towards entrepreneurship and research.
- 4. To develop a sense of innovation, creativity and self-confidence to the students in order tohelp them address the skill gaps in the rapidly expanding field of biotechnology
- 5. The student will be able to conduct research in breeding, physiology, production, yield and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growthin soils, and control of pests
- 6. The student will be aware of animal experimentation and intellectual property rights.

- 7. The student can study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth.
- 8. The student s can expect jobs at agricultural industries,
- 9. The student can scope in manufacturing industries, public and private
- 10. The student can be aware of environmental Pollution and its related research

Programme Outcomes: (10 Points Compulsory)

- 1. Students learn about several aspects of biotechnology as part of the knowledge transfer process.
- 2. Improves Student's capacity to apply their knowledge of a subject to solve current issues on both a local and global scale is a function of their critical thinking abilities.
- 3. Students will apply their newly learned scientific knowledge for practical purposes in the workplace.
- 4. Instilling a passion for research and the skills to plan and carry out experiments can help students become more qualified to conduct research.
- 5. Acquiring technical proficiency to use a variety of sophisticated tools to apply biotechnologyto solve complicated biological challenges.
- 6. Students get fundamental knowledge to evaluate the ethical concerns associated with biotechnology in relation to society, health, safety, legal, and cultural considerations.
- 7. Students design research problems and conduct individual research projects in specific fields of biotechnology.
- 8. Students integrate research findings into scientific papers by analyzing the results of their research.
- 9. Exhibit effective communication skills for interaction with personnel as well as presentation in appropriate forums
- 10. Demonstrate knowledge for in-depth analytical and critical thinking to identify, formulate and solve the issues related to Biotechnology Industry, Pharma industry, Medical or hospital related organizations, Regulatory Agencies, & Academia.

M.Sc., BIOTECHNOLOGY

The course of study and scheme of examination

1. Name of the course: M.Sc., Biotechnology

2. Choice Based Credit System (CBCS)

Choice based credit system is a flexible system of learning. "Credit" defines the quantum of contents / syllabi prescribed for a course and determine the number of hours of instruction required.

The CBCS has unique features such as enhanced learning opportunities, ability to match students scholastic need and aspirations, inter institution transferability of students, part completion of an academic program in the institution of enrollment and part completion in specialized and recognized institution, improvement in educational quality and excellence, flexibility for working students to complete Programme over an extended time and standardization and comparability of educational programs across the country.

3. The preamble of the syllabus

Master of Science (M.Sc.) in Biotechnology, the curricula, and course content were designed to meet the standards of UGC-CSIR (NET) and (SLET) examinations. The choice-based credit system of learning develops a strong base in the core subject and specializes in the disciplines of his / her liking and abilities and develops an in-depth understanding of various aspects of Biotechnology. The students develop experimental skills, design, and implementation of novel synthetic methods, and develop the aptitude for academic and professional skills, by acquiring basic concepts for structural elucidation with hyphenated techniques, and understanding the fundamental biological process and rationale of the computer. The project introduced in the curriculum will motivate the students to pursue research and entrepreneurial skill development.

Name of the course: M.Sc., BiotechnologyChoice-based credit system (CBCS)

The choice-based credit system is a flexible system of learning.

"Credit" defines the quantum of contents/syllabi prescribed for a course and determines the number of hours of instruction required.

Choice based credit system (CBCS) has unique features such as enhanced learning opportunities, the ability to match students' scholastic needs and aspirations, inter-institution transferability of students, part completion of an academic program in the institution of enrollment and part completion in the specialized and recognized institution, improvement in educational quality and excellence, flexibility for working students to complete the program over an extended time and standardization and comparability of educational programs across the country

Examination Patt ern:

Time allotted: Theory – 03Hrs. & Practical – 04 hrsMarks allotted for university examination:

	External marks	Internals marks	
Theory	75	25	100
Practical	75	25	100

Marks distribution for internals:

	Test	seminars	Assignment	Total marks
Theory	15	05	05	25

	Test	Record	Total marks
Practical	10	15	25

Pattern of question paper (theory):

1. Cognitive Domain

(Lower levels: K1: Remembering ; K2: Understanding ; K3: Applying;Higher levels: K4: Analysing ; K5: Evaluating; K6: Creating)

- 2. Affective Domain
- 3. Psychomotor Domain
 - 2. Structure of Course

Course Code	Course Name			Credits	
Lecture Hours: (L) per week	Tutorial Hours : (T) per week	Lab Practice Hours: (P)per	week	Total: (L+T+P) per week	
Course Category :	Year & Semester:	Year & Semester: Adm		ission Year:	
Pre-requisite			•		
Links to other Courses					
Learning Objectives: (for tea	chers: what they have	to do in the clas	s/lab/fi	eld)	

Course Outcomes: (for students: To know what they are going to learn) CO1:CO2:CO3:CO4: CO5:

Recap: (not for examination) Motivation/previous lecture/ relevant portions required for the course) [This is done during 2 Tutorial hours)

Units	Contents	Required Hours
Ι		17
II		17
III		17
IV		17
V		17
Extended	Questions related to the above topics, from various	
Professional	competitive examinations UPSC / TRB / NET / UGC -	
Component (is	CSIR / GATE / TNPSC / others to be solved(To be discussed	
a part of	during the Tutorial hour)	
internal		
component		
only, Not to		
be		
include		
d in		
the		
External		
Examination		
question		
paper)		
Skills	Knowledge, Problem Solving, Analytical ability,	
acquired from	Professional Competency, Professional Communication and	
the	Transferrable Skill	
course		
Learning Reso		
Recommende		
Reference Boo		
Web resource	S	

Board of Studies Date:

3. Learning and Teaching Activities

3.1 Topic wise Delivery method

Hour Count	Торіс	Unit	Mode of Delivery

3.2 Work Load

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

Activity	Quantity	Workload periods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
Cycle Test or similar	2	4
Model Test or similar	1	3
University Exam	1	3
	Total	90 periods

4. Tutorial Activities

Tutorial Count	Торіс

5. Laboratory Activities

6. Field Study Activities

7. Assessment Activities

7.1 Assessment Principles:

Assessment for this course is based on the following principles

- 1. Assessment must encourage and reinforce learning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessment must enable robust and fair judgments about student performance.
- 4. Assessment practice must be fair and equitable to students and give them the opportunityto

demonstrate what they learned.

5. Assessment must maintain academic standards.

7.2 Assessment Details:

Assessment Item	Distributed Due Date	Weightage	Cumulative Weightage
Assignment 1	3 rd week	2%	2%
Assignment 2	6 th Week	2%	4%
Cycle Test – I	7 th Week	6%	10%
Assignment 3	8 th Week	2%	12%
Assignment 4	11 th Week	2%	14%
Cycle Test – II	12 th Week	6%	20%
Assignment 5	14 th Week	2%	22%
Model Exam	15 th Week	13%	35%
Attendance	All weeks as per the Academic Calendar	5%	40%
University Exam	17 th Week	60%	100%

8. TEACHING METHODOLOGIES

- **8.1 Traditional Teaching method** like Chalk and Board, Virtual Class room, LCD projector, Smart Class, Video Conference, Guest Lectures.
- **8.2** Asking students to formulate a problem from a topic covered in a week's time Assignment, Class Test, Slip test
- **8.3 Asking students to use state-of-the-art technologies/software to solve problems** Applications, Use of Mathematical software
- 8.4 Introducing students to applications before teaching the theory
- 8.5 Training students to engage in self-study without relying on faculty (for example libraryand internet search, manual and handbook usage, etc.)
- 8.5.1 Library, Net Surfing, Manuals, NPTEL Course Materials published in the website
- 8.5.2 Other university websites.

9. Faculty Course File Structure

a. Academic Schedule

CONTENTS

- b. Students Name List
- c. Time Table
- d. Syllabus
- e. Lesson Plan
- f. Staff Workload

- g. Course Design(content, Course Outcomes(COs), Delivery method, mapping of COs with Programme Outcomes(POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)
- h. Sample CO Assessment Tools.
- i. Faculty Course Assessment Report(FCAR)
- j. Course Evaluation Sheet
- k. Teaching Materials(PPT, OHP etc)
- l. Lecture Notes

- m. Home Assignment Questions
- n. Tutorial Sheets
- o. Remedial Class Record, if any.
- p. Projects related to the Course
- q. Laboratory Experiments related to the Courses
- r. Internal Question Paper
- s. External Question Paper
- t. Sample Home Assignment Answer Sheets
- u. Three best, three middle level and three average Answersheets
- v. Result Analysis (CO wise and whole class)
- w. Question Bank for Higher studies Preparation(GATE/Placement)
- x. List of mentees and their academic achievements

Template for PG Programme M.Sc

Biotechnology Curriculum Design							~
Semester-I	Credi	Semester-II	Cred	Semester-III	Cre	Semester-IV	Cre
	t		it		dit		dit
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VIII	4	4.1. Core-XIII	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-IX	4	4.2 Elective (Generic	3
						/ Discipline Centric) -	
						IV	
1.3 Core – III	4	2.3 Core – VI	4	3.3 Core – X	4	4.3 Project Compulsory	5
1.4 Elective	3	2.4 Core – VII	4	3.4 Core – XI	4	4.4 Extension Activity	1
(Generic /							
Discipline							
Centric)- I							
1.5 Skill	3	2.5 Elective	3	3.5 Elective	3		
Enhancement		(Generic /		(Generic /			
Course -		Discipline		Discipline			
Practical- I		Centric)-II		Centric)-III			
1.6 Skill	3	2.6 Skill	3	3.6 Open	2		
Enhancement		Enhancement		Elective -II			
Course -		Course -					
Practical- II		Practical- III					
Value added	2	2.7 Skill	3	3.7 Skill	3		
		Enhancement		Enhancement			
		Course -		Course -Practical-			
		Practical- IV		V			
		2.8 Open	2	3.8 Skill	3		
		Elective -I		Enhancement			
				Course -Practical-			
				VI			
		2.9 Compulsory	2	*MOOC /	1		
		Paper-8		*USRR			
			27		20		10
	23		27		28		13
						Total Credit Points	91

Biotechnology Curriculum Design

Credit Distribution for PG Programme

15

First Year

Semester-I

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC1, CC2, CC3)	12	15
	Elective Courses 1(Generic / Discipline Specific) EC1	3	4
Part B	Skill Enhancement Course -SEC 1, SEC 2	6	8
	Value added	2	2
	Library Hour	-	1
		23	30

Semester-II

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC4, CC5, CC6, CC7)	16	16
	Elective Course 1 (Generic / Discipline Specific) EC2	3	3
Part B	Skill Enhancement Course -SEC 3, SEC 4	6	8
	Open elective-1	2	3
	Optional Paper-8	2	2
		27	30

Second Year -Semester-III

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC8, CC9, CC10, CC11)	16	16
	Elective Course 1 (Generic / Discipline Specific) EC 3	3	3
Part B	Skill Enhancement Course -SEC 5, SEC 6	6	6
	Open Elective -II	2	3
	*MOOC / *USRR	1	1
		28	29

Semester-IV

Part	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC12)	4	4
	Elective Course 1 (Generic / Discipline Specific) EC4	3	3
	Project with Viva voce	5	15
	Project Review/ discussion hours	-	8
PART	Extension activity (Can be from SEM II to SEM IV)	1	
C			
		13	30

COMPONENT WISE CREDIT DISTRIBUTION

Credits	Sem I	Sem II	Sem III	Sem IV	Total
Part A	15	19	19	12	65
Part B				-	
Discipline – Centric / Generic Skill	6	6	6		18
(ii) Value added course	2				2
(iii) Open Elective		2	2	-	4
(iv) *MOOC / *USRR			1		1
(v) Optional Paper		2*			2*
Part C				1	1
Total	23	27	28	13	91

***Optional paper for extra credits**

Part A component and Part B (i) will be taken into account for CGPA calculation for the postgraduate programme and the other components Part B and Part C (Non GPA) have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree

Credit Distribution for PG Programme

M.Sc Biotechnology

First Year Semester-I

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC1, CC2, CC3)	12	15(12L+3T)
	Elective Courses 2(Generic / Discipline Specific) EC1	3	4(3L+1T)
Part B	Skill Enhancement Course -SEC 1, SEC 2	6	8(6L+2T)
	Value added	2	2
	Library Hour	-	1
	TOTAL	23	30

Semester-II

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC4, CC5, CC6, CC7)	16	16(12L+4T)
	Elective Course 2 (Generic / Discipline Specific) EC2	3	3(2L+1T)
Part B	Skill Enhancement Course -SEC 3, SEC 4	6	8(6L+2T)
	Open elective-1	2	3
	Optional Paper-8	2	2
	TOTAL	27	30

Second Year -Semester-III

	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC8, CC9, CC10, CC11)	16	16(12L+4T)
	Elective Course 1 (Generic / Discipline Specific) EC 3	3	3(2L+1T)
Part B	Skill Enhancement Course -SEC 5, SEC 6	6	6
	Open Elective -II	2	3(2L+1T)
	*MOOC / *USRR	1	2
	TOTAL	28	30

Semester-IV

Part	Courses	Credit	Hours per Week(L/T/P)
Part A	Core Courses3 (CC12)	4	4 (3L+1T)
	Elective Course 1 (Generic / Discipline Specific) EC4	3	3(2L+1T)
	Project with Viva voce	5	15
	Project Review/ discussion hours	-	8
Part C	Extension activity	1	
	TOTAL	13	30

TOTAL CREDITS : 91

Consolidated Table for Credits Distribution

				1	~	m 1	
PART	Category	Credits	Numbe	Number	of	Total	Total Credits for the
А	of	for	r of	Credits	in	Credits	Programme
Π	Courses	each	Course	each			
		Course	S	Category	of		
				Courses			
	Core	4	12	48			
	Project with viva voce	5	1	5			
	Elective	3	4	12			89
	(Generic	5	•	12			
	and					65	(CGPA)
	Discipline						
	Centric)						
PART	(i)Disciplin	3	6	18			-
	e – Centric	C	0				
В	/ Generic						
	Skill					24	
	(ii) Value	2	1	2			
	added		1				
	course						
	(iii) Open	2	2	4			
	Elective		2				
	(iv)	2*	1*	2*			
	Optional	_		_			
	Paper						
PART	(V)	2	1	1		1	
	*MOOC /		-	1		1	
В	*USRR						
PART	Extension	1	2	1			2
	Activity	1					
С	Activity					1	(Non- GPA)

10. Template for Semester

	Study Component	ts		Credit		Maxim	um Mark	ī.S
	Course Title		hrs / week		Title of the Paper	-CIA	Uni. Exam	Total
	SEME	STER I						
PART A	Core (CC1)	Paper -1	5	4	Biochemistry	25	75	100
	Core (CC2)	Paper -2	5	4	Cell and Molecular Biology	25	75	100
	Core (CC3)	Paper -3	5	4	Microbiology	25	75	100
		In	ternal Ele	ctive fo	r same major students (Choose any one)			
PART A	Core Elective (EC-1)	Elective – I	4	3	Genetics Virology Basic Analytical Methods	25	75	100
PART -B	Practical –I (SEC -1)		4		Lab in Biochemistry & Cell And Molecular Biology	25	75	100
	Practical –II (SEC-2)		4	. 3	Lab in Microbiology	25	75	100
	Value Added course	VAC-1	2	. 2	Mushroom Cultivation andApiculture Vermiculture Technology Validation of MedicinalPlants	25	75	100
	Library hour		1					
			30	23				
	SEME	STER II	<u> </u>			CIA	Uni. Exam	Total
Part A	Core (CC4)	Paper – 4	4	4	Immunology	25	75	100

	Core (CC5)	Paper – 5	4	4	Genetic Engineering	25	75	100
	Core (CC6)	Paper – 6	4	4	Developmental and Stem cellBiology	25	75	100
	Core (CC7)	Paper - 7	4	4	Bioinformatics	25	75	100
		In	ternal Eleo	ctive fo	r same major students (Choose any one)			
Part A	Core Elective – EC-2	Elective -II	3	3	Enzyme Technology Dairy Technology Pharmaceutical Technology	25	75	100
PART B	Practical –III (SEC 3)		4	3	Lab in Immunology	25	75	100
	Practical –IV (SEC-4)		4	3	Lab in Genetic Engineering and Bioinformatics	25	75	100
External E	Elective for other n	najor students	(Inter/mult	i-discip	blinary papers) (Choose any one)			
	Open Elective	Open Elective -I	3	2	Medical LaboratoryTechnology Food and Nutrition Biodiversity	25	75	100
	ptional Paper	Paper -8	2	2	Human Rights	25	75	100
			30	27				

Study Components Course Title					Maxin			
		/week	Credit	Title of the Paper		Uni.	T (1	
	SEMESTER III				CIA	Exam	Total	
Core (CC8)	Paper -9	4	1 4	Plant Biotechnology	25	75	100	PART A
Core (CC9)	Paper –10	4	4 4	Animal Biotechnology	25	75	100	
Core (CC10)	Paper – 11	4	1 4	Microbial Biotechnology	25	75	100	
Core (CC11)	Paper -12	2	1 4	Environmental Biotechnology	25	75	100	
	Inter	rnal Electi	ve for sam	e major students (Choose any one)				
Core Elective EC-3	Elective -III		3 3	Genomics and Proteomics Food and Nutrition Herbal Biotechnology	25	75	100	PART A
External Elective	for other major studen	ts (Inter/m	ulti-discip	blinary papers) (Choose any one)			·	
Open Elective	Open Elective -II	3	3 2	Environmental Sciences Medical Microbiology C. AgriculturalBiotechnology	25	75	100	PART B
Practical –V (SEC-5)		3	3 3	Lab in Plant Biotechnologyand Animal Biotechnology	25	75	100	
Practical –VI (SEC-6)			3 3	Lab in Microbial Biotechnology and Environmental Biotechnology	25	75	100	
*MOOC Courses /*USRF	R	2	1				100	PART B (Non GPA)
		30) 28					

SEMESTER IV					CIA	Uni. Exam	Total	
Core (CC12)	Paper -13	4	4	Research Methodology	25	75	100	PART A

Core Elective EC-4	Elective -IV	3		Nano Biotechnology Bioethics, Biosafety, andIPR System Biology	25	75	100	
Core	Project Compulsory	15	5	Project with viva voce	(75 I	00 Project viva)	100	
	Project review & Discussion	8	-					
	Extension activity		1					PART C
		30			=		2000	
		120	91		725	2275	2900	

Courses	Lecture	Tutorial	Lab Practice	Total
	hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
Open elective	75	15		90
MOOC/USSR			-	
Lab Practice Courses	45	15	30	90
Project	20		70	90

INSTRUCTIONS FOR COURSE TRANSACTION

SEMESTER -1

PAPER 1: BIOCHEMISTRY

Paper code: Biochemistry

Hours/Week:5

Credits: 4

Subject:

Aim: To enable the students to understand the basic concepts of biochemistry and biomolecules and also to learn the various metabolic cycles and also to analyze the significance of biochemical findings

Course Objectives

- 1. To learn the physical and chemical nature of Biomolecules
- 2. To learn various types of biomolecules
- 3. To develop knowledge on intermediary metabolism of CHO, Proteins, and Lipids
- 4. To teach the basics and advance of enzymes and their classifications
- 5. To develop a piece of knowledge in clinical biochemistry.

Course Out Comes

1. After studied unit 1, the students will be able to identify the nature of

solvents and solutionsconcerning pH and its important

2. After studied unit 2, the students will be able to classify carbohydrates,

proteins lipids, and nucleic acids of biomolecules

3. After studied unit 3, the students will be able to describe the

biomolecules involved inintermediary metabolism

4. After studied unit 4, the students will be able to explain enzymes and enzyme kinetics5. After studied unit 5, the students will be able to apply Biochemistry, in

clinical biochemistryprocedures.

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Cours	e Contents		Teaching hours			
Unit I	Normali pH, pK,	oncepts: Units of meas ty, Molality, Molarity. acids, bases, ionic bo ydrogen bonds and Var	The hyper and nds, covalent b	hypotonic solution onds, and secondar	, I,			
Unit-II	chemistr nomencl amino a proteins	Biomolecules: Definitions, nomenclature, classification, structure, 12 chemistry, and properties of carbohydrates, Definitions, nomenclature, classification, structure, chemistry, and properties of amino acids and proteins (hemoglobin, myoglobin, and plasma proteins), lipids and Nucleic acids,						
Unit-III	Glycoge Transam Acids-T Phospho	ination, Deamination, heir Biosynthesis.	uconeogenesis. Urea cycle.	Amino Acids Lipids and Nuclei sm of Oxidative	 C			
Unit-IV	Enzymo structure	logy: Enzymes: gen e). The allosteric mech re energy. Iso-enzymes	anism, regulate		5,			
Unit-V	Clinical sugar lev Metabol	biochemistry: Blood su vel – hypo, hyperglycer ism of bilirubin- jaund ction tests. Renal functi	nia, Diabetes m ice-types. Diffe	ellitus, types – GTT rential diagnosis an	•			
Unit-VI	I	nternal Assessments, S	Seminars, and (Guest lecture	05 hours			
	· · · · · · · · · · · · · · · · · · ·	Total Teachin			65			
		nt Methods: (25 mark	<i>,</i>					
Distribu inter		Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks			
Marks	11415	15	05	05	25			

Textbook:

- 1. J.L. Jain, S. Jain and N. Jain. Fundamentals of Biochemistry. S. Chand & Co, 2016.
- 2. Ambika Shanmugam. Biochemistry. Published by Wolters Kluwer, 8th Edition, 2016.
- 3. A.C. Deb. Fundamental of Biochemistry. New Central Book Agency, 2012
- 4. Biochemistry ,7th Edition, jermy M.Berg John,L .Tymoczko,Lubertstryer 2012.W.H,freeman & company ,newYork 2.
- 5. Molecular Bio methods handbook,2nd edition R.Rapley & J.M Walker,2 008, Humanapress.
- 6. Principles of Biochmeistry , 5th Edition AL. Lehninger ,D.L. Nelson and M.M Cox ., 2008.worth publishers , NewYork.
- Biochemistry 4THEdition,G.Zubay,1998.Mc Millan publishing Co.NewYork.
 1. Harper's Biochemistry,29th Edition-Rober K.Murray,Daryl
 - K.Grammer,2012 McGrawHill, lange Medical Books
 - Understanding enzymes -5theditionTrevorpalmer,Prentice Hall/Ellias Horwood1995
 3. Text Book Medical Biochemistry M.N.Chatterjee 8th edition Jaypee brothers Medicalpublishers2013

Reference Book:

2.

1. D.L. Nelson and M.M. Cox. Lehninger Principles of Biochemistry, WH FreemanPublishers, 7th Edition, 2017.

2. V.W. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennell and P.A. Weil. Harper's Illustrated Biochemistry, 30th Edition. McGraw Hill, 2015.

3. Wilson and Walker. Principles and Techniques of Practical Biochemsitry, 6th edition, Cambridge University, Press. 2005.

4. Upadhyaya A Upadhyaya K and Nath. Biophysical Chemistry: Principles and Techniques, 3rd Edition. Himalayan publications, 2009.

5. M.N. Chatterjee and Rana Shinde, Textbook of Medical Biochemistry, 8th Edition. Jaypee Brothers Medical Publishers (P) Ltd., 2012.

6. Biochemistry – 4th edition Donald voet and Judith G.Voet ,VP Publishers 2011 steitz and A.M.Weiner ,The Benjamin /CUMMINGS publ.Co.,Inc.,California,2013

7. Genes VI(9th Ed).Benjamin Lewin, oxford universitypress,uk.,2007 10. Molecular biology of cell (5th edition)

brucealberts, alexander johnson, Julian lewis, martinraff, keith Roberts, peterwalter , garland science publications. 2008

8. Molecular Biology (5th edition).weaver .R.F,McGraw Hillpublications,2011. Cell and molecular biology : concepts and experiments (5th edition).geraldkarp,wiley publications,2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites, etc.] https://nptel.ac.in/courses/104105076, https://oli.cmu.edu/courses/biochemistry-open-free/, https://onlinecourses.nptel.ac.in/noc20_cy10/preview,

E-Books: https://www.pdfdrive.com/biochemistry-books.html,

E-journals: Process Biochemistry (Elsevier), Journal of Cellular Biochemistry (Wiley)

Mapping	with	Programme	Outcomes
---------	------	-----------	----------

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	М	М	М	S	S	S
CO2	М	М	Μ	S	S	М	S	S	Μ	М
CO3	М	М	Μ	S	S	S	S	М	Μ	М
CO4	S	S	S	М	М	М	S	S	Μ	S
CO5	Μ	М	Μ	S	М	S	Μ	М	S	S

 $PO-Programme \ Outcome, \ CO-Course \ outcome, \ S-Strong, \ M-Medium, \ L-Low$

PAPER 2: CELL AND MOLECULAR BIOLOGY

Credits: 4 Hours of teaching: 5 Theory

Paper type: Core

Overall Course Objectives: Understanding the structural and functional aspects of the cell provides the students with a strong foundation in the molecular mechanism underlying cellular functions.

Course objectives :

- 1. To understand the basic concepts of the prokaryotic and eukaryotic cells.
- 2. To Understand the individual and coordinated functions of various cell organelles.

3. To familiarize the student with various aspects of cell and molecular biology streams including cellular organization and their interactions in DNA replication, protein biosynthesis, and translational regulation

4. To develop a comprehensive understanding of the complete cellular and molecular function of cell organelles in terms of cell-to-cell interaction, gene regulation, cellular signaling

5. To impart the molecular biology knowledge in applications of various human health care

Course OutComes

1. After studied unit-1, the student will be able to equip with a basic knowledge of thestructural and functional properties of cells.

2. After studied unit-2, the student will be able to understand process of cell division and replication process.

3. After studied unit-3, the student will be able to understand the occurrence of central dogma of life in the cell and the machineries involved to initiate and inhibit RNA and proteinsynthesis.

4. After studied unit-4, the student will be able to control of gene expressions inprokaryotes and eukaryotes and transposable elements.

5. After studied unit-5, the student will be able to understand mechanism of epigenetic controlsand cancer biology.

Unit	i.	ii.	iii. Applying	iv.	v.	vi. Creating
	Remembering	Understanding		Analyzing	Evaluating	_
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Table (Put Yes / No in the appropriate box)

UNIT I	Cell Biology: Structure and function of cells in prokaryotes and	112
	eukaryotes; Structure and organization of Membrane - Membran	
	Model, active and passive, transport channels and pumps., Structure &	
	Biogenesis of Mitochondria and Chloroplast. Structure o	1
	Endoplasmic reticulum, Golgi complex, lysosomes.	
UNIT-II	Cell division: Mitosis, Meiosis, regulation of cell cycle; factor	
	regulating cell cycle. Nucleic acid structure, Genome Organization	.hours
	DNA replication: Enzymes and mechanisms of DNA replication in	า
	prokaryotes and eukaryotes, Telomeres, telomerase and end	ł
	replication. Role of telomerase in aging and cancer. DNA replication	1
	models DNA damage, Mutations, DNA repair and	
	recombination.	
UNIT – III	Transcription: Basic mechanism in prokaryotes and eukaryotes. RNA	12
	polymerase, Reverse transcriptase and regulation. Post- transcriptiona	lhours
	processing: 5'-Cap formation; 3'-end processing and polyadenylation	
	splicing: RNA editing; Nuclear export of mRNA; mRNA	
	stability. Translation-Prokaryotic and eukaryotic translation, th	
	translation machinery, Mechanisms of initiation, elongation and	
	termination, Regulation of translation, co-and post-translational	
	modifications of proteins and localization.	
UNIT – IV	Gene regulation: Prokaryotic gene regulation- Operon concept ; La	12
	operon and tryptophan operon. Eukaryotic gene regulation: Chromati	
	Structure, Regulation at transcriptional Level: DNA binding domain	
	of the regulatory proteins. Biochemistry and	5
	applications of ribozyme technologies. Transposable genetic elements	
	applications of fibozyme technologies. Transposable genetic elements	
UNIT-V	Epigenetics: Epigenetic regulation of gene expression, Modifications	.12
,	Cancer Epigenetics. Cancer Biology: Viral and cellular oncogenes	
	Tumor suppressor genes - Structure, function	,
	and mechanism of action of pRB and p53, p21, BRACA1.Oncogene	s
	as transcriptional activators.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5
		hours
Total Lecture	hours 65 hours	65
		hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books

Molecular cell Biology, by Darnell, Lodish, Baltimore, Scientific American Books, Inc., 1994. Molecular and cellular Biology, Stephen L.Wolfe, Wadsworth PublishingCompany, 1993. Cell and Molecular Biology: Concepts and Experiments 5th Ed, Gerald Karp. Wiley publications, 2013.

31

- 1. Cell biology D E SadavaCBS Publishers & Distributors, 2009
- 2. Reference books
- 3. Molecular and cellular Biology, Stephen L.Wolfe, Wadsworth Publishing Company, 1993
- Molecular Biology LabFax, T.A. Brown (Ed.), Bios Scientific Publishers Ltd., Oxford, 1991
- 5. Molecular Biology LabFax, T.A. Brown (Ed.), Bios Scientific Publishers Ltd., Oxford,1991.
- 6. Molecular Biology of the Gene (4th Edition), J.D.Watson, N.H.Hopkins, J.W.Roberts,
- 7. J.A. Steitz and A.M.Weiner, The Benjamin/Cummings Publ. Co., Inc., California, 1987.
- 8. Genes VI (6th Edition) Benjamin Lewin, Oxford University Press, U.K., 1998
- 9. Molecular biology of cell Albert Bruce et al., 1994 3rdEd
- 10. Molecular Biology-Weaver. R. F. 3rd ed. Mc Graw Hill publication ,2005
- 11. The Molecular Biology of Cancer: S. Pelengaris, M. Khan. Blackwell Publication.2002

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites, etc.]

- 1. Swayam- Molecular biology course by Dr.Nayan K. Jain, Gujarat University
- 2. Swayam- Cell Biology by Dr K. Sanatombi
- 3. NPTEL Molecular Cell Biology by Prof.D. Karunagaran
- 4. <u>https://www.coursera.org/courses?query=molecular%20biology</u>
- 5. https://www.cdc.gov/labtraining/training-courses/basic-molecular-biology/index.html

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	S	М
CO2	S	S	Μ	S	S	S	S	М	
CO3	S	S	S	S	S	M	S	S	
CO4	S	M	S	S	M	S	S	S	
CO5	S	S	S	S	S	S	S	S	N

PO - Programme Outcome, CO - Course outcome S - Strong, = 3, M - Medium, L - Low (may beavoided)

PAPER 3: MICROBIOLOGY

Paper Code: DDBT13	Subject:
MicrobiologyHours/Week: 5	
	Credits: 4

Aim: Studying the diversity and activity of microorganisms in their natural environment, their mutual interactions, and their survival and adaptation strategies.

Course Objectives

1. To understand the History of Microbiology.

2. To well understand the Nutritional classification of bacteria, etc.

3. To obtain knowledge about Sterilization and Disinfection.

4. To obtain knowledge of Microbial diversity.

5. To know the basic Microbial community in natural habitats.

Course Out Comes

1. After studying unit 1 the students will be able to identify the Classification of microorganismspractical's.

2. After studying unit 2 the students will be able to identify and differentiate the pure culturetechnique.

3. After studying unit 3 the students will be able to identify and describe the chemotherapeuticagent

4. After studying unit 4 the students will be able to identify and explain enzymes and their egulations by kinetic parameters

5. After studying unit 5 the students will be able to identify and cross-examine theBiotechnological applications of Extremophiles

Unit	i.	ii.	iii.	iv.	v.	vi.
	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	No	No
3	No	Yes	No	Yes	Yes	Yes
4	No	No	Yes	Yes	Yes	Yes
5	Yes	Yes	No	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

33

Units		Teaching Hours
Unit-I	History of Microbiology - Classification of microorganism – Kingdom - Protista, Prokaryotic and eukaryotic microorganisms, Five kingdom concept of classification, Archaebacteria, Eubacteria, and eukaryotes. Microscope - Light field, Dark field, Fluorescent and Electron microscope, Prokaryotic and Eukaryotic cell structure. Staining techniques - Simple and Differential staining.	
Unit-II	Nutritional classification of bacteria, Isolation, cultivation, enumeration, and preservation of microbes; Culture media and its types - Pure culture technique - Growth curve; Axenic culture, Synchronous culture, Continuous culture; Effect of physical and chemical factors on microbial growth.	
Unit-III	Sterilization and Disinfection: Moist heat, Dry heat, Radiation, Filtration, Phenols, Halogens, Phenol coefficient method. Antibiotics - Inhibitors of Nucleic acid, protein, and cell wall synthesis. Chemotherapeutic agents - Antimicrobial susceptibility test.	
Unit-IV	Microbial diversity- methods to assess microbial diversity, Culture dependent, and culture-independent methods. Molecular analysis of bacterial community; Denaturating Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length (TRFL) Polymorphism (T- RFLP), Amplified Ribosomal DNA and Restriction Analysis(ARDRA).	
Unit-V	Microbial community in natural habitats – air, water, soil, food, and milk. Food and milk-borne diseases, Extremophiles-habitant & Classification, Halophiles, Thermophiles, Alkaliphiles, Acidophiles, Biotechnological applications of Extremophiles.	
Unit-VI	Internal Assessments, Seminars, and Guest Lectures	05 hours
	Total Teaching hours	65

Internal Assessment Methods: (25 marks)

	Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
N	Marks	15	05	05	25

Text book:

1. Microbiology 3rd Edition by <u>Dave Wessner</u> (Author), <u>Christine Dupont</u> (Author), <u>TrevorCharles</u> (Author), <u>Josh Neufeld</u> (Author) 3rd edition (December 3, 2020)

- 2. Fundamentals of Microbiology 12th Edition by Jeffrey C. Pommerville (Author) 12th edition (March 29, 2021)
- 3. Burton's Microbiology for the Health Sciences 11th Edition by <u>Paul G. Engelkirk</u> (Author) 11th edition (October 10, 2018)
- 4. Brock Biology of Microorganisms plus Pearson Mastering Microbiology with Pearson eText, Global Edition 15th Edition 15th edition (March 27, 2018)
- 5. Microbiology: An Evolving Science Fifth Edition by Joan L. Slonczewski (Author), John W. Foster (Author), Erik R. Zinser (Author) Fifth edition (July 1, 2020)
- 6. Microbiology with Diseases by Taxonomy, Loose-Leaf Plus Mastering Microbiology with Pearson eText -- Access Card Package (6th Edition) 6th Edition 6th edition (January 14, 2019) **Reference Book:**
- Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control. With STUDENT CONSULT Online Access (Greenwood,Medical Microbiology) 17th Edition by <u>David Greenwood BSc PhD DSc FRCPath</u> (Author), <u>Richard C. B.</u> <u>Slack MA MB BChir FFPHM MRCPath DRCOG</u> (Author), <u>John F. Peutherer BSc MB ChB MD</u> <u>FRCPath FRCPE</u> (Author), <u>& 1 more</u> Churchill Livingstone; 17th edition (June 6, 2007)
- 2. Microbiology Experiments: A Health Science Perspective Paperback International Edition, January 1, 2018MC GRAW HILL; 9th edition (January 1, 2018)
- 3. Hugo and Russell's Pharmaceutical Microbiology, 8th Edition 8th Editionby <u>Denyer</u> (Author) Wiley-Blackwell; 8th edition (August 12, 2011)
- 4. Clinical Bacteriology Hardcover August 1, 1980 by <u>E Joan Stokes</u> E Arnold; Fifth Edition (August 1, 1980)
- 5. Review of Medical Microbiology and Immunology (Medical Microbiology & Immunology (Levinson)) 9th Edition (March 10, 2006)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	Μ	М	М	S	S	S
CO2	М	М	М	S	S	М	S	S	М	М
CO3	М	М	М	S	М	S	S	М	М	М
CO4	S	М	S	М	М	S	S	S	М	S
CO5	М	М	М	S	М	S	М	М	S	М

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome S-Strong, M-Medium, L-Low (may be avoided)

CORE ELECTIVE 1 (A) GENETICS

Paper code:

Subject: Genetics

Credits: 3

Hours/Week: 3

Aim: To enable us to explore many different components of living systems and the advent of proteomics will made it possible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and applications in genomics and proteomics.

Course objectives:

- 1. To provide the basic knowledge of genetics in higher eukaryotic domains and over all concepts of Mendelian genetics.
- 2. To understand about genetic inheritance and linkages
- 3. To provide the basic concept sex determination
- 4. To understand about genetic code, mutation and regulations
- 5. To Enrich the students' knowledge with respect to genetic engineering, transgenesis and ethics **Course Out Comes (five outcomes for each units should be mentioned)**
- 1. After studied unit-1, the student will be able to know about Mendelian laws.
- 2. After studied unit-2, the student will be able to understand how gene inherited
- 3. After studied unit-3, the student will be able to understand about sex determination.
- 4. After studied unit-4, the student will be able to gene relgulations.
- 5. After studied unit-5, the student will be able to know about ethics and transgenesis.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I UNIT-II	 History of Genetics: Definition and scope of Genetics- Pre- mendeliar genetic concepts. Basis of Mendelian Inheritance and Mendelian genetics. Chromosome theory of linkage, crossing over recombinations and mapping of genes on chromosomes Blood Groups and their Inheritance in Human – Linkage and Crossing 	1
	Over:- Drosophila – Morgans" Experiments – Complete and Incomplete Linkage, Linkage Groups, Crossing Over types Mechanisms – Cytological Evidence for Crossing Over, Mapping of Chromosomes – Interference and Coincidence.	1
UNIT – III	Sex Linkage in Drosophila and Man, Sex influenced and Sex Limited Genes – Non- Disjunction and Gynandromorphs – Cytoplasmic Inheritance – Meternal Effect on Limnaea(Shell Coiling), Male Sterlity (Rode's Experiment)	
UNIT – IV	Nature and Function of Genetic Material – Genetic code – Why the genetic code is comma less, non ambiguous, degenerate triplet code Fine Structure of the Gene .Gene Regulation – Operon Concept – Lac Operon – Positive and Negative Regulation. Mutation – Molecular Basis of Mutation, Types of Mutation, Mutagens, Mutable and Mutator Genes. Chromosomal Aberrations – Numerical and Structural Examples from Human.	
UNIT-V	etic engineering – Objectives, tools, gene cloning, and gene isolation Transgenic plants and animals, Animal Breeding – Heterosis Inbreeding, Out Breeding, Out Crossing, Hybrid Vigour. Population Genetics- Hardy Weinberg Law – Gene Frequency, Factors Affecting Gene Frequency, Eugenics, Euphenics and Ethenics, Bioethics.	, 1
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers Total Lecture hours 65 hours	5 hours 50 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books

- 1. Gardner et al (1991). Principles of Genetics. John Wiley.
- 2. Hartl. D.L. A primer of population genetics. III edition, Sinauer associates inc. Sunderland, 2000
- 3. Human genetics, A. Gardner, R. T. Howell and T. Davies, Published by Vinod Vasishtha for Viva Books private limited, 2008.
- 4. The science of Genetics by Alan G. Atherly, Jack. R, Girton, Jhon. F, Mc Donald. Sounderscollege publishers.

Reference Books

- 1. Strachan and Read (2003).Human Molecular Genetics. Wiley.
- 2. Pasternak (2005). An Introduction to Molecular Human Genetics. Fritzgarald.
- 3. Prichard &Korf (2004).Medical Genetics a ta Glance. Blackwell.
- Manu L Lothari, Lopa A Mehta, sadhana S Roy Choudhury (2009). Essential of HumanGenetics (Universities Press India ltd) Publishing.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. <u>https://www.classcentral.com/course/swayam-genetics-and-genomics-17623</u> 2.

https://nptel.ac.in/courses/102/104/102104052/

3. https://www.coursera.org/learn/genetics-evolution

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	S	М
CO2	S	S	М	S	S	S	S	М	
CO3	S	S	S	S	S	М	S	S	
CO4	S	М	S	S	М	S	S	S	
CO5	S	S	S	S	S	S	S	S	N

PO-Programme Outcome, CO-Course outcome S-Strong, M-Medium, L-Low(may be avoided)

ELECTIVE 1: (B) VIROLOGY Paper code: Virology

Hours/Week: 3

edit: 3

Aim: To understand the biology of viruses, pathogenesis, clinical features,

epidemiology, and prophylaxis of dreadful viral infections in susceptible hosts.

Course Objectives

1. Contrast differences in virus architecture and classification.

- 2. To understand the viral diagnostic and detection methods.
- 3. Distinguish characteristics of normal cells and virus-infected cells.
- 4. Explain and apply methods used in research and diagnosis of viral diseases.
- 5. Describe cellular and therapeutic antiviral strategies and social stigmas against infected individuals.

Course Outcomes (five outcomes for each unit should be mentioned)

- 1. After studied unit-1, the student will be able to-describe and review the General Virology and cultivation of viruses
- 2. After studied unit-2, the student will be able to -know the Viral diagnostic and detection methods
- 3. After studied unit-3, the student will be able to explain viral replication strategies; and compare and contrast replication mechanisms used by viruses relevant to human disease
- 4. After studied unit-4, the student will be able to discuss principles of virus pathogenesis
- 5. After studied unit-5, the student will be able to explain host antiviral immune mechanisms at a cellular and molecular level and vaccine strategies and mechanisms of antiviral drugs **Matching Table (Put Yes / No in the appropriate box)**

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	No	No	No
3	Yes	Yes	No	No	No	No
4	Yes	Yes	No	No	No	No
5	Yes	Yes	No	No	No	No

38

Subject:

Cr

Units		eaching
	Course Contents	hours
Unit I	General Virology: Structure of viruses: Enveloped and non-enveloped viruses, Capsid symmetries-icosahedral, polyhedral and helical, structural proteins- matrix proteins and lipoproteins, viral genomic organization and replication- types of nucleic acids, protein-nucleic-acid interactions and genome packaging, Virus related structures-viroids and prions. Cultivation of viruses: Inovo, In vivo, Ex vivo/In vitro. Cytopathic effect-pock forming unit.	
Unit-II	Viral diagnostic and detection methods: Sample processing-enrichment andconcentration, Direct methods of detection-light microscopy (inclusion bodies), electron microscopy, Immuno diagnosis, hemagglutination, Complement fixation, neutralization, Western blot, Radioactive Immuno precipitation Assay (RIPA), Flow Cytometry and Immuno histochemistry. Nucleic acid-based diagnosis: Nucleic acid hybridization, PCR, microarray and nucleotide sequencing, LINE probe assay.	
Unit-III	Bacterio phages and plant viruses: Bacterio phage: Morphology, genome organization, classification-Lifecycle-Lytic and Lysogenic Cycle, Head and tail phages-T4 phage- phage-Filamentous Bacteriophages-174- M13,phage therapy for control of bacterial poultry diseases. Viral Disease in Plants: Histological, physiological and cytological changes in infected plants, Behavior of viruses in plants, Methods for detection of plant viruses, Transmission of plant viruses through vectors-insects, nematodes and fungi.	
Unit-IV	Clinical virology: Pathogenesis, clinical symptoms, epidemiology and prophylaxis of DNA Viruses-pox virus, Herpes Virus, Adenovirus, Hepatitis Virus. RNA Viruses- Picorna Virus, Orthomyxo Virus, Rabies Virus, HIV. Oncogenic viruses; Virus-induced cell transformation and oncogenesis, Mechanism of cell transformation by tumor viruses, Retrovirus mediated oncogenesis.	
Unit-V	Viral vaccines and anti-viral drugs: Viral vaccines, conventional vaccines- killed and attenuated, Modern vaccines-DNA vaccines, recombinant DNA/protein vaccines, subunits vaccines, peptide vaccines, anti-idio type vaccines, edible vaccines, immuno modulators (cytokines), adjuvants to increase immunogenicity of vaccines. Antivirals: Interferons, 21 designing and screening for antivirals, mechanisms of action, anti retrovirals-mechanism of action and drug resistance.	
Unit-VI	Internal Assessments, Seminars, and Guest lecture	5 hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference & Text Books:

1. Virology principles and application John Carter and Venetia Saunders (2007) John Wiley and Sons publishers.

- 2. Principles of Virology 4th edition Jane Flint.
- 3. Real –Time PCR: Current technology and applications 1st edition (2009) edited by Julie Logan et al.,
- 4. Analytical techniques in DNA sequencing edited by Brian K. Nunnally
- 5. Medical Microbiology: with student consult by Patrick R. Murray Ph.D. (Author), Ken S. Rosenthal PhD Saunders: 7th edition.
- 6. Antiviral Agents, Vaccines and Immunotherapies. Stephen K. Trying. October 2004. Marcel Dekker.

Course Material:

- 1. International Congress on Taxonomy of Viruses ;http://WWW.ncbi.nlm.nih.gov/ICTV
- 2. Knipe David M., Peter M. Howley, Diane E. Griffin, Rober t A.Lamb,Malcolm A.

Martin, BernardRoizman, Stephen E. Straus, (2007), Field's Virology, 5th Ed. Lippincott Williams &Wilkins

- 3. Cann Alan j, (2000), DNA virus Replication, Oxford University press
- 4. https://www.yourgenome.org/facts/what-is-PCR-polymerase-chain-reaction.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low (may beavoided)

ELECTIVE 1: (C) BASIC ANALYTICAL METHODS

Paper code:

Subject: Basic Analytical Methods (Core

Elective)Hours/Week: 3

Credits: 3

Aim: To provide knowledge of various analytical techniques in biological researchCourse Objectives

1. To learn the principles of the various analytical instrument.

2. To teach the SOP of analytical instruments.

3. To study the different chromatography separation methodologies

4. To study different electrophoresis isolation methodologies

5. To learn advanced microscopic methods in image processing

Course Outcomes:

1. After studied unit 1 the students will be able to know the significance of instruments concerningdiagnostic procedures.

2. After studied unit 2 the students will be able to handle qualitative and quantitative chromatographictechniques

3. After studied unit 3 the students will be able to handle centrifugation and separate samples forfurther practical's/research

4. After studied unit 4 the students will be able to handle different qualitative and quantitativeelectrophoresis techniques

5. After studied unit 5 the students will be able to handle microscopes and validate microscopicimages.

Matching Table (Put	Yes / No in the a	appropriate box)	

Unit/	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Course Contents	Teaching hours
Unit I	Electrochemical techniques- basic principles- The pH electrode- Ion- selective gas- sensing and oxygen electrodes. Elementary details of biosensors. Beer- Lambert law, light absorption, and its transmittance. Basic principles & brief outline of instrumentation of UV- Visible Spectroscopy: Infrared Spectroscopy. NMR. Mass spectrometry. Spectrofluorometric, Flame photometry, Atomic absorption spectrophotometry– Principles, instrumentation, and applications	, ,
Unit-II	Introduction & classification of chromatography. Theory, instrumentation & applications of Column chromatography, TLC, Paper chromatography, GC, HPTLC, HPLC - detection methods, and systems qualitative and quantitative aspects applications	
Unit-III	Centrifugation- basic principles-instrumentation-centrifugation units. Nature of particles centrifugation methods and accessories. Sedimentation velocity- sedimentation equilibrium-cell fractionation method. Differential, density gradient, isopycnic, and equilibrium centrifugation. Preparative and analytical ultracentrifugation techniques. Isoelectric focusing, blotting methods, western- southern and northern- application- methods in life sciences and biotechnology.	
Unit-IV	General principles. Factors affecting the migration rate – sample, electric field, buffer, and supporting medium. Tiselius moving boundary electrophoresis. PAGE. SDS– PAGE. Pulse-field gel electrophoresis. Cellulose acetate membrane electrophoresis. Agarose gel electrophoresis	
Unit-V	Radio isotopic techniques: Introduction to radioisotopes, Detection. Measurement and uses of radioisotopes, Counting efficiency and autoradiography. Principles of microscopy, Fluorescent, Transmission and Scanning electron microscopy, confocal microscopy. Biotechnological applications Microscopy. Microtome analysis and measurement of images	
Unit-VI	Internal Assessments, Seminars, and Guest lecture	5 hours
	Total Teaching hours	50

Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks
internals	II + CIA III)			
Marks	15	05	05	25

Textbook:

- 1. Keith Wilson, John M Walker. Principles and techniques of biochemistry and molecularbiology. Cambridge University Press. 7th edition, 2017.
- 2. Shawney. Practical Biochemistry. Narosa Publishing, 1995.
- 3. Upadhyaya A Upadhyaya K and Nath. Biophysical Chemistry: Principles and Techniques, 3rd Edition. Himalayan publications, 2009.
- 4. D. Frifelder and M. Malacinski. Essentials of Molecular Biology, Jones & Bartlett, 5th Edition, 2015.
- 5. R.D. Braun. Introduction to Instrumental Analysis. Pharma Book Syndicate, 2006.
- 6. Chatwal and Anand. Instrumental Methods of Analysis. 5th Edition, Himalayan publication, 2007.
- 7. Jag Mohan. Organic Spectroscopy, Principles and Application. Narosa Publishing House, 2nd Edition, 2007.

Reference Book:

1. Principles and Techniques of Practical Biochemistry (Paperback) by KeithWilson (Editor), John Walker (Editor), John M. Walker (Author) "Fifth Edition2000

2. Introductory Practical Biochemistry (Hardcover).by S. K. Sawhney; RandhirSingh (Editor)2005

3. Principles of Physical Biochemistry (2nd Edition) by Kensal E van Holde, Curtis Johnson, and Pui Shing Ho (Hardcover – April 16, 2005)

4. Physical Biochemistry: Applications to Biochemistry and Molecular Biologyby David M.Freifelder (Paperback – Aug 15,1982)

5. Instrumental Methods of Chemical Analysis by G R Chatwal and S KAnand (Hardcover –Jun1980).

Course Material:

Website links: https://www.edx.org/course/basic-analytical-chemistry,

E-Books: <u>http://shvaiko.ru/wp-content/uploads/2010/02/Analytical-Techniques-Julia-C.-Drees-Alan-H.-B.-Wu.pdf tml</u>,

https://www.uvm.edu/~gpetrucc/courses/chem196/Textbooks/Manahan%20-

%20Fundamentals%20of%20Environmental%20Chemistry/1491Ch25.pdf,E- journals: https://onlinelibrary.wiley.com/series/8247,

https://link.springer.com/chapter/10.1007/978-3-642-75490-6_15, Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	М	М	М	S	М	S	S
CO2	М	S	М	М	М	S	S	S	М	М
CO3	S	М	М	S	S	М	М	S	М	S
CO4	М	S	S	М	М	S	М	М	S	S
CO5	S	М	S	М	S	М	S	М	S	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong,\ M-Medium,\ L-Low$

Practical 1 : Lab In Biochemistry And Cell & Molecular Biology Lab in biochemistry

- 1. Determination of Chl.a, Chl.b& total Chl. By Arnon method.
- 2. Estimation of Carbohydrates
- 3. Estimation of salivary amylase activity in relation to ,substrate/pH/Temperature
- 4. Estimation of blood glucose &urea
- 5. Estimation of LDH.
- 6. Estimation of total serum proteins
- 7. Estimation of creatinine in urine.
- 8. Paper / thin layer chromatography

Lab in Cell and Molecular biology

- 9. Isolation of Genomic DNA from E.coli
- 10. Isolation of plasmid DNA from E.coli
- 12. Elution & quantification of DNA from agarose gel.
- 13. Preparation of competent cells and transformation
- 14. PCR
- 15. Isolation of Total RNA from bacteria
- 16. Synthesis of cDNA by Reverse transcription polymerase chain reaction

Reference

1. Introduction to Practical Biochemistry, E.F Plummer Mu, Plummer Tata McGraw-HillEducation, 1998.

2. Molecular cloning: a laboratory manual,4th ed. J.Sambrook, Fritsch and T.Maniatis.coldspring harbor laboratory press ,NewYork,2012

3. Essential cell biology : a practical approach volume 1: cellstructure. John Davey, J. Michaellord. Oxford university press, USA, 2003

4. Principles and techniques of biochemistry and molecular biology (7th ed).keithWilson(editor),john walker (editor),Cambridge universitypress,2010.

Practical II Microbiology

45

- 1. Sterilization techniques
- 2. Preparation of culture media(Selective and Enriched media)
- 3. Staining techniques- Simple, Differential, Negative staining and Motility studies
- 4. Determination of Bacterial growth curve
- 5. Enumeration of bacteria from environmental samples- soil, water, air and milk.
- 6. Pure culture techniques Streak, pour plate and spread plate.
- 7. Biochemical tests for identification of bacteria (IMViC, TSI, Catalase, Oxidase)
- 8. Antimicrobial assay, phenol coefficient, agar plate sensitivity method.
- 9. Water quality analysis MPN method.
- 10. Milk quality analysis MBRT method

References:

 Microbiology- A Laboratory manual P. Gunasekaran . New age publications, Newdelhi,1995.

2. Molecular cloning-A Laboratory manual. Sambrook, J , Fritsch. E.F, and T.Maniatis, 2ndEdition. Cold spring Harbor Laboratory press, New York,1989.

3. Laboratory exercise of Microbiology, J.P. Harley and L.M. Prescott, 5th Edition, theMcGraw-Hill companies,2002.

4. Microbiology: A Laboratory Manual, J.G. Cappuccino and N. Sherman, Addison-Wesley,2002.

5. Laboratory Manual of Experimental Microbiology ,R.M.Atlas, A.E.Brown and L.C.Parks, 1995. Mosby,St.Louis,2002.

6. Laboratory manual in General Microbiology, N.Kannan, Panimapublishers.

7. Bergey's Manual of Determinative Bacteriology. Ninth Edition J.G.Holt, N.R.Krieg.,Lippincott Williams, Wilkin publishers, 2000.

VALUE ADDED COURSES

(A) MUSHROOM CULTIVATION AND APICULTURE

Paper code:Name of the Paper: Mushroom Cultivation and ApicultureTotal Hours per Week: 2Credits: 2

Aim: To exploit possibilities and assist in building up a mushroom cultivation and apiculture

industry that will make a significant contribution to the general economy.

1. To make the students to know about mushroom and their types.

- 2. To enable the students to learn the mushroom spawn production conditions.
- 3. To make the students learn about mushroom cultivation and maintenance.
- 4. To make the students to know about apiculture scope and bee keeping and types.
- 5. To enable the students to understand the importance of honey and applications.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to differentiate the edible and poisonous mushrooms.
- 2. The student will be able to develop mushrooms culture conditions.
- 3. The student will be able to practice the mushroom cultivation and production.
- 4. The student will be able to practice the bee keeping and culture maintenance.
- 5. The student will be able to produce and analyze the applications of honey in differentFields. **Matching Table (Put Yes / No in the appropriate box)**

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	History of Mushroom, cultivations and its practice, Introduction to mushroom cultivation, Classification of Mushrooms and different types, Edible Mushrooms, its types and their origin, Poisonous Mushrooms, its types and their origin.	t
UNIT-II	Introduction to mushroom cultivation, sources of beds and types. Spawn, Sources, spawn run, cultivation set up, Culture ventilation and humidity management, temperature, lighting, moisture, pH CO2, Culture chambers preparation, sterilization, Instructions precautions, handling and sensors.	1
UNIT – III	Mushroom cultivation maintenance, conditions, and duration Spawn collection, preparation, storage, Spawning techniques Environmental conditions, temperature, moist, Fruiting initiation monitoring, maintenance and harvest.	,
UNIT – IV	Introduction to apiculture, definitions, history, scope, importance of apiculture, Bee Keeping methods practiced in world and in India, Traditional Bee keeping techniques, Modern Bee keeping methods, Urban Beekeeping methods.	
UNIT-V	Introduction to nutritional product of honey and its constituents. Honey properties biological activities, medicinal values Applications of Honey in various fields, Honey types and value added honey products.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	30 hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

1. Paul Stamets, J.S. and Chilton, J.S. 2004. Mushroom cultivation A practical guide to growing mushrooms athome, Agarikon Press.

- 2. Tewan and Pankaj Kapoor S.C. 1993. Mushroom cultivation. Mittal Publication. Delhi.
- 3. Marimuth et al., 1991. Oyster Mushrooms. Dept. of Plant pathology, TNAU, Coimbatore.
- 4. Nita Bahl. 1988. Hand book of Mushrooms, 2nd Edition, Vol I & II.
 - 5. Shu Fing Chang, Philip G. Miles and Chang, S.T. 2004. Mushrooms Cultivation, nutritional value, medicinaleffect and environmental impact. 2nd ed., CRC press.
- 6. Prost, P. J. (1962). Apiculture. Oxford and IBH, New Delhi.
- 7. Bisht D.S., Apiculture, ICAR Publication.
- 8. Singh S., Beekeeping in India, Indian council of Agricultural Research, New Delhi **Reference Book:**

1. Laidlaw, H.H., 1997. Contemporary queen rearing. Published by Dadant and Sons. R. A. Morse, Rearing queen honeybees. Wicwas press, $\underset{A}{NY}$.

2. Alison Benjamin, By (author) Brian McCallum, 2008. Keeping Bees and Making Honey. David & Charles, NewtonAbbot.

3. Kim Pezza, 2013. Backyard Farming: Keeping Honey Bees: From Hive Management to Honey Harvesting and More.Hatherleigh Press, U.S.

4. Kim Flottum, 2014. The Backyard Beekeeper: An Absolute Beginner's Guide to Keeping Bees in Your Yard andGarden. Quarry Books.

5. Kannaiyan, S. Ramasamy, K. (1980). A hand book of edible mushroom, Today & Tomorrows Printers & Publishers, New Delhi.

6. Pandey B P 1996. A textbook of fungi.Chand and Company N Delhi. **Course Material:** website links, e-Books and e-journals

1.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.

2.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99OGT KEC&redirhttps://

books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99OGTKEC&re dir

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	Μ	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	M	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO-Programme Outcome, CO-Course outcome, S-Strong, M-Medium, L-Low (may be avoided)

VALUE ADDED COURSES

49

(B) VERMICULTURE TECHNOLOGY

Paper code:

Name of the Paper: Vermiculture Technology

Total Hours per

Credits: 2

Week: 2

Aim: To exploit possibilities and assist in building up a Vermiculture technology in significant contribution to thegeneral economy.

Course Objectives

- 1. To enable the students learn about Vermiculture compositing.
- 2. To enable the students to know the humus cycle, soil transformation
- 3. To enable the students analyze the nutritional composition of vermicompost.
- 4. To enable the students to learn Vermiculture technology.
- 5. To enable the students to learn the harvest of vermicompost.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to understand the Vermiculture and 4R's of recycling.
- 2. The student will be able to identify the decomposing organic matter and humus formation.
- 3. The student will be able to differentiate nutritional value of vermicompost and fertilizer.
- 4. The student will be able to practice the Vermiculture composting and maintain conditions.
- 5. The student will be able to produce Vermiculture compost, harvest the compost and application.

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	Introduction to Vermiculture technology, definition, meaning and history, Economic importance of Vermiculture, their value in soil texture, Concept of recycling, Concept of four r's reduce, reuse, recycle and restore.	5 hours
UNIT-II	Introduction to matter, types of matter, Introduction to Humus Humus cycle, Sources, quality of products for Humus formation Ground population, and transformation process in organic matter.	
UNIT – III	Introduction of plant fertilizers, nutritional value and their importance, Vermicompost composition and its nutritional value. Importance of vermicompost as fertilizer for plants, Comparison of vermicompost with other fertilizers.	,
UNIT – IV	Introduction to vermibeds, sources, types, Preparation of vermibeds, measurements, Maintenance of vermicompost, Compositingconditions, moist, temperature, aeration.	5 hours
UNIT-V	Vermicompost identification, conditions, and separation, compost packing, sources and methods, Compost storage, conditions and durations, Vermicompost handling and transport.	5 hours
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	30 hours

Distr	ribution for nternals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks		15	05	05	25

Text book:

- 1. Kevin, A and K.E.Lee (1989) "Earthworm for Gardeners and Fisherman" (CSIRO,Australia, Division of Soils)
- 2. Rahudakar V.B. (2004). Gandul khatashivay Naisargeek Paryay, Atul Book Agency, Pune.
- 3. Satchel, J.E. (1983) "Earthworm Ecology" Chapman Hall, London.
- 4. Wallwork, J.A. (1983) "Earthworm Biology" Edward Arnold (Publishers) Ltd. London.
- 5. Sultan Ahmed Ismail, 2005. The Earthworm Book, Second Revised Edition. Other IndiaPress, Goa, India. 2.Bhatnagar & Patla,2007.
- 6. Earthworm vermiculture and vermin-composting, Kalyani Publishers, New Delhi

Reference Book:

1. Bhatt J.V. & S.R. Khambata (1959) "Role of Earthworms in Agriculture" Indian Council of Agricultural Research, New Delhi 2.

2. Dash, M.C., B.K.Senapati, P.C. Mishra (1980) "Verms and Vermicomposting" Proceedings of the National Seminar on Organic Waste Utilization and Vermicomposting Dec. 5-8, 1984, (Part B), School of Life Sciences, Sambalpur University, Jyoti Vihar, Orissa.

- Edwards, C.A. and J.R. Lofty (1977) "Biology of Earthworms" Chapman and Hall Ltd., London.
 Lee, K.E. (1985) "Earthworms: Their ecology and Relationship with Soils and Land Use" Academic Press, Sydney. 5. Kevin, A and K.E.Lee (1989) "Earthworm for Gardeners and Fisherman" (CSIRO, Australia, Division of Soils)
- 5. Mary Violet Christy, 2008. Vermitechnology, MJP Publishers, Chennai.
- 6. Aravind Kumar, 2005. Verms & Vermitechnology, A.P.H. Publishing Corporation, New Delhi. Course Material: website links, e-Books and e-journals
- 1. Vermiculture Technology, Earthworms, Organic Wastes, and Environmental ManagementEdited By Clive

A. Edwards, Norman Q. Arancon, Rhonda L. Sherman,

2. <u>https://www.scirp.org/journal/paperinformation.aspx?paperid=2490</u>, **DOI:** <u>10.4236/ti.2010.13019</u>

Mapping with Programme Outcomes

	9	0								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	M	S	Μ
CO3	S	S	S	S	S	Μ	S	S	S	S
CO4	S	M	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO-Programme Outcome, CO-Course outcome S-Strong , M-Medium, L-Low (may be avoided)

VALUE ADDED COURSE (VAC-C) C) VALIDATION OF MEDICINAL PLANTS

Paper code: Medicinal plants Credits: 2 Name of the Paper: Validation of

Total Hours per Week: 2

Aim: The course aims to introduce the students to the identification and validation of medicinal

plantand to understand the cultivation and propagation techniques. To understand the importance

of medicinal plants in human health care.

Course Objectives

- 1. To enable the students to understand the importance of medicinal plants.
- 2. To enable the students to identify the medicinal plants.
- 3. To enable the students to learn the techniques of validation of medicinal plants.
- 4. To enable the students to learn the cultivation methods and maintenance of medicinalplants.
- 5. To enable the students to understand the importance of medicinal plant in human health. Course Out Comes (five outcomes for each units should be mentioned)
- 1. The student will be able to gain knowledge about importance of medicinal plant parts andits medicinal value.
- 2. The student will be able to classify the medicinal plants on Bentham and Hooker and Practice herbarium techniques.
- 3. The student will be able to identify the medicinal values of plants using different validation Techniques.
- 4. The student will be able to cultivate and propagate the medicinal plants
- 5. The student will be able to practice the usage of medicinal plants in treatment of humanDiseases.

Tratening Tuble (Tut Tes / 110 in the uppropriate son)									
Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating			
	_	Understanding			_	_			
1	Yes	Yes	No	Yes	No	No			
2	Yes	Yes	Yes	Yes	Yes	No			
3	Yes	Yes	Yes	Yes	Yes	No			
4	Yes	Yes	Yes	Yes	Yes	Yes			
5	Yes	Yes	Yes	Yes	Yes	Yes			

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Introduction to Medicinal plants, meaning, definition and types,	5 hours
	Medicinal properties of plants and their importance, Medicinal	
	values in plant parts, fruits, stem, leaves and roots, Leaf, fruit, root	
	and stem modifications, aerial and underground.	
UNIT-II	Introduction to Medicinal plant identification, Elementary	5 hours
	knowledge of binomial nomenclature, Bentham and Hooker	
	classification, Herbarium, preparation and preservation.	
UNIT – III	Introduction to validation of medicinal plants, Macroscopic	5 hours
	characteristics of medicinal plants, Microscopic characteristics of	
	medicinal plants, Chemical compounds and tests of medicinal	
	plants, Chromatographic techniques for validation TLC, HPLC,	
	HPTLC & gas, Chromatography.	
UNIT – IV	Introduction to medicinal plant cultivation, Cultivation techniques,	5 hours
	and factors affecting cultivation of medicinal plants, Propagation	
	of medicinal plants and different methods of propagation,	
	Management and Maintenance of medicinal plants.	
UNIT-V	Importance of medicinal value in plants, Medicinal properties of	
	plants in human health and its role, advantages, Role of medicinal	
	plants in prevention and treatment of human diseases, Traditional	
	knowledge and utility of Indian medicinal plants.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
		30 hours

101	ment Methous. (25 marks)									
	Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks					
	internals	II + CIA III)		_						
	Marks	15	05	05	25					

Text book:

- 1. Indian Medicinal Plants by P.C. Trivedi (2009).
- 2. Medicinal Plants of Indian Himalaya by S.S. Samant and U. Dhar.
- 3. Indian Medicinal Plants (Vol 1- 4) by K.R. Kirtikar and B.D. Basu (2006).
- 4. Indigenous Medicinal Plants Social Forestry & Tribals by M.P. Singh et al. (2003).
- 5. Ayurvedic Drugs and their Plant Sources by V.V. Sivarajan & I. Balachandran, Oxford & IBH (1994).
- 6. The Handbook of Ayurveda Shantha by Godagama, Bishen Singh Mahendrpal Singh, Dehradun (2004).
- 7. Direct uses of medicinal plants and their identification by Vardhana, Sarup and Sons, Ansari Road, Dariyaganj,

New Delhi (2008).

8. Medicinal plants, applied biology of domestication and export by K. Singh, S.K. Tyagi, Bishen SinghMahendrapal Singh Dehradun.

- 9. Quality Control Methods for Medicinal Plants Materials, W.H.O. (1998).
- 10. Evaluation of herbal medicinal products by Houghton

Reference Book:

- 1. A Class Book of Botany. A.C. Dutta. Oxford University Press.
- 2. Cultivation of Medicinal Plants by C.K. Atal & B.M. Kapoor.
- 3. Hartmann, H.T & Kester, D.E (1989). Plant Propagation Principles and Practices. PrenticeHall of India.
- 4. Awadesh N, Ghoeami A and Sharma R, Indigenous Health Care and Ethnomedicine, Sarupand Sons.
- 5. Medicinal Plants Cultivation: A Scientific Approach by S.S. Purohit, (2004).
- 6. Bruneton Jean, Caroline K. Hatton, Pharmacognosy, Phytochemistry, Medicinal plants.Lavoisier, 1999.ISBN 1898298637.
- 7. Nikolaus J. Sucher, Maria C. Carles, Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Med., 74: 603–623; 2008.

8. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants, World HealthOrganization, Geneva, 2003.

9. Iqbal Ahmad, FarrukhAqil, and Mohammad Owais, Modern Phytomedicine: Turning Medicinal Plants intoDrugs. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. ISBN-10: 3-527-31530-6.

10. Ved D.K. & Goraya, G.S. Demand & supply of medicinal plants in India, NMPB, New Delhi & FRLHT, Bangalore, India, 2008.

Course Material: website links, e-Books and e-journals

1.Planta Medica, Issue 13 · Volume 79 · August 2013. <u>https://www.thieme-</u>connect.com/products/ejournals

2. <u>https://www.sciencedirect.com/book/9780128008744/evidence-based-validation-of-herbal-medicine</u>.

3.https://www.tandfonline.com/doi/citedby/10.1080/13880200902800196?scroll=top&needAcces s=true.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	Μ	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

3. Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-Strong, M-Medium, L-Low

SEMESTER II PAPER 4: IMMUNOLOGY Semester: II Hours of teaching: 4 Core Theory

Credits: 4 Paper type:

Aim: to provide the students insights into the various aspects of immunology such as classical immunology, clinicalimmunology, immunotherapy and diagnostic immunology.

Course objectives :

- 1. To Learn the basic components and principles of defense mechanism against infections
- 2. To Understand the properties antigens and structure and types of Immunoglobulin
- 3. To understand principle behind Antigens- Antibody reactions.
- 4. To Expedite how the immune system recognizes foreign antigen and the significance of self/non-self-discrimination
- 5. To Enrich the students' knowledge with respect to different applications of Immunotechnology

Course Out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know about basics of Immunity and various components of Immune system
- 2. After studied unit-2, the student will be able to understand about Antigens and structural properties ofImmunoglobulin
- 3. After studied unit-3, the student will be able to understand principle of antigen-antibody reaction and their types
- 4. After studied unit-4, the student will be able to how immune cells are signaled, processed and destroyed
- 5. After studied unit-5, the student will be able to know various immunological technologies.

Unit i. Remembering ii. iii. Applying iv. Analyzing v. Evaluating vi. Creating									
i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating				
	Understanding								
Yes	Yes	Yes	Yes	Yes	Yes				
Yes	Yes	Yes	Yes	Yes	No				
Yes	Yes	Yes	Yes	Yes	Yes				
Yes	Yes	Yes	Yes	No	No				
Yes	Yes	Yes	No	Yes	Yes				
	i. Remembering Yes Yes Yes Yes	i. Remembering ii. Understanding Yes Yes Yes Yes Yes Yes Yes Yes	i. Rememberingii.iii. ApplyingUnderstandingUnderstandingYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYes	i. Remembering ii.iii. Applyingiv. AnalyzingUnderstandingUnderstandingYes	i. Remembering ii. Understandingiii. Applyingiv. Analyzingv. EvaluatingYesNo				

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Introduction to the study of Immunology: Historic perspective,	12 hours
	Overview and Concepts, Humoral and cellular- Mediated	
	Immunoresponses. Components of immunity, Innate and Adaptive	
	immunity. Haematopoiesis and differentiation of immune cells.	
	Cells and Tissues of the immune system: Cells involved in the	
	Immune response: Macrophages, B and T lymphocytes, Dendritic	
	cells, Natural killer and Lymphokine activated killer cells,	
	Eosinophils, Neutrophils and Mast cells. The lymphoid organs:	
	Thymus, Bone marrow, Spleen, lymph	
	nodes, MALT.	
UNIT-II	Antigens and Immunogenicity. Nature of Antigens and antibodies.	12 hours
	Theories of Antibody formation. Antibody structure, structural	
	basis of Antibody diversity; Immunoglobulin as Anitgen,	
	Properties of immunoglobulin and subtypes.	
	Complement and its role in Immune Responses.	
UNIT – III	Antigen - Antibody Reaction, Strength of Antigen and Antibody	12 hours
	reaction, Cross reactivity, Precipitation and Agglutination	
	reactions, Radioimmunoassay and ELISA. B-cell generation,	
	activation and differentiation. Antibody production, Regulation	
	and Diversity.	
UNIT – IV	Cytokines: structure of Cytokines; function of Cytokines.	12 hours
	Complement fixation. Structure and function of MHC class I and II	
	molecules - antigen recognition and presentation, HLA typing,	
	Cellular Immunity. Hypersensitivity Reactions, Types of	
	Hypersensitivity, Immune tolerance, Autoimmunity and	
	transplantation.	
UNIT-V	Hybridoma secreting monoclonal antibodies-Recombinant	12 hours
	antibody molecules. Catalytic Antibodies. Vaccine technology	
	including DNA vaccines. Immunological techniques for	
	identification of infectious diseases : immune-electrophoresis,	
	western blot, flowcytometry and immune-fluorescence microscopy	
	including in situ localization techniques such as	
	FISH and GISH.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours
	45	

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book(s)

- 1. Parham, P. (2014). The Immune System (4th edition). W. W. Norton & Company.
- 2. Murphy, K., Travers, P., Walport, M., &Janeway, C. (2012).Janeway'sImmunobiology. New York: Garland Science.
 - 3. Paul, W. E. (1993). Fundamental Immunology. New York: Raven Press. Goding, J. W. (1986). Monoclonal Antibodies: Principles and Practice
- 4. C.V.Rao. 2002, An Introduction to Immunology, Narosa Publishing House, Chennai.

References Books

- 1. Immunology (7th ed) J.Kuby ,W.H freeman and company , newYork.2013
- 2. Basic immunology updates ed: functions and disorders of immune system (3rd ed). abulk.abbas, Andrew H.HLictman ,saunders publishers , newYork,2010
- 3. Immunology: an introduction (4th) I.R Tizard, saunders college publishers, newYork.
- 4. Essential immunology (11th ed).peterdelves,seamusmartin,dennjis burton, Ivan Roitt, Wiley Blackwell publication, Singapore,2006
- 5. Immunology (Lippincotts illustrated reviews series) thaodoan, roger melvold, susanviselli, Carl Waltenbaugh, Lippincott Williams & Wilkins publications2012
- 6. Fundamental immunology (7th ed) William e Paul, Lippincott Williams & Wilkins publications,2012
- 7. Essentials of clinical immunology (6th ed) Helen chapel ,Manselhaeney, Siraj misbah, Neil snowden,Wiley-Blackwell publications,2014
- 8. Monoclonal antibodies principles and practice(3rd ed) W.Goodings, academic press,2010
- 9. Monoclonal antibodies :P methods and protocols (2nd ed) .Vincentossipo, Nicolas fisher, Humanapress,2014
- Essentials of clinical immunology (6th ed).Helen chapel, Manselhaeney, ,Siraj misbah, Neil Snowden,Wiley- Blackwell publications,2014 J.Kuby, 2003, Immunology 5th edition, W.H. Freeman and Company, Newyork..
- 12. I.R.Tizard, 1995, Immunology: An Introduction, 4th edition, Saunders College Publishers, NewYork.
- 13. I.Roitt, 1994, Essential Immunology, Blackwell Science, Singapore.
- 14. A. Bul and K.Abbas, 1994, Cellular and Molecularimmunology
- 15. Current Protocols in Immunology 3 Volumes, Wiley Publications1994.
- 16. Monoclonal Antibodies: Principles and Practice, J. W. Goding, 1983. AcademicPress
- 17. Hybridoma Technology in the Biosciences and medicine, T.A. Springer, 1985. Plenum PressNY

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. <u>https://nptel.ac.in/courses/102/105/102105083/</u>
- 2. <u>https://www.coursera.org/specializations/immunolog</u>

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S		S

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

PAPER 5: GENETIC ENGINEERING

Paper Code: Subject: **Genetic Engineering** Hours/Week: 4

Aim: To modify the genes to enhance the capabilities of the organisms beyond what is normal. Ethical controversy surrounds the possible use of both of these technologies in plants, nonhuman animals, and humans.

Course Objectives

1. To understand the basis of Enzyme, Ligases in Genetic Engineering Tools.

- 2. To well understood the Cloning Vectors.
- 3. To obtain knowledge about Gene cloning strategies and transformation techniques.
- 4. To obtain the knowledge of Selection, Screening, and analysis of recombinants.
- 5. To know the basic Genetic Engineering Techniques- Application of rDNA technology.

Course Out Comes

On completion of the course, the students will be able to:

After studying unit 1 the students will be able to identify the tools which are 1. used in Genetic Engineeringand exhibit them their practical's.

2. After studying unit 2 the students will be able to differentiate methods in Cloning Vector.

After studying unit 3 the students will be able to describe the Techniques in 3. Gene cloning – Physical, chemical and methods.

After studying unit 4 the students will be able to explain techniques amo 4. recombine recombinants likePCR, DNA sequencing, etc

5. After studying unit 5 the students will be able to analyze and can cross-examine the Genetic Engineering of patients who visit the Lab.

Credits: 4

The Materiang Faste (Fat Fest file appropriate son)									
i.	ii.	iii.	iv.	V.	vi.				
Remembering	Understanding	Applying	Analyzing	Evaluating	Creating				
Yes	Yes	Yes	Yes	Yes	Yes				
Yes	Yes	Yes	Yes	Yes	No				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	Yes	Yes	Yes	No				
	i. Remembering Yes Yes Yes Yes	i. ii. Remembering Understanding Yes Yes Yes Yes Yes Yes Yes Yes	i. ii. iii. iii. Remembering Understanding Applying Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes No	i.ii.iii.iv.RememberingUnderstandingApplyingAnalyzingYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesNoYes	i.ii.iii.iv.v.RememberingUnderstandingApplyingAnalyzingEvaluatingYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesNoYesYesYesYesNoYesYes				

The Matching Table (Put Yes / No in the appropriate box)

Units	Course Contents	Teaching Hours
Unit-I	Tools of Genetic Engineering: Enzymes - endo &exo nucleases, Restriction endonucleases- types, nomenclature, recognition sequences and mechanism of action; Isochizomers, Iso customers - star activity, Methylation, and modification. Ligases – types (NAD and ATP dependent), mechanism of action. Role of Kinases, phosphatases, polynucleotide phosphorylase, polynucleotide kinases, terminal transferase, Alkaline phosphatase, Reverse transcriptase - Taq polymerase.	12 hours
Unit-II	Cloning vectors: General characteristics of vectors, Brief account of naturally occurring plasmids. The promoter, MCS, Ori, and Marker genes-lac Z. Construction of pBR 322, pBR325, pBR327, pUC8, pUC 18 & 19 vectors, and Expression vectors, Bacteriophage vectors, Lambda phage, Insertion vectors, Replacement vectors, Cosmids, Phagemids, Mini chromosomes, BAC"s, YAC"s, Shuttle vectors, Ti plasmids, Vectors for animals- SV40 and Bovine papillomavirus.	12 hours
Unit-III	Gene cloning strategies and transformation techniques: Chimeric DNA, Cloning strategies- ligation, Transformation and selection, use of adaptors and linkers, Homopolymer tailing in cDNA cloning, genomic DNA libraries, Short gun method, Partial digestion, End modification, Cloning from mRNA- Isolation and purification of RNA, Synthesis of cDNA, Isolation of plasmids, Cloning cDNA in plasmid vectors, Cloning cDNA in bacteriophage vectors. cDNAlibrary. Advanced cloning strategies- synthesis and Cloning of cDNA, PCR amplified DNA. Transformation techniques: Preparation of competent cells, Physical methods - Electroporation, Microinjection, Gene gun, chemical methods - PEG, DEAE, CaCl ₂ , calcium phosphate precipitation method, liposome-mediated method	12 hours

Unit-IV	Selection, screening, and analysis of recombinants: Genetic	12 hours						
	selection							
	- Insertional inactivation, Antibiotic Resistant genes, lac Z genes,							
	Blue white screening, α - Complementation, colony hybridization,							
	Immunological screening, Plaque hybridization, Blotting							
	techniques, DNA sequencing - chemical and enzymatic methods,							
	PCR and its variants, Preparation of radio labelled and non -							
	radiolabelled probes and its applications.							
Unit-V	Applications of rDNA technology: Production of vaccines -	12 hours						
	Hepatitis B, Edible Vaccine, Hormones – Somatotropin, Humulin,							
	Blood clotting factor VIII, Interferons, Diagnostics of inherited							
	disorders							
	and infectious diseases, Gene therapy, ADA- Cystic fibrosis.							
Unit-VI	Internal Assessments, Seminars, and Guest Lecture	05 hours						
	Total Teaching hours	65						

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 1. Concepts of Genetics (Masteringgenetics) 12th Editionby <u>William Klug</u> (Author), <u>Michael Cummings</u> (Author), <u>Charlotte Spencer</u> (Author), <u>Michael Palladino</u> (Author), <u>Darrell</u> <u>Killian</u> (Author)
- 2. Genetics: A Conceptual Approach Sixth Edition by <u>Benjamin A. Pierce</u> (Author) W. H. Freeman; Sixth edition (December 19, 2016)
- 3. Genetics: From Genes to Genomes, 5th edition 5th Editionby Leland H. Hartwell (Author), <u>Michael L. Goldberg</u> (Author), Janice A. Fischer (Author), Leroy Hood (Author), Charles F. <u>Aquadro</u> (Author)McGraw-Hill Education; 5th edition (September 5, 2014)
- Genetics: Analysis of Genes and Genomes: Analysis of Genes and Genomes 9th Editionby <u>Daniel L. Hartl</u> (Author), <u>Bruce Cochrane</u> (Author) Jones & Bartlett Learning; 9th edition (December 14, 2017)
- 5. Principles of Genetics 6th Edition by <u>D. Peter Snustad</u> (Author), <u>Michael J. Simmons</u> (Author) John Wiley and Sons; 6th edition (August 23, 2011)
- 6. An Introduction to Genetic Engineering 3rd Edition, author : Desmonds S.T. Nicholl, University of Paisley May 2008.
- 7. Gene Cloning and DNA Analysis: An Introduction 7th Editionby <u>T. A. Brown</u> Wiley-Blackwell; 7th edition(January 19, 2016)
- Biotechnology: Applying the Genetic Revolution 1st Editionby <u>David P. Clark BA</u> (honors)Christ's College <u>Cambridge 1973
PhD University of Brsitol (England) 1977</u> (Author), <u>Nanette Pazdernik</u> Academic Cell;1st edition (September 19, 2008) **Reference Book:**
- 1. An Introduction to Genetic Engineering (Studies in Biology) 2nd Editionby Desmond S. T. Nicholl
- 2. Genetically Engineered Foods (Volume 6) (Handbook of Food Bioengineering, Volume 6) 1st Editionby <u>Alexandru Mihai Grumezescu</u> (Editor), <u>Alina Maria Holban</u> (Editor) 2017.
- 3. Genetically Engineered Foods Hardcover January 1, 2021 by Armando Mills (Author) ED-

Tech Press; 1stedition

4. Genetic Engineering: A Christian Perspective Paperback – December 27, 2019 by <u>Michael</u> Scaife.

Course Material:

Website links: https://www.genome.gov/genetics-glossary/Genetic-Engineering

https://www.amazon.in/s?k=genetic+engineering+book&hvadid=82669701180826&hvbmt=b p&hvdev=c&hvq mt=p&tag=msndeskstdin-21&ref=pd_sl_3hztgcyjhj_p

E-journals: Process Biochemistry (Elsevier), Journal of Cellular Biochemistry (Wiley)

Mapping wit	h Programme	Outcomes
-------------	-------------	----------

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	М	M	М	S	S	S
CO2	М	М	М	S	S	M	S	S	М	М
CO3	М	М	М	S	S	S	S	М	М	М
CO4	S	S	S	М	М	M	S	М	М	S
CO5	М	М	М	S	S	S	М	М	S	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

PAPER 6: DEVELOPMENTAL BIOLOGY AND STEM CELL BIOLOGY

Paper Code:	Subject: Developmental Biology and Stem Cell
Biology	
Hours/Week: 4	Credits: 4

Aim: To understand the recent advances and its applications to modern biotechnology

Course objectives:

- 1. To study the basics of sperm, egg cell cycle and its various stages
- 2. To teach the developmental concepts of drosophila and chick
- 3. To teach the concepts of stem cell, embryonic and adult stem cell
- 4. To study the types of stem cell and stem cell mediated antigen role different stem cell
- 5. To understand the recent advances and its applications to modern biotechnology.

Course outcomes

1. After studied unit-1, the student will be able to know about basic knowledge of Developmental Biology

46

- 2. After studied unit-2, the student will be able to understand mechanism of developmental morphogenesis and organogenesis
- 3. After studied unit-3, the student will be able to understand the stem cell and its importance
- 4. After studied unit-4, the student will be able to know the different types of stem cell
- 5. After studied unit-5, the student will be able to know various application of stem cell in medicine.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

Units	Course Contents	Teaching Hours
	Introduction to Developmental Biology: Cells and morphogens gradients. Ultrastructure of sperm, egg, pollen and ovule. Production of gametes in animal and plant (Spermatogenesis, Oogenesis). Cell surface molecules in sperm - egg recognition in animals; zygote formation, cleavage, blastula formation, gastrulation and formation of germ layers in animals.	
Unit-II	Developmental Concepts: Morphogenesis and organogenesis in animals (Drosophila and Chick). Cell fate and cell lineages; genomic equivalence and the cytoplasmic determinants; imprinting. Role of in development. Cellular differentiation and Differential activation. Role of cell death in development. Terato genesis - Ageing, transgenic.	
	Introduction to stem cell biology: Introduction to concepts in stem cell biology (renewal and potency)introduction to stem cells, Germ line stem cells and germ line derived pluripotent cell, Epigenetics, nuclear transfer and cloning, introduction to cell, tissues and organ. Introduction to embryonic and adult stem cell.	
	Basic and Types of Stem cell: Stem cell basic: Reprogramming and induced pluripotent cells (iPS cells), chromatin and stem cells, telomeres and stem cells, stem cell differentiation and characterization : CD antigens and its role in stem cell differentiation. Neuronal stem cell, mesenchymal stem cell, cardiac stem cells, hematopoietic stem cells	12 hours
Unit-V	Technique and Application Techniques used for stem cell isolation, enumeration and <i>in vivo</i> expansion, techniques used for stem cell characterization. Therapeutic applications of stem cell: fundamentals of regenerative medicine, autologous and allogenic stem cell transplantation, HLA typing, Stem cell banking – cryopreservation techniques, national and international guideline, recent advances in stem cell biology.	
	46	

Unit-VI Internal Assessments, Seminars, and Guest Lecture								
Total Teaching hours								
Internal Assessment Methods: (25 marks)								
	Distribution for	Test (CIA I + CIA	Seminars	Assignment	Tota	l marks		
	internals	II + CIA III)						
Μ	Iarks	15	05	05		25		

Text Books

- 1. Essentials of stem cell biology 2009, (second ed)Robert Lanza, John Gearhart, Brigid Hogan, Douglass Melton, roger Pedersen, E. Donnall Thomas, James Thomson and sir Ian Wilmutt.
- 2. Ann a. Kiessling, human embryonic stem cells: an introduction to the science and therapeuticpotential, Jones andbartett,2003
- 3. Peter J ,Quesenberry, stem cell biology and gene therapy, 1st ed, willyless,1998
 4. Developmental biology, (2018), 11th edition by Michael J. F. Barresi, Scott F. Gilbert.Reference Books
- 1. Human Embryology & Developmental Biology (2019), 6th edition by Bruce M. Carlson
- 2. Principles of Development (2019), 6th edition by Cheryll Tickle; Lewis Wolpert; Alfonso Martinez Arias.
- 3. Freshney RI. 2016. Culture of animal cells: A manual of basic technique and Specialized Applications. 7th Edn. Wiley- Blackwell.. United States of America.
- 4. Singh, B., Mal, G., Gautam, S.K., Mukesh, M.2019 Advances in animal biotechnology 1st EdnSpringer International Publishing. Switzerland

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.youtube.com/watch?v=dXknfffXeDM

https://courseware.cutm.ac.in/courses/biochemistry-and-enzyme-technology/ https://freevideolectures.com/course/85/enzyme-science-and-engineering E-Journals: Reproductive Biology, Stem cell biology, Fertility and Sterility, Urology

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S		S

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-Strong, M-Medium, L-Low

PAPER 7: BIOINFORMATICS

Paper code:Name of the Paper: Bioinformatics

Total Hours/ Week: 4

Credits: 4

Course Objectives

1. To provide information an understanding of the major computational problems in the field of molecular biology and to gain knowledge on molecular databases.

2. To enable to learn alignment of sequence, rapid similarity searching, phylogenies.

3. Comparative genomics, pattern search, classification of sequence and structure,

4. Automated pattern learning, representing and searching protein structure, gene expression profiling, clustering expressed genes, discovering transcription factor bindings sites, discovering common functions of co- expressed genes,

5. To make them translate metabolic pathways, signal transduction pathways and management.

Course Out Comes

After successful completion of this course, students will be able to:

1. The student will be able to use various biological databases.

2. The student will be able do alignment and compare the differences of local and global using BLAST and advanced alignment tools.

3. The student will be to understand the techniques used in genomics and proteomics and their applications

4. The student will be able to comprehend basis of protein structure determination, identify domains and motifs in protein, usage of tools to predict the sites in protein, and learn the computational methods and application of bioinformatics techniques

5. The student will be able to interpret the biological metabolic pathways,

U	i.	ii.	iii.	iv.	v.	vi.				
nit	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating				
	l Yes	Yes	No	Yes	Yes	No				
	2 Yes	Yes	Yes	Yes	Yes	No				
	3 Yes	Yes	No	Yes	Yes	No				
2	4 Yes	Yes	Yes	Yes	Yes	Yes				
:	5 Yes	Yes	Yes	Yes	Yes	Yes				

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Biological data bases: gen bank: sequence data/ types ; - protein data	12 hours
	bases - ESTs STSs - GSSs - HTGS; NCBI- PubMed- Entrez -	
	BLAST - OMIM; Types Of Accession Numbers- Locus Link,	
	Unigene, Entrez, EBI, and Expasy, Nucleic Acid Data Bank (NDB)	
UNIT-II	Sequence alignment: alignment algorithms – global and local –	12 hours
	significance ; BLAST search steps –BLAST algorithm –BLAST	
	search strategies ; advanced BLAST-alignment tools.	
UNIT – III	Gene expression analysis tools: the mRNA-c DNA-libraries;	12 hours
	microarrays: experimental design - probe - hybridization - DNA	
	fragment counting assembly and restriction enzyme mapping. image	
	analysis – data analysis- biological confirmation – microarray	
	database.	
UNIT – IV	Proteomic analysis tools: protein domains and motifs – bio informatic	12 hours
	tools for high throughput protein analysis - protein structure -	
	Sequence Similarty Basics: Similarty, Identity,	
	Homology, Homology Modelling and visulaization	
UNIT-V	Pathway bioinformatics : protein – carbohydrate metabolism –	12 hours
	biochemical cycles – interconnection of pathways – metabolic	
	regulation —KEGG: theory and practice.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours

Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks				
internals	II + CIA III)							
Marks	15	05	05	25				

Text book:

- 1. Bioinformatics: Sequence and genome analysis by David, W Mount, Cold Spring HarburPress.
- 2. Bioinformatics Computing By Bryan Bergeron, Publisher: Prentice Hall PTR.
- 3. Bioinformatics a practical guide to analysis of genes and protein, Eds A D Baxevanis and B.F.Francis Ouellette, Wiley Interscience.
- 4. Discovering Genomics, Proteomics, and Bioinformatics, 2 nd Edition, Campbell AM & Heyer LJ, Pearson, 2007.
- 5. Bioinformatics: Sequence and Genome Analysis, 2 nd Edition, Mount D, CSHL Press, 2004.
 - 6. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition, Baxevanis AD & FrancisBF, Wiley, 2004.
 - 7. School of Biotechnology SYLLABUS of M. Sc. (Biotechnology) ODD SEMESTERS (2017 & 2018 Batches)Page 11 of 25 4. A Bioinformatics Guide for Molecular Biologists,
- 8. Aerni S & Sirota M, CSHL Press, 2014. 5. Genomes, 2nd Edition, Brown TA, Oxford, Wiley, 2002.

Reference Book:

- 1. Botkin, Daniel B. (2011). Environmental Science: Earth as a living Planet, John Wiley and Sons, New Delhi.
- 2. Chapman. J. L. and Reiss, M.J. (2005). Ecology, Principles ad Applictions, CambridgeUniversity Press, London.
- 3. Dash, M.C. (1994).Fundamentals of Ecology, Tata Mc Graw Hill, New Delhi.
- 4. Gunther, O. (1998) Environmental Information Systems. Berlin, New York, Springer.
- 5. Miller G. Taylor and Scot Spoolman. (2011). Essentials of Ecology, Books/ Cole Learning, sU.S.A.
- 6. Odum, E.P. (1971). Fundamentals of Ecology, W.B. Saunder Company, Philadelphia
- 7. Sharma P. D. (1996). Environmental Biology, Rastogi Publications, Meerut.
- 8. Verma P.S. and V.K. Agarwal. (1985). Principles of Ecology. S. Chand and Company(Pub.), New Delhi.
- 9. Strahler, A. V. and Strahler, A.A (1973). Environmental Geoscience, Wiley International.
- 10. PrimackR.B. 2014. Essentials of Conservation Biology, Oxford University Press, USA.

Course Material: website links, e-Books and e-journals

. <u>https://www.pdfdrive.com/basics-of-bioinformatics-lecture-notes-</u> https://www.elsevier.com/books/bioinformatics/singh/978-0-323-89775-4.

Mapping with Programme Outcomes

CC	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	BPO9	PC
CC	D1	S	S	S	М	S	S	S	S	M	
CC	02	S	S	М	S	S	S	S	М	S	;
CC	D3	S	S	S	S	S	М	S	S	; S	;
CC	D4	S	М	S	S	М	S	S	S	S S	;
CC	25	S	S	S	S	S	S	S	S	6 M	1

PO-Programme Outcome, CO-Course outcome, S-Strong, M-Medium, L-Low

ELECTIVE II : (A) ENZYME TECHNOLOGY

Paper code: Technology Hours of teaching: 3

Paper type: Enzyme

Credits: 3

Aim: To provide knowledge of various enzymes and enzyme technology applied in the industries.

Course objectives :

- 1. To Learn about the classification and structure properties of enzymes
- 2. To Understand the kinetics, catalysis and inhibitions activities of enzymes
- 3. To understand physical properties, downstream process and purification of enzymes.
- 4. To Expedite how enzymes are used as co-factors.
- 5. To Enrich the students' knowledge with respect to different applications of Enzymes

Course Out Comes (five outcomes for each units should be mentioned)

- 6. After studied unit-1, the student will be able to know about basic knowledge of enzymes
- 7. After studied unit-2, the student will be able to understand mechanism of enzyme activities
- 8. After studied unit-3, the student will be able to understand physical properties of enzyme.
- 9. After studied unit-4, the student will be able to function of enzyme in different processes.
- 10. After studied unit-5, the student will be able to know various application of enzyme technologies.

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Crea
1	Yes	Yes	No	Yes	Yes	N
2	Yes	Yes	Yes	Yes	Yes	N
3	Yes	Yes	No	Yes	Yes	N
4	Yes	Yes	Yes	Yes	Yes	Y
5	Yes	Yes	Yes	Yes	Yes	Y

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Introduction to enzymes: History of enzymes, nomenclature and	10 hours
	classification of enzymes. Structural features of Enzymes: Chemical	
	nature of Enzymes: amino acids, protein structure: Primary, secondary,	
	tertiary and quartenery structure. Specificity of Enzymes: Types of	
	specificity, the koshland "induced fit" hypothesis, strain or transition-	
	state	
	stabilization hypothesis.	
UNIT-II	Enzyme Catalysis and Kinetics: Factors affecting the rate of chemical	8 hours
	reactions, kinetics of un catalyzed chemical reactions, kinetics of	
	enzymes catalyzed reaction, methods for investigating the kinetics of	
	enzyme-	
	catalyzed reaction, nature of enzyme catalysis, inhibition of enzyme	
	activity.	
		12 h a 19
UNIT – III	Extraction and purification of microbial enzymes : Importance of	
	enzyme purification, different sources of enzymes. Extracellular an	
	intracellular enzymes. Physical and Chemical methods used for cell	
	disintegration. Enzyme fractionation by precipitation(using	
	Temperature ,salt, solvent pH, etc.),liquid-liquid extraction, ionic	
	exchange, gel chromatography, affinity chromatography and other	
	special purification methods, Enzyme crystallization techniques.	
	Criteria of purity of enzymes. Pitfalls in	
	working with pure enzymes.	
UNIT –	Enzymes inhibition and Co-factors: Irreversible, reversible,	9 hours
	competitive, non-competitive and un-competitive inhibition with	
IV	suitable examples and their kinetic studies. Allosteric inhibition ,types	
	of allosteric inhibition and their significance in metabolic regulation &	
	their kinetic study Vitamins and their co-enzymes: Structure and	
	functions with suitable	
	examples ,Metallo enzymes and Metal ions as co-factors and enzymes	
	activators.	
UNIT-V	Immobilization of microbial enzymes and Enzyme Engineering:	9 hours
	Methods viz. adsorption, covalent bonding ,entrapment& membrane	
	confinement and their analytical, therapeutic & industrial applications.	
	Applications of microbial enzymes: Microbial enzymes in textile	
	leather, wood industries and detergents. Enzymes in clinical	
	diagnostics. Enzyme sensors for clinical processes and environmental	
	analyses. Enzymes as therapeutic	
	agents.	<u> </u>
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	50hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book(s)

- 1. Introduction to proteins Structure by Branden and Tooze (1998): GarlandPublishing Group.
- 2. Biotechnology . Volume 7 A- Enzymes in Biotechnology. 1983 Edited by H.J.Rehm and G.Reed. VerlagChemie.
- 3. Methods of Enzymatic analysis by Hans Ulrich, Bergmeyer, AcademicPress.
- 4. Methods in Enzymology by W.A.Wood, AcdemicPress.
- 5. Topics in Enzyme and Fermentation Biotechnology by L.N. Wiseman ,John Wileyand sons.

References Books

- 1. Enzymes by palmer(2001): Horwood publishingseries.
- 2. Fundamentals of Enzymology by price and Stevens (2002): Oxford UniversityPress.
- 3. Enzyme Technology by Helmut Uling (1998): JohnWiley.
- 4. Methods in Enzymology. Volume 22-Enzyme purification and related techniques. Edited by William B.Jakoby. Academic press, NewYork.
- 5. Allosteric Enzymes-Kinetic Behaviour. 1982. By B.I.Kurganov ,John Wiley and Sons. Inc., NewYork.
- 6. Enzymes as Drugs Edited by John S. Holcenberg and Joseph Roberts, John Wiley& sons NewYork.
- 7. Advances in Enzmology by Alton Meister, IntersciencePublishers.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

ELECTIVE II: (B) DAIRY TECHNOLOGY

Paper code:

Name of the Paper: Dairy Technology

Total Hours per Week: 3

Credits: 3

Aim: To impart current knowledge of basic and applied microbiological aspects of fluid milks anddairy products for improved quality and food safety.

Course objective:

- 1. To teach the microbial knowledge in milk
- 2. To learn the processing of milk microbiological methods
- 3. To understand how the milk products are in quality make through dairy industry
- 4. To made knowledge in differentiate the traditional and industrial make dairy products and its processing
- 5. To aware the students about milk borne diseases Course outcome
- 1. After studied unit-1, the student will be able to know about basic knowledge of milk microbes and itschanges in maintaining the storage of milk.
- 2. After studied unit-2, the student will be able to understand mechanism of processing of milk throughmicrobiological methods
- 3. After studied unit-3, the student will be able to understand dairy products quality and its changes throughmicrbes
- 4. After studied unit-4, the student will be able to differentiate dairy products in industry and homemade.
- 5. After studied unit-5, the student will be able to know various application of milk and milk

borne microbialdiseases.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Common microbes in milk and their significance .sources o	f12 hours				
	microbial contamination of raw milk in influencing quality of mill					
	during production, collection, transformation and storage. Cleanmill					
	production and antimicrobial systems in raw milk. Microbia					
	changes in raw milk during long storage. Microbiological grading of					
	raw milk.					
UNIT-II	Microbiological processing techniques: bactofugation, thermization	12 hours				
	,pasteurization, sterilization, boiling, UHT, non thermal processes					
	and membrane filtration of milk role of psychrophilic mesophilic,					
	thermophilic and thermoduric bacteria in spoilage of processed					
	milks and prevention microbiological standards (BIS/PFA) of heat					
	treated fluid milks.					
UNIT – III	Microbiological quality of dairy products; fat rich (cream and					
	butter), frozen (ice cream), concentrated (evaporated and condensed	d				
	milk), dried milks (roller and spray dried), infant dairy foods and	d				
	legal standards. Factors affecting microbial quality of these products	s				
	during processing, storage and distribution. Pro biotics and pre					
	biotics(GRAS), cloning - sanitation, control of micro organisms in					
	dairy processing					
UNIT – IV	Microbiology quality of traditional dairy products; heat desiccated	d12 hours				
	(khoa, burfi, peda, kheer), acid coagulated (paneer, chhana, rasgulla)),				
	fermented (lassi, srikhand)and frozen (kulfi).sources of microbia	1				
	contaminants and their role in spoilage. Importance of personnel and	d				
	environmental hygiene on quality of traditional milk					
	products. microbiological standards for indigenous dairy foods.					
UNIT-V	Milk-borne diseases – viral and bacterial, zoonotic infections	12 hours				
	,pathogens associated with fluids milks, dairy products and their					
	public health significance. sources of pathogens and their prevention	1				
	importance of bio flims, their role in transmission of pathogens in					
	dairy products and preventive strategies. regulatorycontrol of dairy					
	products, testing of milk and milk products, treatment of dairy					
	wastes.					
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours				
	Total Lecture hours 65 hours	65 hours				
Internal As	sessment Methods: (25 marks)	-				
		Fotal marks				

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books:

- 1. Adams MR and Moss MO.(1995).food microbiology, the royal society ofchemistry, Cambridge.
- 2. Andrews AT, Varley J(1994) biochemistry of milk products. Royal society ofchemistry.
- 3. BanwartGJ(1989), basic food microbiology, Chapman & hall, new York.
- 4. Frazier WC and Westh off DC.(1988) food microbiology, TATA McGraw hill publishingcompany Ltd. NewDelhi.

References

- 1. Hobbs BC and Roberts D. (1993) food poisoning and food hygiene, EdwardArnold(adivision of Hodder and Stoughton),London.
- 2. May JM. (1987) modern food microbiology, CBS publishers and distributors, NewDelhi.
- 3. Robinson RK. 1990.the microbiology of milk. Elsevier applied Science.London
- 4. Edward Harth ,J.T.Steele. Applied dairy microbiology .1998. Marcel DeekerInc.
- Modi, HA (2009) dairy microbiology pointer publishers, India. Marth, E.H and steel J. L(2001) applied Dairy microbiology, 2nd Edition, Marcel Dekker, Inc.270 MadisonAvenue, new York, New York10016.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

Mapping with Programme Outcomes

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong,\ M-Medium,\ L-Low$

ELECTIVE II : (C) PHARMACEUTICAL TECHNOLOGY

Aim: To impart knowledge on the importance of drug during life span. To enlighten on the biotechnological modifications in drugs. To find mechanism of action of drugs used in therapy.

Course objectives

1 To learn drugs and its involved detoxification through phase 1 & 2 reactions2 To teach drug mechanism like passive and active phases

3 To learn the drugs manufacture biotechnological pharmaceutical industry

4 To understand the importance of drugs in treating various metabolic disorders5 To teach various applications of drugs in various fields.

Course out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know about basic knowledge of drugs of phase I & II
- 2. After studied unit-2, the student will be able to understand drug mechanism and its adverse effects.
- 3. After studied unit-3, the student will be able to understand biotechnology in drug development, especiallyfor AIDS
- 4. After studied unit-4, the student will be able to know drugs and its importance various treatment likediabetes, cancer, lipidemia and infertility
- 5. After studied unit-5, the student will be able to know various application of drug dependence and abuse-management

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Drug- structural feature and pharmacology activity, pro drug concept.	10 hours			
	Absorption – first – pass effect .distributor , metabolism- phase I, II				
	reactions, action of cyto chrome p450 &elimination of drug receptor-				
	localization, type and subtypes, models and their drug- receptor				
	interaction, against &				
	antagonist .				
UNIT-II	Adverse response to drugs, drug tolerance, drug intolerance, Idio SYNERACY (pharmacogenesis), drug allergy. Tachyphylaxis, drug abuse, vaccination against infection	08 hours			
UNIT – III	Biotechnology and pharmacy: genetically engineered protein and peptide agents. novel drug delivery systems – nonconventional routes of administration. Anti AIDS drug development, oncogenes target for drugs, multi- drugs resistance.				
UNIT – IV	Mechanism of action of drugs used in therapy of :respiratory system-0 cough, bronchial- asthma, pulmonary tuberculosis .GIT – digestents , appetite suppressants. hypolipidemia agents,, vomiting, constipation and peptic ulcer. antimicrobial drugs- sulfonamide s,trimethoprim, cotrimoxazole, penicillin and macrolides . amino glycosides, cephalosporin and bacterial resistance .Insulin and oral diabetic drugs, anti fertility and ovulation inducing drugs.				
UNIT-V	Drugs of plant origin: drug dependence and abuse- management of 08 self poisoning cancer. Chemotherapy- cytotoxic drug. immuno suppressive drug therapy. New biological targets for drug development. Novel drug screening strategies.				
UNIT-VI		5 hours			
	Total Lecture hours	50 hours			
Internal Ass	essment Methods: (25 marks)	1			
Distribution	n for Test (CIA $I + CIA$ Seminars Assignment Tot	al marks			

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book:

1. The pharmacology Vol I and Vol II– Goodman and Gillman, Mc Graw Hillprofessional;12 ed (2010)

2. Basic pharmacology – Foxter cox bulter worth"s1980.

3. Pharmacology and pharmaco therapeutics – R.S.Satoskar.

S.D.Bhandhhakar&S.S.Anilapure popular

PrakasharBombay.

Reference

- a. Principles of medical chemistry William O. Foge. B.I. Waverks Pvt Ltd, NewDelhi.
- b. Oxford text books of clinical pharmacology and drug therapy.D.G.Burger"s Medicalchemistry & drugdiscovery.
- c. Principles and practice Manfred. E. Wolf John Wiley and sons.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	Μ
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

PRACTICAL III: LAB IN IMMUNOLOGY

- 1. Blood grouping
- 2. Lymphocyte subset identification and enumeration.
- 3. Radial immuno-diffusiontest.
- 4. Ouchterlony double diffusion
- 5. Immuno electrophoresis
- 6. Rocket Immunoelectrophoresis
- 7. LatexAgglutination
- 8. Quantitative Precipitinassay
- 9. Complement fixationtest
- 10. ELISA
- 11. WesternBlotting
- 12. Antigen-antibody reaction (precipitation and agglutination reactiontests).

References:

1. Practical Immunology. Franck C.Hay, Olwyn M.R. Westwood. Wiley-Blackwell publications,2010.

2. immunoassays: A Practical Approach. James P. Gosling (editor). Oxford university press, USA, 2010.

- 3. Lab manual in biochemistry, immunology and biotechnology .Arti Nigam Archana ayyagari.McGraw-Hill education, 2008.
- 4. Practical immunology. Rabindra Narain, dom& wisdompublications,2012

PRACTICAL IV

LAB IN GENETIC ENGINEERING AND BIOINFORMATICS

GENETIC ENGINEERING

- 1. Isolation of genomic DNA from the given sample and its molecular weightdetermination
- 2. Isolation of RNA from the given sample and its molecular weightdetermination
- 3. Isolation of plasmid DNA from the givensample
- 4. Restriction digestion of Lambda phageDNA
- 5. Ligation of DNA and analysis byelectrophoresis
- 6. DNA amplification by PCR and RAPD
- 7. Preparation of competent cells and transformation by CaCl2 method and Selectionoftransformed colony by X-Galmethod
- 8. Determination of molecular weight of proteins by SDSPAGE

BIOINFORMATICS

- 1. Restrictionmapping
- 2. PCR PrimerDesigning
- 3. ORFfinding
- 4. Homologysearch
- 5. Multiple sequencealignment

OPEN ELECTIVE (A) : MEDICAL LABORATORY TECHNOLOGY

Paper code:	Subject: Medical Laboratory Technology
Hours/Week: 2	Credits: 2

Aim: To enable the students to learn about the General laboratory and instrumentation. Know the significance of biological samples examination & understand the various types of infection and clinical symptoms caused by microorganisms.

Course Objectives

- 1. To teach the physical and chemical nature of Body fluids
- 2. To teach the safety measures in diagnostic laboratory
- 3. To learn knowledge about laboratory techniques
- 4. To learn hematology and pathology laboratory techniques
- 5. To teach advanced methods in collection and storage, preparation, analysis of body fluids, and results.

Course outcomes:

- 1. After studied unit 1 the students will be able to follow safety precautions in the diagnostic laboratory.
- 2. After studied unit 2 the students will be able to general laboratory and instrumentation.

3. After studied unit 3 the students will be able to know the significance of biological samples and their importance in the examination

4. After studied unit 4 the students will be able to understand the various types of infection and clinical symptomscaused by microorganisms.

5. After studied unit 5 the students will be able to analyze and can cross-examine the Haematology tests of patientswho visit the hospital.

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Course Contents	eaching hours
Unit I	General Laboratory and instrumentation: Code of conduct for laboratory personnel-safety measures the laboratory-chemical/Reagents, labeling, storage, and usage. First aid in laboratory accidents-Precautions and first aid equipment. Sterilization, and preparation of reagents. The general approach to quality control, quality control of quantitative data	
Unit-II	Clinical pathology: Urine analysis: Collection, composition, preservation, gross examination, chemical examination. Significance of sugar in the urine, ketone bodies, bile pigment, hematuria, uric acid, microscopic examination of the urinary sediment: stool Examination-specimen collection, pH, Interfering substance. Test for occult blood, fecal fat, and microscopic examination of a stool specimen.	
Unit-III	Clinical Hematology: Collection of blood-Anticoagulant, preservation Estimation of Hb, PCV, WBC (TC & DC), RBC, platelets, ESR Clotting time, bleeding time-normal value, clinical interpretation Serology-VDRL, CRP, RA, HIV, HBs Ag.	
Unit-IV	Histology: Basic concepts of different mammalian tissues and their histological structure. Different human organs and their gross and histological structure and functions. Receiving of biopsy specimens at the laboratory (Clinical notes/fixatives). Fixation of tissue –different fixatives and their mode of action.Methods of decalcification.Use of microtomes, selection, and maintenance of knives, the technique of section cutting &mounting on slides. Staining of tissue sections, preparation of different stains, staining methods for Haematoxylin& Eosin.	5 hours
Unit-V	Blood banking: blood group(ABO & Rh)-methods of grouping & reverse grouping. Basic blood banking procedures- a collection of blood, anticoagulants used, cross-matching, different screening, Tests including Coomb"s Test for incomplete antibodies preparation of different blood components for use and how to serve a requisition. preparation of red cell suspension. Blood transfusion & hazards. Detect the time when to discard blood in the blood bank, computerized record.	
Unit-VI	Internal Assessments, Seminars, and Guest lecture	05 hours
	Total Teaching hours	30

Distribution for internalsTest (CIA I + CIA II + CIA III)		Seminars	Assignment	Total marks	
Marks	15	05	05	25	

Internal Assessment Methods: (25 marks)

Textbook:

- 11. Medical
- 12. Hand book medical laboratory technology 2nd edition-V.H.Talib CBS publishers & 2008.
- 13. Clinical laboratory practices in CMC procedure, CMC, Vellore
- 14. Text book of Medical lab technology, 1st Edition-Ranmniksood.jaypee2006.
- 15. Laboratory manual in biochemistry-Jayaraman New Age International Pvt Ltd publishers2011.

Reference Book:

- 1. Kanai L. Mukherjee and Anuradha Chakravarthy, Medical Laboratory Technology, Procedure Manual for RoutineDiagnostic Tests, Vols. I, II and III. Tata McGraw Hill Publishing Company Ltd., 2017.
- 2. Ramnik Sood, Concise Book of Medical Laboratory Technology Methods and Interpretations. Jaypee BrothersMedical Publishers (P) Ltd., New Delhi, 2015.
- 3. N. Pattabiraman. Laboratory Manual in Biochemistry, 4th Edition. All India Publishers & Distributors, 2015.
- 4. Namita Jaggi. Microbiology Theory for MLT. 2nd Edition. Jaypee Brothers Medical Publishers (P) Ltd., 2013.
- 5. Alan H. Lowenclock. Varley's Practical Clinical Biochemistry, 6th Edition. CBS Publishers and Distributors, 1988.

Course Material:

Website links:<u>https://librarv.fvtc.edu/MLT/Links</u>, <u>https://libguides.gvsu.edu/MLS/websites</u>,E-Books: <u>https://www.pdfdrive.com/medical-laboratory-technician-e23958474.html</u>, E-journals : <u>https://onlinelibrary.wiley.com/journal/10982825</u>,

https://academicjournals.org/journal/JMLD.Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	М	М	М	S	М	S	S
CO2	М	S	М	М	М	S	S	S	М	М
CO3	S	М	М	S	S	М	М	S	М	S
CO4	М	S	S	М	М	S	М	М	S	S
CO5	S	М	S	М	S	М	S	М	S	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong,\ M-Medium,\ L-Low$

OPEN ELECTIVE (B): FOOD & NUTRITION

Paper code:	Name of the Paper: Food and
Nutrition	
Total Hours/Week: 2	Credits: 2

Aim: To enable students to gain a deeper understanding about principles of nutrition and also to develop competence to carry out investigation in nutrition

Course Objectives

- 1. To enable the students to learn the basic concepts of nutrition and different categories offoods.
- 2. To enable the students to gain knowledge of different nutrient contents and their importance.
- 3. To make them learn the basics of nutritive and calorific value.
- 4. To enable the students to know food adulterants and food poisoning, disadvantages &health problems.
- 5. To enable the students learn the food spoilage and preservation methods.

Course Out Comes

- 1. The student will be able to differentiate the foods types and their nutritive value.
- 2. The student will be able to develop competence to carry out investigation in nutrition
- 3. The student will be able to measure and calculate calorific value of different types of foods
- 4. The student will be able to identify the food adulterants and food poisoning
- 5. The student will be able to practice food sterilization, preservation and processing.

		a me appi «prime»	, , , , , , , , , , , , , , , , , , , 			
Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creati
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	Definition and basis of food and nutrition, Different Food groups and classification, Nutritional significance and physiological role of food groups, Protein Energy Malnutrition (PEM), definition and types, Treatment and preventive measures of PEM.	f
UNIT-II	Introduction to Vitamins., Fat soluble vitamins, Water soluble vitamins	5 hours
UNIT – III	Introduction to calorific value and nutritive value, Bomb calorimeter, Measurement of calorific value and nutritive of foods RQ value, BMR and SDA of food stuffs, their measurements and influencing factors, Nutritive value of proteins and amino acids Balanced diet, composition of balanced diet for pregnant woman infants, old age.	,
UNIT – IV	Definitions of food adulterations and food poisoning, Sources of foods and types of adulterants, advantages and disadvantages of adulteration, Constituents of foods, carbohydrates, proteins, fats,oils Flavours, colours and natural toxicants, Sources causes and remedies for acidity, gastritis, indigestion and constipation.	f ,
UNIT-V	Introduction to food spoilage, food preservation and food processing, Causes and types of food spoilage, types of food preservation and food processing, Food sterilization and pasteurization.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	05 hours
	Total Lecture hours	30

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Albanese, Anthony A Ed, Protein And Amino Acid Nutrition Academic Press New York 1959.
- 2. Devlin T.M., Biochemistry by Stryer Text book of Biochemistry with clinical correlations.
- 3. Lehninger, Principles of Biochemistry, by 4th Ed. By Nelson D.L. and Cox. M.M. 6
 4. Murray R.K., Grammer, D.K., Mayer P.A., Rodwell V.W., Harpers Biochemistry, a lange medical book 26thEd. Mc. Graw Hill, Health Professions Division.
- 5. West. E.S., Todal, W.R., Mason H.S. and Van Brygen J.T., Text Book of Biochemistry.
- 6. Mayer, J., Human Nutrition, Charles, C. Thomas, spring field.
- 7. Michael, J. Gibney, Barrie, M. Margetis, John, M. Kearney. Lenore Arab. Public Health Nutrition. Blackwellscience, Blackwell Publishing Company (2004).
- 8. Frazier, We, Food Microbiology, Tata Mc Graw, Hill 1978.

9. Meyer, Lilian H. Ed. (1987), Food chemistry. Indian Ed. CBS Publishers and Distributors

10. Barker, D.J. P (1998), Mothers, Babies and Health in later life. Edinburgh, Churchill livingstone.

11. Ward, R.H.T; Smith, S.K. Donnai, D. (Eds.) (1994) Early fetal Growth and Development. London, & COG Press.

12.. Wallace, H.M. and Giri, K. (1990), Health care of women and children indeveloping countries, third party publishing co.Oakland.

Reference Book:

- 1. Seema yadav: Food Chemistry, anmol publishing (P) Ltd, NewDelhi
- 2. Car H.Synder: -the extraordinary chemistry for ordinary things, John Wiley & sonsinc, NewYork,1992.
- 3. B.Sivasankar food processing and preservation PHI learni9ng (P) LTD, New Delhi 11001.

Course Material: website links, e-Books and e-journals 1. <u>https://chico-primo.hosted.exlibrisgroup.com</u>

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	Μ	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

OPEN ELECTIVE (C): BIODIVERSITY

Paper code: Total Hours/Week: 2 **Name of the Paper: Biodiversity** Credits: 2

Objectives: To enable students to gain a deeper understanding about the every living thingsincluding plants, bacteria, animals and humans .and enormous variety of life on Earth.

Course Objectives

- 1. To learn the basic concepts of ecosystem and ecology
- 2. To teach various biodiversity across the country and globe face.
- 3. To understand the History, guiding principles, conservation of ecology and biodiversity as per ICUN.
- 4. To learn the importance of pollution damages environmental through how it influence biodiversity
- 5. To teach and understand how water pollution affects environment and its remedies.

Course Out Comes

4.

- 1. After studied unit-1, the student will be able to understand the ecosystem and environment.
 - 2. After studied unit-2, the student will be able to understand various types of biodiversity.

3. After studied unit-3, the student will be able to Understand History, guiding principles, conservationchallenges and models of conservation biology.

- After studied unit-4, the student will be able to Gain knowledge of biosafety and risk assessment of Environmental Pollution.
- 5. After studied unit-5, the student will be able to Understand Water conservation, Rain water harvestingand disaster management of biodiversity.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I		5 hours
	Ecosystem concept Introduction and overview of ecosystem ecology -	
	History of ecosystem ecology, Ecosystem structure and functioning,	
	Ecosystem diversity and landscapes, Ecosystem resilience and change,	
	Trophic dynamics and temporal dynamics, Ecological efficiencies	
UNIT-II		5 hours
	Biodiversity and its origin, Global and local trends, Mega biodiversity countries, hot spots and heritage sites, types of diversity, levels of biodiversity (genetic, species, ecological diversities), value of biodiversity.	
UNIT – III		5 hours
	History, guiding principles, conservation challenges and models of conservation biology. IUCN Red list categories and criteria, habitat management and establishment of wildlife corridors and protected areas, bio-indicators. Biosphere reserves, in situ and ex situ conservations (sanctuaries, national parks, zoological parks, botanical gardens, oceanorium).	
UNIT – IV		5 hours
	Environmental Pollution- Causes, effects and control measures of air pollution, water pollution, soil pollution, noise pollution, thermal pollution and solid waste management. Environment Protection Act: Air, water, forest and wild life acts, issues involved in enforcement of environmental legislation.	
UNIT-V		5 hours
	Water conservation, Rain water harvesting & watershed management, and environmental ethics. Climate change, global warming, acid, rain, ozone layer depletion. Environmental protection act, population explosion. Disaster management.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5 hours
	Total Lecture hours 50 hours	30 hours

11	iter nar Assessmen	t Mitthous. (25 mai ka	5)			
	Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks	
	internals	II + CIA III)		_		
	Marks	15	05	05	25	

Textbooks

- **1.** Alcock J 2013 Animal Behavior: An Evolutionary Approach, 10th edition (SinauerAssociates,Inc.)
- 2. Bolhuis J J and L Giraldeau (eds) 2005 The behaviour of animals (BlackwellPub.)

3. Breed and Moore 2011 Animal Behavior, 1st Edition (Academic Press) 4. Burnse D (ed.) 2001Animal: the definitive visual guide to worlds" wildlife (Cambridge UniversityPress)

4. Collen B, Pettorelli N, Baillie J E M and Durant S M (Eds) 2013 Biodiversity Monitoring andConservation: Bridging the Gap Between Global Commitment and Local Action(WileyBlackwell)

5. GL. Karia and R.A. Christian, West Water Treatment, Concepts and Design Approach, PrenticeHall of India,2005.

6. Benny Joseph, Environmental Studies, Tata McGrawHill,2005

Reference book

1. Introduction to bioethics (2018), 2nd edition by J.A. Bryan

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://swayam.gov.in/nd1_noc20_hs18/preview2. https://nptel.ac.in/courses/109/106/109106092/

3. https://onlinecourses.nptel.ac.in/noc20_hs18/preview4. https://nptel.ac.in/courses/102/104/102104068/

5. https://www.futurelearn.com/courses/biosecurity

PO2 PO3 PO4PO5 PO6 PO7 PO8PO9 PO10 COs PO1 S S S SM CO1 S Μ S S S S S S CO2 S Μ S S М S M S S S S S S S S S CO3 Μ S S S S S S S S CO4 Μ Μ S S S S S S S CO5 S S M

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

PAPER 8: COMPUSORY – HUMAN RIGHTS

SEMESTER III PAPER 9: PLANT BIOTECHNOLOGY

Paper code Teaching/Week: 4

Credits: 4 Paper name: Plant Biotechnology

Aim: This paper has been designed to give the students comprehensive knowledge about the applications of plant Molecular biotechnology for increasing agricultural production, environment improvement, human, nutrition and health. Help students to get a career in both industry/R & D.

Course objectives :

- 1. To Understand the role of plants nuclear, chloroplast and mitochondrial genomes and Equip students withknowledge on molecular markers and marker-aided breeding
- 2. To Understanding the mechanism of gene transfer in plant and various methods of gene transfer
- 3. To understand various Components of plant genetic engineering
- 4. To Expedite the students to understand the techniques involved in plant tissue culture
- 5. To Enrich the students' knowledge with respect to different applications of transgenic technology

Course Out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know about genomic organization in plants and about theMarkers
- 2. After studied unit-2, the student will be able to know methods of gene transfer in plants
- 3. After studied unit-3, the student will be able to understand the plant genetic engineering aspect
- 4. After studied unit-4, the student will be able to know plant cell and tissue culture techniques
- 5. After studied unit-5, the student will be able to understand Applications of plant Biotechnology in variousfields.

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Genome organization in Plants 12 hours Nucleus, Chloroplast and Mitochondria, Molecular Marker-aided
	Breeding: RFLP maps, linkage analysis, RAPD markers, STS,
	Microsatellites, SCAR (Sequence Characterized Amplified Regions),
	SSCP (Single Strand Conformational Polymorphism), AFLP, QTL,
	map based cloning, molecular marker assisted
	selection.
UNIT-II	Methods of gene transfer in plants12 hoursStructure and function of Ti plasmid of Agrobacterium, Mechanism of
	T-DNA transfer to plants. Ti plasmid vectors for planttransformation.
	Transient and stable gene transformation. Physical method of gene
	transfer, Particle bombardment, electroporation, microinjection,
	chemical mediated transformation and floral dip
	method.
UNIT – III	Plant Genetic Engineering :12 hoursPlant vectors: Co-integrate, binary vectors and viral vectors.12 hours
	Designing gene constructs - Promoters and polyA signals, Protein
	targeting signals, Plant selectable markers, Reporter genes. Positive
	selection, Selectable marker elimination, Transgene silencing.
	Transplastomics: Chloroplast transformation: advantages. Strategies
	for marker free transformation. Analysis of transgenic
	plants. Genome editing technology in Plant- CRISPR/Cas.
UNIT – IV	Plant Cell and Tissue Culture: Tissue culture media (composition and 12 hours
	preparation), Callus and suspension culture; Somaclonal variation;
	Micropropagation; Organogenesis; Somatic embryogenesis. Embryo
	culture and embryo rescue. Artificial seeds. Protoplast fusion and
	somatic hybridization; cybrids; anther, pollen and ovary culture for
	production of haploid plants. Cryopreservation
	and DNA banking for germplasm conservation.
UNIT-V	Application of transgenesis for : crop improvement: Insect resistance, disease resistance, virus12 hours
	78

	resistance, herbicide resistance, and resistance to biotic & abiotic stress. Transgenesis for male sterility and terminator seed Transgenesis for quality improvement: Protein, lipids, carbohydrates	•
	vitamins & mineral nutrients. Molecular pharming: Exploitation of Biotechnological techniques for plant therapeutic compounds production of recombinant proteins in plants. Expression of antibodies in plants for immunotherapy. Expression	-
	of recombinant antibody fragments in plants.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book(s)

	1 0 1 0 0 0 1 (0)						
1.	Plant Biotechr	nology: T	he genetic m	anipulation of	plants. Second	1	
	edition.	Slater, Solution	cott, and Fowler,	2008, Oxford Un	iversity Press, UI	Χ.	
2.	Plant cell c	culture. A	practical appre	oach. Second	edition. Edited	by	
	R.A. I	Dixon and	R.A.Gonzales.1	994. Oxford Univ	versity Press. UK		
3.	An Introduc	ction to P	lant Tissue C	Culture, Third	Edition, M.K.		
	Razdan,	, Oxford	d and I	BHPublishing Co	., 2003.		
4.	Introduction	to pla	ant biotechn	ology, Third	edition,	Н	
	S	Chawla,	2009.				
	Cassells, A. C and	l Peter B. Gahan. (2	006).				
5.	Dictionary	of	Plant	Tissue	Culture.		
	Food	Produ	ctsPress, an Imp	orint of the Hawo	rth Press, Inc., N	ew York-	
	London-Oxford.		-				
6.	Adrian Slater, N	Nigel Scott and M	lark Fowler.	(2008). Plant	Biotechnology	– the	
	Genetic Manipulat	tion of	Plants.	Second Ed	lition. Oxf	ord Universi	ity
7.	Handbook	of	Plant E	Biotechnology,	2nd	volume set	t,
8.	Bhojwani and Dar	ntu, (2013). Plant T	issue Culture: an	Introductory Tex	t, Springer, New	Delhi.	
9.	Bhojwani, S.S a	and Razdan. M.K	. (2009). Plant	Tissue Cultur	e-Theory and	Practice.	

ElsevierIndia Pvt. Ltd. ElsevierIndia Pvt. Ltd.

Reference Books:

- 1. Slater A, NW Scott, MR Fowler. Plant bio technology, Oxford University Press, 2003.
- 2. Hans Walter Heldt. Plant Biotechnology & Molecular Biology, Oxford University Press, 1997.
- 3. Nigel W. Scott, Mark R. Fowler, Adrian Slater. Plant Biotechnology: The genetic manipulation of plants 2nd Edition 2nd Edition, Oxford University Press, 2008.
- 4. J. Hammond, P. McGarvey, V. Yusibov. Plant Biotechnology: New Products and Applications 1sted. Springer1999.
- 5. Bob Buchanan, Wilhelm Gruissem, Russell Jones. Biochemistry & Molecular Biology of Plants. I.k. International Pvt. Ltd, 2007.
- 6. Robert J. Henry. Practical Applications of Plant Molecular Biology. Routledge Chapman & Hall,1997.
- 7. Introduction to Plant Biotechnology by H.S. Chawla, 2002. Oxford and IBH P Publishing Co.Pvt.Ltd. NewDelhi.
- 8. Plant molecular genetics by Monica. A. Hughes. 1999. Pearson Education limited, England.
- 9. An introduction to genetic engineering in plants, Mantel S.H, Mathews J.A. Mickee R.A.1985. Blackwell Scientific Publishers.London.
 - 10. Scott and Mark R. Fowler, 2003, Oxford University press, UK. 11. Molecular Plant Biology: Apractical approach (Vol. I and II), Edited by Gilmartin and Bowler, 2002, Oxford University press,UK.
- 11. Gonzales.1994.Oxford University Press. Oxford. 4. Plant Molecular Biology by DonaldGrierson and S.V. Convey.1984. Blackie and Son.
- 12. Plant cell culture. A practical approach. Second edition. Edited by R.A. Dixon and R.A.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites, etc.]

1.https://nptel.ac.in/courses/102/103/102103016/

- 2. https://www.mooc-list.com/tags/biotechnology
- 3. https://www.coursera.org/courses?query=biotechnology
- 4. https://www.intechopen.com/books/genetic-transformation
 - 5. https://link.springer.com/book/10.1007% 2F978-3-662-07424-4
 - 6. https://link.springer.com/book/10.1007%2F978-81-322-1026-9
- 7. https://www.ebook777.com/plant-tissue-c

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S		S

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome

S-Strong , $M-Medium,\,L-Low$

PAPER 10: ANIMAL BIOTECHNOLOGY

91

Paper code:

Total Hours/ Week: 4

Name of the Paper: Animal Biotechnology Credits: 4

Aim: To provide an overview and current developments in different areas of animal Biotechnologyand its application

Course Objectives

- 1. To provide the basic knowledge on cloning methods, animal tissue culture techniques and applications of geneticengineering to the students.
- 2. To obtain the knowledge of research related Various laboratory animals
- 3. To know the advanced methods in animal handling according to CPCSEA guidelines
- 4. To provide an overview and current developments in different areas of animal Biotechnology and its application.
- 5. To obtain knowledge on difference between in vivo & in vitro for uses of animal modelling

Course Out Comes

On completion of the course, the students will be able to:

- 1. After studied unit-1, the student will be able to know about the genetic engineering tools, vectors, methods of gene cloning.
- 2. After studied unit-2, the student will be able to know techniques and application of animal in rDNAtechnology
- 3. After studied unit-3, the student will be able to understand about the animal tissue culture
- 4. After studied unit-4, the student will be able to know how to conduct research in breeding, physiology, production, yield and management of crops and agricultural plants or trees, shrubs, and nursery stock, theirgrowth in soils, and control of pest

5. After studied unit-5, the student will be able to understand applications of animal biotechnologyMatching Table (Put Yes / No in the appropriate box)

Unit	i.	ii.	iii.	iv.	V.	vi.
	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating
	_	g			_	_
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Introduction to animal tissue culture. Mammalian cell culture, Tissues, Continuous cell lines, Suspension cultures, Cryopreservation and transport of Animal germplasm, (Embryo, Semen and ovum).	
UNIT-II	Cell cultures media and Growth parameters of animal cell culture, Role of serum and essential supplements to medium and their applications. Cell Synchronization, Cell cloning Methods and Micromanipulation.	
UNIT – III	Gene transfer in animal cells. Animal Germ cell and development. Valuable genes for Animal biotechnology, Transgenic Animals and Hybridization, and gene knockout, Somatic cell cloning Production of transgenic animals – mice, sheep and fish.	
UNIT – IV	Testing of drugs, testing the toxicity of environmental pollutants in cell culture, Cytotoxicity, Apoptosis, Tissue, Diagnostic antigens	12 hours
UNIT-V	Potential applications of transgenic animals – Animal models for diseases and disorders. Transgenic poultry, transgenic insects as bioreactor. Commercial scale production of animal cells, application of animal cell culture for in vitro, cultures technology in production of pharmaceutical proteins, and animal viral vaccines.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Culture of Animal cells, 2006, 3rd Edition, R. Ian Freshney . A John Wiley &Sons, Inc., publications.
 - 2. Animal Cell Culture Practical Approach, R.W. Masters, Oxford. AnimalCell Culture Techniques. Ed. MartinClynes, Springer.
- 3. Biotechnology by Kashav. T (Wiley EasternLtd).
- 4. Animal Cell Biotechnology; Methods and protocols, Nigel Jenkins, HumanaPress.
- 5. Biotechnology of Animal Tissue. P.R. Yadav & Rajiv Tyagi, 2006. Discovery 54 publishing House. New Delhi.
 - 6. From Genes to Clones Introduction to Gene Technology Winnacker, E.L.1987., Panima Educational BookAgency, New Delhi.
- 7. Gene VII Benjamin Lewin, 2000. Oxford University Press, UK.
 - 8. Principles of Gene Manipulation and Genomics Primrose, S.B. and Twyman, R.M. 2006. 7th Edition. BlackwellPublishingCompany.
 - 9. Recombinant DNA Second Edition James D. Watson, Micheal Gilman, MarkZoller, 2001. W.H. Freeman andCompany, NewYork.
- 10. Biotechnology, Satyanarayanan .U, (2008), Books and Allied (p)Ltd.

Reference Book:

- 1. CPCSEA Guidelines for Laboratory Animal Facility, CPCSEA, 2003.
- 2. Kumar, H.D. Modern Concept of Biotechnology. Vikas Publishing House Pvt. Ltd., 2007
- 3. Animal Biotechnology: Models in Discovery and Translation, Second Edition (Elsevier) Course Material:

Website links: <u>https://www.sciencedirect.com/book/9780128117101/animal-biotechnology#book-description</u>,E-Books: <u>https://www.pdfdrive.com/animal-biotechnology-e41305678.html</u>,

E- journals: https://www.tandfonline.com/toc/labt20/current,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	Μ	Μ	М	S	М	S	S
CO2	М	S	Μ	Μ	М	S	S	S	Μ	М
CO3	S	Μ	Μ	S	S	Μ	Μ	S	Μ	S
CO4	М	S	S	Μ	Μ	S	Μ	Μ	S	S
CO5	S	Μ	S	Μ	S	М	S	М	S	S

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome, S – Strong, M – Medium, L – Low

PAPER 11: MICROBIAL BIOTECHNOLOGY

Paper Code: Hours/Week: 4 **Subject: Microbial Biotechnology**

Credits: 4

Aim: The study of microbes helps us to understand our world and our place within it. It gives us insights into the complexity of nature and society, which in turn provide much different health, environmental, social, cultural, industrial, and economic benefits.

Course Objectives:

- 1. To understand the scope and importance of bioprocess engineering technology.
- 2. To well understood the fermentation technology
- 3. To obtain knowledge about downstream processing
- 4. To obtain knowledge of immobilization and biotransformation
- 5. To know the basic Production of Industrially important products

Course outcomes:

On completion of the course, the students will be able to:

1. After studying unit 1 the students will be able to identify the nature of bioprocess engineering technology practicalsstudy guided unit 2 the students will be able to differentiate the fermentation technology and typthe es of the fermentation process.

- 3. After studying unit 3 the students will be able to describe the downstream processing in cell disruption, precipitationmethods, etc.
- 4. After studying unit 4 the students will be able to explain the advantage of industrial application
 - 5. After studying unit 5 the students will be able to analyze and can cross-examine the Production of industrialimportance.

1. Idecelli		co / 1 to in the upp	opinate so	-)•		
Units	i.	ii.	iii.	iv.	V.	vi.
	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	No	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	No	Yes	Yes	Yes

Units	Course Contents	Teaching Hours						
Unit-I	Development and strain improvement of industrially important microorganisms. Bioreactors: Typical structure of advance bioreactor and their working mechanism; Design features - Heat transfer and Mass transfer; Specialized bioreactors- design and the functions; Airlift bioreactor, Tubular bioreactors, Membran bioreactors, Tower bioreactors, Fluidized bed reactor, Packed be reactors and Photo bioreactors.							
Unit-II	nit-II Fermentation technology: Natural and synthetic media; Strategies for media formulation, sources of carbon, nitrogen, vitamins, and minerals. Role of buffers, precursors, inhibitors, inducers, and antifoam agents. Types of fermentation process-submerged fermentation, the surface solid-state fermentation, batch fermentation, continuous fermentation, the kinetics of fermentation process bioprocess control, monitoring variables temperature, agitation, pH, and pressure.							
Unit-III	Downstream processing: cell disruption, precipitation methods, solid-12 liquid separation, liquid-liquid extraction, filtration, centrifugation, chromatography, drying devices (Lyophilization and spray dry technology), crystallization-biosensors-construction and applications							
Unit-IV	Immobilization and Biotransformation: Methods of immobilization - adsorption, crosslinking, ionic bonding, entrapment, encapsulat Advantages and industrial applications of Immobilization of enzy and whole cells. Biotransformation of antibiotics, steroids, and t applications.	tion; vmes						
Unit-V	Production of Industrially important products: Alcohol- Ethanol, 12 hours glycerol, butanol, Acetone; Organic acids- citric, acetic, and gluconic acid; Amino acids- lysine, glutamic acid; Antibiotics- penicillin, streptomycin, tetracycline; Vitamins- riboflavin; Enzymes- amylase, protease; biodegradable plastic- poly hydroxy alkanoates (butyrate, propionate).							
Unit-VI	Internal Assessment – Seminar, Assignment, Lecture	05 hours						
	Total Teaching hours	65						
	ssessment Methods: (25 marks)							
Distribu	tion for Test (CIA I + CIA Seminars Assignment	Total marks						

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 1. Microbial Biotechnology: Principles And Applications (2nd Edition) by <u>Yuan Kun Lee</u>, August 24, 2006.
- 2. Microbial Biotechnology: Principles And Applications (Third Edition): Principles and Applications (3rdEdition) Paperback Import, 15 April 2013 by Yuan Kun Lee (Editor)
- Microbial Biotechnology: Principles And Applications (3rd Edition) 3rd Edition, Kindle Edition by <u>Yuan KunLee</u> (Editor) Format: Kindle Edition World Scientific; 3rd edition (30 January 2013)
- 4. Microbial biotechnology: principles and applications, Yuan Kun Lee. Edition 3rd ed. Imprint Singapore ;Hackensack, NJ : World Scientific, c2013.
- 5. Microbial Biotechnology, Principles and Applications, Yuan Kun Lee, Publisher- World Scientific PublishingCompany 2013.
- Microbial Biotechnology ,Elsa Cooper, Syrawood Publishing House, 2016 M05 24 216 pages
 <u>Microb Biotechnol.</u> 2016 Sep; 9(5): 529. Published online 2016 Aug 11. doi: <u>10.1111/1751</u> <u>7915.12403</u>
- 8. Microbial Biotechnology-2020 <u>Kenneth Timmis, Juan Luis Ramos, Willem de Vos, Siegfried</u> <u>Vlaeminck, AuxiPrieto, Antoine Danchin, Willy Verstraete, and</u> Victor de Lorenzo
- 9. Microbial Biotechnology: Methods and Applications by El<u>sa Cooper 06</u>/11/2019 **Publisher:** ML Books International.
- Microbial Biotechnology Hardcover 23 March 2006 by <u>A. R. Alagawadi</u> (Editor), <u>P.U. Krishnaraj</u> (Editor), <u>K. S. Jagadeesh</u> (Editor), <u>J.H. Kulkarni</u> (Editor), <u>& 1 More</u>

Reference Book:

- Basic Biotechnology 2nd Edition by <u>Colin Ratledge</u> (Editor), <u>Bjorn Kristiansen</u> (Editor) Cambridge University Press; 2nd edition (April 30, 2001)
- 2. Manual of Industrial Microbiology and Biotechnology 3rd Edition by <u>Richard H. Baltz</u> (Editor), <u>Arnold L. Demain</u> (Editor), <u>Julian E. Davies</u> (Editor) ASM Press; 3rd edition (March 25, 2010)
- Microbial Biotechnology: Fundamentals of Applied Microbiology 2nd Edition by Glazer, Alexander N.; Nikaido, Hiroshi published by Cambridge University Press Hardcover Paperback – January 1, 1994 by <u>aa</u> (Author) Cambridge University Press; 13338th edition (January 1, 1994)
- 4. New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health 1st Edition, Kindle Edition Elsevier; 1st edition (May 15, 2020)

- Microbial Biotechnology: Principles And Applications (3rd Edition) 3rd Edition, Kindle Edition by <u>Yuan Kun Lee</u> (Editor) Format: Kindle Edition World Scientific; 3rd edition (January 30, 2013)
- Microbial Biotechnology: Basic Research and Applications (Environmental and Microbial Biotechnology Book1) 1st ed. 2020 Edition, Kindle Edition Springer; 1st ed. 2020 edition (July 7, 2020)
- 7. Microbial Biotechnology by Elsa Cooper (Editor) Syrawood Publishing House (June 20, 2019)
- 8. Microbial Biotechnology Principles and Applications Third Edition <u>https://doi.org/10.1142/8265</u> | April 2013
- 9. 2017 Microbial Biotechnology Volume 1. Applications in Agriculture and Environment
- Microbial Biotechnology, Fundamentals of Applied Microbiology, 2nd Edition <u>TEXTBOOK</u>: AUTHORS:<u>Alexander N. Glazer</u>, University of California, Berkeley <u>Hiroshi Nikaido</u>, University of California, BerkeleyDATE PUBLISHED: October 2007

Course Material: Website links: <u>https://www.nifa.usda.gov/microbial-biotechnology</u>

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	М	М	М	S	S	S
CO2	М	М	М	S	S	М	S	S	М	М
CO3	S	М	М	S	S	S	S	М	М	М
CO4	S	S	S	М	S	М	S	S	S	S
CO5	М	М	S	S	Μ	S	М	S	S	S

Mapping with Program me Outcomes:

PO – Programme Outcome, CO – Course outcome, S – Strong, M – Medium, L – Low

PAPER 12: ENVIRONMENTAL BIOTECHNOLOGY

Paper code:

BiotechnologyHours/Week: 4

Aim: To acquire a basic comprehension of the environment in its totality and of its problems and to provide an understanding of the environmental and biological challenges facing society through the integration of biology with legal, regulatory and social issues.

Course Objectives

1. Introduce the student to the different areas in which biotechnology is developed and the environmental applicationmethods.

2. Emphasize the knowledge of the different types of biotechnological processes that exist in the field of environmental applications.

the field of environmental applications.

- 3. To make known the wide range of professional activities linked to biotechnological knowledge.
- 4. Know the possibilities of environmental application presented by the biotechnology of higher organisms.
 - 5. To make known the great biodiversity existing in the microbial world and the

biogeochemical cycles that govern theterrestrial ecosphere.

Course Out Comes

- 1. After studied unit-1, the student will be able to understand and assimilate the specific concepts and terminology of environmental biotechnology.
- 2. After studied unit-2, the student will be able to describe the properties of microorganisms with potential application environmental biotechnology processes.
- 3. After studied unit-3, the student will be able to Explain technologies, tools and techniques

in the field of environmental biotechnology.

- 4. After studied unit-4, the student will be able to Know the role of microorganisms as biotechnological agents.
- 5. After studied unit-5, the student will be able to Study biodegradation for environmental application

Credit: 4

Subject: Environmental

Unit	i. Remembering	ii.	iii. Applying	iv. Analysing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	Yes
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

Units	Course Contents	Teaching hours
Unit I	Environmental pollution: Basic concepts and global issues-Global warming & Acid rain. Pollution measurements- air and water. Biosensor in environmental monitoring. Bioremediation of environmental pollutants in soil and water- oils, heavy metals and detergents. Biofouling and Biosensors.	
Unit-II	Waste treatment: Wastewater treatment: Physical, chemical and biological treatment processes. Various industrial effluent treatment methods- Sugar, distillery, dairy, tannery and pharmaceutical industries. Solid wastes: Types and characteristics. Solid waste disposal- landfilling incineration. Biogas from solid waste. Composting and vermicomposting. Monitoring parameters for composting.	12 hours
Unit-III	Bioremediation: Introduction of Bioremediation advantages and applications; Types of bioremediations. Microbial remediation of phenolics-sewage nutrients (phosphate and nittare). Impact of bioremediation in the petroleum industry, paper industry, marine oil pollutants and chemical industry. Phytoremediation advantages and applications (agriculture).	12 hours
	Biocorrosion and microbial mediated recovery: Microbial corrosion and itscontrol (petroleum industry and cooling tower system). Bio metallurgy- Bioleaching- application, biotechnology approaches for heavy metal elimination from effluents. Bio-mediated recovery of metals (gold and platinum). Recovery of petroleum-MEOR- Biosurfactant.	
	Biodegradation: Biodegradation of organic pollutants: Mechanisms and factors affecting biodegradation. Pollution problems and biodegradation of simple aliphatic, aromatic, polycyclic aromatic hydrocarbons, halogenated hydrocarbons, azo dyes, lignin and pesticides. Bioenergy.	
Unit-VI	, ,	05 hours
	Total Teaching hours	65

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Internal Assessment Methods: (25 marks)

Reference & Text Books:

- 1. Murugesan AG and Rajakumari C. (2005). Environmental Science and Biotechnology: Theory and Techniques.
- 2. Sharma PD. (1994). Environmental Biology, Rastogi Publications.
- 3. Eugenia J.Olguin. (2000). Environmental Biotechnology and cleaner Bioprocesses, Tayloir and Francis.
 - 4. Beech IB and Gaylarde CC (1999). Recent advance in the study of biocorrosion- an

overview. Rev Microbial 30,177-190.

- 5. Booth GH (1971). Microbiological corrosion, M and B monographs CE11, Mills and Boon, London.
- 6. Agarwall KV. (2005). Environmental Biotechnology, Nidhi Publishers.
- 7. Jogdand SN.(2008). Environmental Biotechnology, 4th Edt Himalaya Publishing House Pvt. Ltd.
- 8. Fundamentals of Ecology Eugene P. Odum and Gary W (2007). Barrett. Saunders Publishers.
- 9. Instant Notes in Ecology Aulay MacKenzie, Andy Ball and Sonia Virdee (2001). Taylor & Francis Publishers.
- Environmental Biotechnology by Alan Scragg (2005). IInd edition. Pearson Education Limited, Eng.
- 11. Environmental Biotechnology by S.N.Jogdand. (1995). Ist edt. Himalaya Publishing House. Bombay

12. Wastewater Engineering – Treatment, Disposal and Reuse. Metcalf and Eddy (2017).

Tata Mc Graw Hill, NewDelhi.

- 13. Environmental chemistry by A.K. De (2007). New Age international Publishers.
- 14. Introduction to Biodeterioration by D. Allsopp and K.J. Seal, (2004). Cambridge University Press.

Course Material:

- 1. http://www.fao.org/3/t0551e/t0551e05.htm
- 2. http://www.fao.org/fcit/environment-health/solid-waste/en/

Mapping with Program Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong,\ M-Medium,\ L-Low$

CORE ELECTIVE III (A) : GENOMICS & PROTEOMICS

Paper code: Hours of teaching: 3 Paper name: Genomics & Proteomics Credits: 3

Aim: To enable us to explore many different components of living systems and the advent of proteomics will made it possible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and applications in genomics and proteomics.

Course objectives:

- 1. To provide the basic knowledge of gene characteristic feature and mapping concepts
- 2. To understand about the sequencing technologies
- 3. To provide the basic concept for protein analysis
- 4. To understand about protein sequencing
- 5. To Enrich the students' knowledge with respect to metagenomic and applications

Course Out Comes (five outcomes for each units should be mentioned)

- 11. After studied unit-1, the student will be able to know about genes functional properties.
- 12. After studied unit-2, the student will be able to understand how gene sequencing are done
- 13. After studied unit-3, the student will be able to understand Protein analysis.
- 14. After studied unit-4, the student will be able to protein sequencing methods.
- 15. After studied unit-5, the student will be able to know about metagenomics and its application .

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding			_	_
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Organization of genes across living systems, interrupted genes,	10 hours
	overlapping genes, alternative genes, (RNA editing and RNA	
	Splicing) etc. identification and characterization of insert DNA	
	fragments, gene content and C value paradox – gene cluster and gene	
	families	
	restriction mapping, chromosome walking and chromosomal	
	localization of genes. RFLP and other uses of cloned sequences,	
	cloning of microbial genes.	

102

UNIT-II	Methods of preparing genomic DNA, DNA sequence analysis methods, Sanger Di deoxy method, next generation sequencing, SNP – single nucleotide polymorphism, expressed sequenced Tags(ESTs),Gene disease association, site directed mutagenesis and molecular chimeras, gungal genome and genomics.PCR based Analysis, DNA Fingerprinting.	08 hours			
UNIT – III	Scope of proteomics, protein separation techniques – ion exchange chromatography, size – exclusion and affinity chromatography techniques, size – exclusion and affinity chromatography techniques , protein analysis (includes measurement of concentration , amino acid composition, N-terminal sequencing); SDS-PAGE , two dimensional gel electrophoresis and image analysis.	13 hours			
UNIT – IV	Introduction to mass spectrometry; strategies for protein identification ; protein sequencing ; protein modifications and proteomics ; applications of proteome analysis to drug; protein – protein interaction (Two hybrid interaction screening), analysis and sequencing individual spots by mass spectrometry (Maldi toff) and protein microarrays .	08 hours			
UNIT-V	NIT-V a genomics – construction, vector design and screening o f meta genomic libraries- biotechnological applications of meta genomics.				
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours			
	Total Lecture hours	50 hours			

Internal Assessment Methods: (25 marks)

Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks				
internals	II + CIA III)							
Marks	15	05	05	25				

Text Books

Introducing proteomics (2011) Josip lovric. John Wiley Publication
 Principles of proteomics (2013). R. M Twyman. Taylor and Francis publishers.

Reference Books

- 1. Expression Genetics: accelerated and High Throughput Methods (1999). Edited by M. McClelland and
 - A. Pardee, Eaton Publishing, MA.
- 2. Microbial Functional Genomics (2004). J. Zhou, D.K. Thomson, Y. Xu and J.M. Tiedje, Wiley Liss.

3. Reviews and articles from Journals such as Nature, Science, PNAS (USA), Nucleic Acids Research, Trends andCurrent Opinion Series.

- 4. Principles of Gene Manipulation and Genomics (2013) Sandy B. Primrose, Richard Twyman BlackwellPublishing.
- 5. An Introduction to Genetic Engineering 3rd Edition DesmondS. T. Nicholl Cambridge University Press

6. Molecular Biotechnology: Principles and Applications of Recombinant DNA 4th Edition Bernard R. Glick, Jack J.Pasternak, Cheryl L. Patten ASM Press

7. Post-translational modifications in host cells during bacterial infection, D. Ribert, P. Cossart, FEBS letters, 2010.

8. Proteomics in practice: a laboratory manual of proteome analysis (2002).Westermeier, R., & Naven, T. John Wiley& Sons, Inc.

- Proteomics for biological discovery. Veenstra, (2006). Timothy D. and John R. Yates John Wiley & Sons,
- 10. Plant proteomics: methods and protocols. (2007). Thiellement, H., Zivy, M., Damerval, C. and Méchin, V. eds. Totowa (NJ): Humana Press.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	Μ	S	Μ
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	M	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

Mapping with Programme Outcomes

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong,\ M-Medium,\ L-Low$

CORE ELECTIVE III (B) : FOOD & NUTRITION

Paper code:Name of the Paper: Food and NutritionTotal Hours/Week: 3Credits: 3

Aim: To enable students to gain a deeper understanding about principles of nutrition and also to developcompetence to carry out investigation in nutrition

Course Objectives

- 1. To enable the students to learn the basic concepts of nutrition and different categories offoods.
- 2. To enable the students to gain knowledge of different nutrient contents and their importance.
- 3. To make them learn the basics of nutritive and calorific value.
- 4. To enable the students to know food adulterants and food poisoning, disadvantages &health problems.
- 5. To enable the students learn the food spoilage and preservation methods

Course Out Comes

- 1. The student will be able to differentiate the foods types and their nutritive value.
- 2. The student will be able to develop competence to carry out investigation in nutrition
- 3. The student will be able to measure and calculate calorific value of different types of foods
- 4. The student will be able to identify the food adulterants and food poisoning
- 5. The student will be able to practice food sterilization, preservation and processing.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating						
		Understanding										
1	Yes	Yes	No	Yes	Yes	No						
2	Yes	Yes	Yes	Yes	Yes	No						
3	Yes	Yes	Yes	Yes	Yes	No						
4	Yes	Yes	Yes	Yes	Yes	No						
5	Yes	Yes	Yes	Yes	Yes	Yes						

UNIT I	Definition and basis of food and nutrition, Different Food group	s10 hours
	and classification, Nutritional significance and physiological role of	
	food groups, Protein Energy Malnutrition (PEM), definition and	
	types, Treatment and preventive measures of PEM.	
UNIT-II	Introduction to Vitamins., Fat soluble vitamins, Water soluble vitamins	08 hours
UNIT – III	Introduction to calorific value and nutritive value, Bom calorimeter, Measurement of calorific value and nutritive of foods RQ value, BMR and SDA of food stuffs, their measurements and influencing factors, Nutritive value of proteins and amino acids Balanced diet, composition of balanced diet for pregnant woman infants, old age.	s, 1 s,
UNIT – IV	Definitions of food adulterations and food poisoning, Sources of foods and types of adulterants, advantages and disadvantages of adulteration, Constituents of foods, carbohydrates, proteins, fats,oils Flavours, colours and natural toxicants, Sources causes and remedie for acidity, gastritis, indigestion and constipation.	f ;,
UNIT-V	Introduction to food spoilage, food preservation and food processing, Causes and types of food spoilage, types of food preservation and food processing, Food sterilization and pasteurization.	d
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5 hours
	Total Lecture hours 50 hours	50 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Albanese, Anthony A Ed, Protein And Amino Acid Nutrition Academic Press New York 1959.
- 2. Devlin T.M., Biochemistry by Stryer Text book of Biochemistry with clinical correlations.
- 3. Lehninger, Principles of Biochemistry, by 4th Ed. By Nelson D.L. and Cox. M.M. 6
- **4.** Murray R.K., Grammer, D.K., Mayer P.A., Rodwell V.W., Harpers Biochemistry, a lange medical book 26th Ed.Mc. Graw Hill, Health Professions Division.
- 5. West. E.S., Todal, W.R., Mason H.S. and Van Brygen J.T., Text Book of Biochemistry.
- 6. Mayer, J., Human Nutrition, Charles, C. Thomas, spring field.

7. Michael, J. Gibney, Barrie, M. Margetis, John, M. Kearney. Lenore Arab. Public Health Nutrition. Blackwellscience, Blackwell Publishing Company (2004).

- 8. Frazier, We, Food Microbiology, Tata Mc Graw Hill 1978.
- **9.** Meyer, Lilian H. Ed. (1987), Food chemistry. Indian Ed. CBS Publishers and Distributors

Reference Book:

- 1. Seema yadav: Food Chemistry, anmol publishing (P) Ltd, NewDelhi
- 2. Car H.Synder: -the extraordinary chemistry for ordinary things, John Wiley & sonsinc, NewYork,1992.
- 3. B.Sivasankar food processing and preservation PHI learni9ng (P) LTD, New Delhi 11001.

Course Material: website links, e-Books and e-journals 1. <u>https://chico-primo.hosted.exlibrisgroup.com</u>

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	Μ	S	М
CO3	S	S	S	S	S	Μ	S	S	S	S
CO4	S	M	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

CORE ELECTIVE III (C) : Herbal Biotechnology

Paper code:

Hours/Week: 3

Subject: Herbal Biotechnology

Credit:3

Aim: To give the details of plant-derived value-added compounds and their functions. To provide knowledge onbiotech-based production of Herbal medicines

Course Objectives

- 1. To enable the students to learn about the biochemical parameters used in the identification and utilization of medicalplants
- 2. To enable the students to learn about the extraction of phytochemicals and procedures
- 3. To exploit and explore the medicinal values of plants
- 4. know the evaluation techniques for the herbal drugs
- 5. To provide knowledge on biotech-based production of Herbal medicines

Course Outcomes (five outcomes for each unit should be mentioned)

- 1. After studied unit-1, the student will be able to know the Study of on history and scope of herbals
- 2. After studied unit-2, the student will be able to understand the Important medicinal herbs in treating diseases
- 3. After studied unit-3, the student will be able to –learn the Biotechnological methods of plant propagation
- 4. After studied unit-4, the student will be able to –explore methods Involved in secondary metabolite production

5. After studied unit-5, the student will be able to –know about pharmaceutical applications and Intellectual PropertyRights

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	No	No	No
3	Yes	Yes	No	No	No	No
4	Yes	Yes	No	No	No	No
5	Yes	Yes	No	No	No	No

Units					Teaching		
		Cou	urse Contents		hours		
Unit I	system of Cosmeceu - Formula	tion Development of h	gs and importar erbal preparatio	nce- Herbal Cosmetic			
		andNovel drug deliver			00.1		
Unit-II	medicinal furocoum acylphloro oleoresins	medicinal herbs in plants- alkaloids- arins - glycosides oglucinols - resins, and gum resins. Sapo and terpenes.	flavones- flavo - naphthoqui	onoids and xanthor nones - phenols	nes - and		
Unit-III	Biotechnological methods of plant propagation Micropropagation -1 Somatic Embryogenesis and somoclonal variation. Herbal gardening and maintenance- Standardization of cultivation protocols of selected medicinal plants; <i>in vitro</i> production of secondary metabolites. Polyhouse Technology- Important						
Unit-IV	diseases of medicinal plants and their management.08 hoMethods Involved in secondary metabolite production - Organ culture, Cellculture, Biotransformation (Microbial and Plant cells) - Scale up - Enhancement of product formation by elicitation-Immunodiagnostics and melagulardiagnostics in selection of alite plant energies08 ho						
Unit-V	moleculardiagnostics in selection of elite plant species. Introduction to analysis and quality controls of herbal products (TLC,08 HPLC, IR, NMR, and mass spectroscopy). Pharmaceutical application of alkaloids, terpenoids, glycosides, volatile oils, tannins and resins Intellectual Property Rights - Regulatory Affair herbal pharmaceuticals - Entrepreneurship Management.						
Unit-VI	Internal Assessments, Seminars, and Guest lecture						
	Total Teaching hours						
Internal /	l Assessmer	t Methods: (25 marks	0				
	tion for	Test (CIA I + CIA	Seminars	Assignment	Total marks		

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference & Text Books:

- 1. Harborne, J.B., 1998. Phytochemical methods to modern techniques of plant analysis. Chapman & Hall, London.
- Trease G. E, M. C. Evans, 1979. Textbook of Pharmacognosy12th ed. Balliere-Tindal, London.
 Irfan A. Khan and AtityaKhanum (Eds.). 2004. Role of Biotechnology in medicinal and

Aromatic plants, Vols. I-X.Ukaaz Publications, Hyderabad. Analytical techniques in DNA

sequencing edited by Brian K. Nunnally. 91

- 4. Agrawal S.S. and M. Paridhavi, Herbal Drug Technology, University press 2007.
- 5. Henry, R. J. 1997. Practical Applications of Plant Molecular Biology. Chapman & Hall, London, UK.
- 6. Bidlack, W.R., Omaye, S.T., Meskin, M.S.andTopham, D.K.W.," Phytochemicals as Bioactive Agents", 1St Edition, CRC Press, 2000.
 - 7. Sharol Tilgner, N. D. 1999. Herbal medicine From the heart of the earth. Edn. 1, Printed in

the USA by MalloyLithographing Inc.

8. Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in

Biotechnology, University, Press, 1996.

9. Anderson, F.J Illustrated History of the Herbals. New York: Columbia University press.

2009.

10. Callow, J. A., Ford-Lloyed, B. V. and Newbury, H. J. 1997. Biotechnology and Plant

Genetic Resources: Conservation and Use, CAB International, Oxon UK.

Gokhale, S.S,C.K.Kokate and A.P.Purohit (1994). Pharmacognosy. Niraliprakashan, Pune.
 Faroogi, A.A. and B.S.Sreeramu (2004), Cultivation of Medicinal and Aromatic crops.

University Press (India) P.Ltd., Hyderabad.

- 13. Pal. D.C and S.K. Jain (1998), Tribal medicine, Naya Prakash, 206, Bidhan Sarani, Calcutta.
 - 14. Thirugnanam, Akbarsha and Krishnamurthy (2010), Indian Medicinal plants and Home F

Course Material:

- 1. Rasheeduzzafar (2006), Medicinal plants of India, CBS publication.
- 2. International Journal of Herbal Medicine
- 3. Journal of Herbal medicine Elsevier
- 4. en.wikipedia.org/wiki/Herbal medicine

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

PO – Programme Outcome, CO – Course outcome, S – Strong, M – Medium, L – Low

OPEN ELECTIVE II (A) : ENVIRONMENTAL SCIENCES

Paper code:	Name of the Paper: Environmental Sciences
Total Hours per Week: 2	Credits: 2

Course Objectives

- 1. To introduce students to the basics of Environment.
- 2. To enable the students learn basic structure and functions of ecosystem.
- 3. To make students understand the distribution of life and life forms on earth.
- 4. To make students aware of the different forms of energy in environment.
- 5. To make the students understand the different pollutants and pollution and their Management.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to understand the principles and scope of environment.
- 2. The student will be able to understand the distribution and cycling of energy and matter in

Environment.

- 3. The student will be able to identify and characterize the earth sciences.
- 4. The student will be able explorate the sources of energy from environment.
- 5. The students will be able to apply methods to control and manage the environmentpollution.

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

JNIT I	Definitions, principles and scope of environmental science	5 hours
	Structure and composition of atmosphere, hydrosphere, lithosphere	
	biosphere. Meteorological parameters. Environmental education and	
	awareness. Environmental Ethics.	
JNIT-II	Introduction to origin of life and speciation, Ecosystem structureand	5 hours
	functions, food chains and webs, Basis of ecosystem	
	classification, Biotransformation, water and air borne microbes,	
	Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors.	
JNIT – III	Introduction to origin of earth, components of earth, zones of earth,	5 hours
	Climates of India, weather reactions, erosion, transport, deposition	
	of sediments, Soil forming minerals and process, identification and	
	characterization of clay minerals, Ground water quality, pollution of	
	ground water and mitigation of its impacts.	
JNIT – IV	Sources of energy, Sun as source of energy, Solar radiation and its	5 hours
	spectral characteristics, Characteristics and energy content of coal	,
	petroleum, and natural gases, Energy usage pattern in world and	
	India, Pollutants, emissions of CO_2 and Global warming.	
JNIT-V	Introduction to pollution, air, noise, water, soil, thermal, marine and	5 hours
	radioactive Pollution, Concept of Waste management, Solid and	
	hazardous waste management, Electrical energy generation, e-	
	waste, fly ash, plastic waste, Environmental management system	
	standards, IPCC, UNEP, IGBP, Global environmental issues-	
	Biodiversity loss, climate change, Ozone depletion, sea level rise.	
JNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	30 hours
nternal As	sessment Methods: (25 marks)	L

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Hardy, J.T. 2003. Climate Change: Causes, Effects and Solutions. John Wiley & Sons.
- 2. Harvey, D. 2000. Climate and Global Climate Change. Prentice Hall.
- 3. Minkoff, E.C. 1983. Evolutionary Biology. Addison Wesley. Publishing Company.
- 4. Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.
- **5.** Pepper, I.L., Gerba, C.P. & Brusseau, M.L. 2006. Environmental and Pollution Science. Elsevier Academic Press.

- 6. Purohit, S.S.& Ranjan, R. 2007. Ecology, Environment & Pollution. Agrobios Publications.
- 7. Owen, O.S, Chiras, D.D, & Reganold, J.P. 1998. Natural Resource Conservation Management for Sustainable Future (7th edition). Prentice Hall.
- **8.** Elliott, D. 1997. Sustainable Technology. Energy, Society and Environment (Chapter 3). New York, Routledge Press.
- **9.** Bagchi, A. 2004. Design of Landfills and Integrated Solid Waste Management. JohnWiley & Sons.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Sounders.
- 11. Barry, R. G. 2003. Atmosphere, Weather and Climate. Routledge Press, UK.
 12. Mitra, A.P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S.&Sen, K. 2004. Climate Change and India.Universities Press, India.
 Reference Book:
- 1. Botkin, Daniel B. (2011). Environmental Science: Earth as a living Planet, John Wiley and Sons, New Delhi.
- 2. Chapman. J. L. and Reiss, M.J. (2005). Ecology, Principles ad Applictions, CambridgeUniversity Press, London.
- 3. Dash, M.C. (1994). Fundamentals of Ecology, Tata Mc Graw Hill, New Delhi.
- 4. Gunther, O. (1998) Environmental Information Systems. Berlin, New York, Springer.
- 5. Miller G. Taylor and Scot Spoolman. (2011). Essentials of Ecology, Books/ Cole Learning, sU.S.A.
- 6. Odum, E.P. (1971). Fundamentals of Ecology, W.B. Saunder Company, Philadelphia
- 7. Sharma P. D. (1996). Environmental Biology, Rastogi Publications, Meerut.
- 8. Verma P.S. and V.K. Agarwal. (1985). Principles of Ecology. S. Chand and Company(Pub.), New Delhi.
- 9. Strahler, A. V. and Strahler, A.A (1973). Environmental Geoscience, Wiley International.
- 10. PrimackR.B. 2014. Essentials of Conservation Biology, Oxford University Press, USA.
- Course Material: website links, e-Books and e-journals 1. <u>https://www.hzu.edu.in/bed/E%20V%20S.pdf</u>.
- 1. <u>https://www.iizu.edu.iii/beu/E /620 v /620S.p</u>
- 2. <u>https://www.intechopen.com/books/1882</u>.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	Μ	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

OPEN ELECTIVE II (B): MEDICAL MICROBIOLOGY

 Paper code:
 Name of the Paper:
 Medical Microbiology Credits: 2

Aim: To enable the students to understand the basics of Medical Microbiology

Course Objectives

4

1. To introduce students to the basics of collection and transport of microbial source

- 2. To teach students about host parasite relationship.
- 3. To make students understand that bacterial pathogens and its related diseases of phase I.
- 4. To make students understand that bacterial pathogens and its related diseases of phase II.
- 5. To make the students understand that Nosocomial and Zoonotic diseases

Course out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know the basics of collection and transport of microbial source
- 2. After studied unit-2, the student will be able to understand the host parasite relationship
- 3. After studied unit-3, the student will be able to –learn bacterial pathogens and its related diseases of phase I
- 4. After studied unit-4, the student will be able to bacterial pathogens and its related diseases of phase II
- 5. After studied unit-5, the student will be able to -know about Nosocomial and Zoonotic diseases

Unit i. Remembering ii. iii. Applying iv. Analyzing v. Evaluating vi. Creating Understanding No Yes No Yes Yes Yes 2 Yes Yes Yes Yes Yes No Yes Yes No 3 Yes No Yes 4 Yes Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Collections and transport of specimens: Collections and transport	5 hours
	of specimens. Primary Media for isolation and their quality control.	
	Antibiotic sensitivity testing procedure.	
UNIT-II	Host Parasite Relationship: Normal microbial flora of human body,	5 hours
	Virulence factors of bacteria causing infection,	
	Microbial	
	Infections, Host Parasite Relationships.	
UNIT – III	Bacterial pathogens and associated diseases part I, Classification	5 hours
	Morphology, cultural &Biochemical characteristics, pathogenicity,	,
	Lab diagnosis & Prophylaxis and treatment of disease caused by	T
	Staphylococci, Streptococcai, Neisseriae, Mycobacteria,	
	Corynebacteria, Bacillus, Clostridium.	
UNIT – IV	Bacterial pathogens and associated diseases part II	5hours
	E,coli, Samonella, Shigella, Vibrio, pseudomonas, Spirochaetes,	
	Rickettisiae. Gram Negative anaerobes.	
UNIT-V	Nosocomial and Zoonotic diseases, Hospital acquired infection –	5hours
	infection control committee, Zoonotic diseases- Anthrax, Plague.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5 hours
	Total Lecture hours	30 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

TextBooks & References

2.

1. David Greenwood, Richard C.B, Slack, John Forest peuthere "Medical Microbiology" 14 thEdn. ELBS withChurchill Livingstone.

Ananthanarayanan R and JayaramPanicker, C.K. Textbook of microbiology-Orient Longman
 Colle JC, Duguid JP, Fraser AC, Marimon (Bp) 1996. Mackie and McCartney Practical Medical Microbiology14thEdn. Churchill Livingstone.

4. Baron L.J, Peterson L.R and Finegod S.M (1994) Bailey and Scott Diagnostic Microbiology, 9thEdn. MosbyPublications.

5. Cowan and Steel (1995) Manual for identification of Medical Bacteria. 4th EDN, Cambridge University PressLondon.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	Μ	S

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

OPEN ELECTIVE II (C): AGRICULTURAL BIOTECHNOLOGY

Paper code: DDOBT13C

Name of the Paper: Agricultural Biotechnology

Credits: 2

Total Hours/Week: 2

Aim: To make the students learn the fundamental principles of biotechnology, various developments and their applications and scope in agricultural Biotechnology. To provide knowledge in biotechnological innovations pertaining to issues in agriculture.

Course Objectives

1. To provide the students the knowledge in biotechnological innovations pertaining to issuesin

agriculture

- 2. To enable the students learn basics of genetics in the plant evolution.
- 3. To enable the students to understand the concepts of molecular biology.
- 4. To make the students aware of advanced molecular techniques in plant biotechnology.
- 5. To make the students understand the different ways of gene transfer methods and Identification

of transgenic genes.

Course Out Comes

- 1. The student will be able to appreciate the importance of agriculture and need forBiotechnology in agriculture.
- 2. The student will be able to learn the basics concepts of plant system and their genetics.
- 3. The student will be able to differentiate the genome, plasmids and vectors and theirtranslation.
- 4. The student will be able to select the different ways of gene transfer methods forPlant transgenesis, various developments and their applications.
- 5. The students will be able to apply suitable methods of biotechnology in agriculture and identification of plant hybridization.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	History, scope and importance of biotechnology in Agriculture – Application of biotechnology in Agriculture	5 hours
UNIT-II	Mendelian genetics, allosomes, linkage and extra chromosomal inheritance-Introduction to genetics -Earlier concepts of inheritance – cell and cell organelles- Cell division, Mendel"s laws	5 hours
UNIT – III	Nucleic acid structure and its function-Modes of DNA replication- Genetic code - Central dogma of life – Transcription – Translation- Recombinant DNA technology - DNA modifying enzymes – Cloning Vectors –Plasmids-cosmids-phagemids-Shuttlevectors- BAC-YAC- HAC-applications.	- 5
UNIT – IV	Gene transfer methods – <i>Agrobacterium</i> - mediated gene transfer, direct gene transfer, gene silencing – Principles of QTL and Marker Assisted Selection (MAS) – Achievements - Transgenic plants – Achievements – Current trends.	
UNIT-V	Gene isolation, synthesis and cloning, genomic and cDNA libraries, PCR based cloning, positional cloning- Nucleic acid hybridization and immunochemical detection- DNA sequencing.	5 hours
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	30 hours

Internal Assessment Methods: (25 marks)

	ition for mals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks		15	05	05	25

Text book:

1. Benjamin Lewin, Gene IX, 9thEdition, Jones and Barlett Publishers, 2007.

2. J.D. Watson, N.H. Hopkins, J.W Roberts, J. A. Seitz & A.M. Weiner; Molecular Biology 10

of the Gene, 6thEdition, Benjamin Cummings Publishing Company Inc, 2007.

- 3. Alberts et al; Molecular Biology of the Cell, 4th edition, Garland, 2002.
 - 4. Esau's Plant Anatomy; Meristems, Cells, and Tissues of the Plant Body: TheirStructure, Function, and Development, 3rdEdition, John Wiley & Sons, 2006.
- 5. Martin J Ingrouille and William Eddie, Plants: Diversity and Evolution
- 6. Bingru Huang, Plant-Environment Interactions, 3rdEdition, CRC Press, 2006.
- 7. R.H.Smith, Plant Tissue Culture: Techniques and Experiments, Academic Press, SanDiego. 1992.
- 8. S S Bhojwani and M K Razdan, Plant Tissue Culture, Elsevier Publ.
- 9. S.B. Primrose, R.M. Twyman and R.W.Old; Principles of Gene Manipulation. 6th Edition, S.B.University Press, 2001.
- 10. J. Sambrook and D.W. Russel; Molecular Cloning: A Laboratory Manual, Vols 1-3, CSHL, 2001.

Reference Book:

- 1. Brown CM, Campbell I and Priest FG. 2005. Introduction to Biotechnology. Panima Publications.
- 2. Bhojwani and Dantu, 2013. Plant tissue culture: An introductory text, Springer, New Delhi.
- 3. Singh, B.D., Fundamentals of genetics 2014, Kalyani Publishers, New Delhi.
- 4. Gardner, E.J. & Snustad, D.P. 1991. Principles of Genetics. John Wiley & Sons, USA.
 5. Chawla, H.S. 2008. Introduction to Plant Biotechnology, 3rd Ed. Oxford IBH, India.69.
- 6. Dale, J.W. and Von Schantz, M. 2002. From Genes to Genomes: Concepts and Applications of DNA Technology. John Wiley & Sons, New york, USA.
- 7. Snustad, D.P. & Simmons, M.J. 2006. Genetics. 4th Ed. John Wiley & Sons, USA.
- 8. Strickberger, M.W. 2005. Genetics (III Ed). Prentice Hall, New Delhi, India

Course Material: website links, e-Books and e-journals

- 1.https://www.isaaa.org/resources/publications/agricultural_biotechnology/download/A gricultural_Biotechnology.pdf.
 - 2. https://www.researchgate.net/publication/267338355_Book_Review_Agriculture_Biotec hnology_and_Develop me

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	M	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

Mapping with Programme Outcomes

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

PRACTICAL V: LAB IN PLANT BIOTECHNOLOGY & ANIMAL BIOTECHNOLOGY

118

Plant Biotechnology

- 1. Introduction to plant tissue culture-induction of callus and suspensioncultures.
- 2. Isolation and purify the protoplasts and check itsviability.
- 3. Induction of somatic embryogenesis and analysis of differentstages.
- 4. Extract the genomic DNA from plants byCTAB
- 5. Culture and selection of Agobacteriumon Agarmedium
- 6. Agrobacterium mediated genetransformation
- 7. Use of Agroinfilteration for Transient Expression inPlant
- 8. Gusassay
- 9. Analysis of WT/ Transgenic plant by PCR
- 10. Isolation of Total RNA fromleaves
- 11. Gene gun method oftransformation
- 12. Synthetic seedpreparation

Lab in Animal Biotechnology

- 1. Development of primary cell lines/maintenance of established celllines.
- 2. Cell counting and cellviability.
- 3. Trypsinization of monolayer and subculturing.
- 4. Gene transfer bytransfection
- 5. Preparation of metaphase chromosomes from culturedcells.
- 6. Isolation of DNA and demonstration of apoptosis of DNAladdering
- 7. MTT assay for cell viability and growth

References

1. Practical Applications of Plant Molecular Biology. Robert J. Henry .Routledge Chapman & Hall,2008.

2. Molecular Plant Biology: A practical approach (Vol. I and II). Gilmartin andBowler. Oxford Universitypress, UK,2002.

3. Plant Cell Culture: Essential Methods. Michael R. Davey, Paul Anthony. Wiley, 2010.

4. Plant Tissue Culture, Third Edition: Techniques and Experiments . Roberta H. Smith. AcademicPress, 2012.

5. Plant cell culture Protocols (Methods in Molecular Biology, 3rd Ed). Victor M. Loyola-Vargas, NeftaliOchoa-Alejo. Humana Press,2012.

6. Plant Cell, Tissue and Organ Culture: Fudamental Methods (Springer Lab Manuals). Oluf L. Gamborg(Editor), Gregory Phillips (Editor), Springer,2013.

PRACTICAL VI: LAB IN MICROBIAL TECHNOLOGY & ENVIRONMENTAL

119

BIOTECHNOLOGY

Microbial Technology

1.Study of fermentor-Demonstration.

2. Production and isolation of antibiotics (Penicillin andStreptomycin)

3. Production and analysis of Single cell protein (Spirullina andyeast)

4. Production of yoghurt and estimation of lacticacid.

5. Estimation of percentage of alcohol of givensample

6. Production and assay of α -amylase from Aspergillus nigerby solid substratefermentation.

7.Immobilization of given enzyme/wholecells

8. Estimation of amount of citric acid in the givensample.

References:

Environmental Biotechnology

- 1. Water Analysis: Measurement of Total Solids, Total dissolved solids, Total- suspended solids, dissolved oxygen, total hardness, chloride, turbidity, nitrite, nitrate, fluoride and totalnitrogen.
- 2. Estimation of COD, BOD of industrial effluents.
- 3. Potability test of water (MPNtechnique).
- 4. Degradation of phenols. Colorimetricassay
- 5. Estimation of MIC and Heavy metal tolerance of chromium resistantbacteria
- 6. Screening of Biosurfactant activity-Oil Displacement test-Drop collapsetest
- 7. Isolation of Thiobacillusferrooxxidans and Thiobacillusthiooxidansfrom metal sulphides, rock and acidminewater.
- 8. Microbial degradation, decolourzsation and adsorption of organic dyes by free and immobilizedcells
- 9. Studies on halophiles from sea water (pigmentation and salttolerance)

MOOC- MASSIVE OPEN ONLINE COURSES

USRR (UNIVERSITY SOCIAL RESPONSIBILITY REPORT)

The aim of the Field Study is to help students connect with the society in the respective discipline.Following are the important features of the Field Study and the USRR:

1. Aim: The Field Study must aim at relating the subject of study with the society in so far as the application and the usefulness of the study are concerned

2. **Topic selection:** The topic for the Field Study must be chosen by the student in the second semester in the month of February; the process for the same shall begin on 1st February and shall end on the last working day of the month of February. Students are free to select the topic for the Field Study in consultation with the Experts and Faculty Members of their choice, both from within and outside the University

3. Period and duration: The Field Study shall be undertaken for a duration of 15 days in the summer vacation that falls immediately at the end of the second semester of the program and the same should be accounted for the Third Semester of the program

4. USRR: The USSR (University Social Responsibility Report) must be prepared by every student of the program written in 50 to 75 pages. The report shall be written based on the standard research methodology.

5. Review and evaluation schedule:

a. Reviewing the Field work: First week of July

- b. Report Review: Second week of August
- c. Report submission: First week of September
- d. *Report Evaluation:* Third week of September

6. Faculty Composition: The following members may be nominated for confirming the topic and for evaluating the USRR:

- a. Professor and Head of the concerned Department
- b. One Faculty member with related field of specialization from the concerned Department
- c. One senior faculty member from the Department of Sociology from other Institution

SEMESTER IV PAPER 13: RESEARCH METHODOLOGY

Paper code: Methodology Hours/Week: 4 Subject: Research

Cre

dit: 4

Aim: To enable the students to understand the importance of research, familiarize themselves with writing the project report, and learn about the various applications of statistics in the research.

Course Objectives

1. Understand some basic concepts of research and its methodologies

- 2. Identify appropriate research topics
- 3. Select and define the appropriate research problem and parameters
- 4. Prepare a project proposal (to undertake a project)
- 5. Organize and conduct research (advanced project) in a more appropriate manner

Course Outcomes (five outcomes for each unit should be mentioned)

1. After studied unit-1, the student will be able to understand research concepts, issues

and types andbasic knowledge of qualitative research

2. After studied unit-2, the student will be able to know read, comprehend, and

explain researcharticles in their academic discipline.

3. After studied unit-3, the student will be able to develop an understanding of various

kinds of research, objectives of doing research, research process, research designs, sampling, principles and research techniques.

4. After studied unit-4, the student will be able to detailed know the Observation and

Collection ofdata and Generalization and Interpretation

5. After studied unit-5, the student will be able to Have adequate knowledge of ethics,

plagiarism, citation and acknowledgment

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	Yes
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Course Contents	eachinghours
Unit I	Objectives and types of research: Motivation and objectives – Research methods <i>vs</i> Methodology. Types of research – Descriptive <i>vs</i> . Analytical, Applied <i>vs</i> Fundamental, Quantitative <i>vs</i> . Qualitative, Conceptual <i>vs</i> . Empirical.	
Unit-II	Research Formulation – Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Importance of literature review in defining a problem – Literature review – Primary and secondary sources – reviews, treatise, monographs- patents – web as a source – searching the web - Critical literature review – Identifying gap areas from literature review - Development of working hypothesis.	1
Unit-III	Research design and methods – Research design – Basic Principles- Need of research design — Features of good design – Important concepts relating to research design – Observation and Facts, Laws and Theories, Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan - Exploration, Description, Diagnosis, experimentation. Determining experimental and sample designs. Research techniques- microscopy. HPLC, HPTLC, GC-MS, FTIR, SEM/TEM, NMR and AAS.	
Unit-IV	Data Collection and analysis: Execution of the research - Observation and Collection of data - Methods of data collection – Sampling Methods- Data Processing and Analysis strategies - Data Analysis with Statistical Packages - Hypothesis-testing - Generalization and Interpretation.	
Unit-V	Reporting and ethics – Structure and components of scientific reports - Types of report – Technical reports and thesis – Significance – Different steps in the preparation – Layout, structure and Language of typical reports. Environmental impacts - Ethical issues - ethical committees - Commercialization – Copy right – royalty - Intellectual property rights and patent law – Trade Related aspects of Intellectual Property Rights – Reproduction of published material – Plagiarism - Citation and acknowledgement - Reproducibility and accountability.	12 hours
Unit-VI	Internal Assessments, Seminars, and Guest lecture	05 hours
	Total Teaching hours	65

Reference & Text Books:

1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. *An introduction to ResearchMethodology*, RBSA Publishers.

2. Kothari, C.R., 1990. *Research Methodology: Methods and Techniques*. New Age International.418p.

3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, EssEss Publications. 2 volumes.

4. Trochim, W.M.K., 2005. *Research Methods: the concise knowledge base*, Atomic DogPublishing 270p

DogPublishing.270p.

5. Wadehra, B.L. 2000. *Law relating to patents, trademarks, copyright designs and geographicalindications*. Universal LawPublishing.

6. Satarkar, S.V., 2000. Intellectual property rights and Copy right. EssEssPublication

- 7. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS
- 8. Kothari, C.R., 1985, Research Methodology- Methods and Techniques, New Delhi
- 9. MS office, Sexena, S. 2001. Vikas Publishing House Pvt. Ltd., New Delhi M
- 10. Kothari, C.R.,1985, Research Methodology- Methods and Techniques, New Delhi 11. Authoring a PhD, thesis: how to plan, draft, write and finish a doctoral

dissertation, Duncary, P.2003. Macmillan, pp 256.

12. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS

Course Material:

1. https://bbamantra.com/research-methodology/

2.https://www.researchgate.net/publication/329736173_Research_Methodology_Msc_notes_of_Dr_J

udu_illavarasusvyasa_univ

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping with Programme Outcomes

PO - Programme Outcome, CO - Course outcome, S - Strong, M - Medium, L - Low

CORE ELCTIVE IV (A) .NANO BIOTECHNOLOGY

Course code:Name of the paper: Nano BiotechnologyHours/week: 3Credits3

Aim: This discipline helps to indicate the merger of biological research with various fields of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. The most important objectives that are frequently found in nano biology involve applying nano tools to relevant medical/biological problems and refining these applications.

Course Objectives

- 6. To create Knowledge on Nano particle synthesis, characterization.
- 7. To know the Nano particles importance in drug delivery
- 8. To compare the analytical methods knowledge in nano particle characterization like (SEM & TEM)
- 9. To apply the nano particles on various in vivo & in vitro for its applications
- 10. To compare various nano particles on biomedical & environmental applications

Course Out Comes

- 1. After studied unit-1, the student will be able to understand Nano technology on Cancer treatment
- 2. After studied unit-2, the student will be able to know Nano Technology application in Diabetes
- 3. After studied unit-3, the student will be able to develop an understanding Nano

technology effecton target drug delivery

4. After studied unit-4, the student will be able to detailed know the Nano technology uses inenvironmental remediation and recycling process

5. After studied unit-5, the student will understanding the Nano technology uses in variousbiomedical & agriculture applications

Unit/ level(K)		ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	No	No	Yes	Yes
2	Yes	No	Yes	No	Yes	Yes
3	Yes	Yes	No	Yes	No	No
4	Yes	No	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

Units		eachinghours
	Course Contents	
Unit I	Introduction to nanotechnology: characteristic scale for quantum phenomena, nano	10 hours
	particles, nano-clusters, nano composite, nano tubes, nano wires emergence of bio	
	nanotechnology. Characterization of nano particles- UV-Vis	
	spectroscopy, electron Microscopy- HRTEM, SEM, AFM, EDS, XRD.	
Unit-II	Microbial nanotechnology –Microbial synthesis of nano drugs-metal nano particles and drug delivery vehicles- Nanoshels – Tectodentrimers Nanoparticle drug systems– diagnostic applications of nanotechnology.	08 hours
Unit-III	Preparation of nano materials by physical, chemical and Green methods: Polymeric scaffolds collagen, elastin's: Muco polysaccharides, Proteoglycans ,cellulose and derivate; dextran's ; alginates; Pectin's; Chitin. Nanoparticles – types	
	functions-Silver, Gold and Titanium. Physical and chemical properties of nanoparticles.	
Unit-IV	Nanoscale applications in biology and medicine: nanotechnology for biology and medicine – micro and nano-fluides- scanning probe microscopy in biology and medicine- self –assembly of biological molecules .drug delivery – protein mediated and nanoparticle mediated. Hybrid conjugates of gold nano particles – DNA oligomers - use of DNA molecules in nanomechanics and computing	1
Unit-V	Implications of nanotechnology : health and safety implications from nano particles health issues- environmental issues- need for regulation – societal implications possible military applications-potential benefits and risk for developing countries - intellectual property issues – criticism of Nanotechnology – studies on the implications of Nanotechnology.	08 hours
Unit-VI	Internal Assessments, Seminars, and Guest lecture	5 hours
	Total Teaching hours	50 hours

Internal Assessment Methods: (25 marks)

Distribution for internals			Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Parthasarathy, B.K (2007). Introduction to Nano technology, Isha publication.
 - 2. Elisabeth Papazoglou and Aravind Parthasarathy (2007).Bio nanotechnology. Morgan & Claypoolpublishers.
 - 3. Bernd Rehm (2006). Microbial bio nanotechnology: biological self-assembly78 systems and biopolymer based nanostructures. Horizon scientificpress.
- 4. David E. Reisner ,Joseph D. Bronzino (2008). Bio nanotechnology: global prospects.CRC Press.
 5. Ehud Gazit(2006).Plenty of room for biology at the bottom: An introduction to bionanotechnology. Imperial college press.
- 6. Hari Singh Nalwles, "Nano structured materials and nanotechnology ",2002academic press
 7. M.H.Fulekar, 2010" Nanotechnology importance and applications."I.K. International publishinghousePvt.
- 8. Nanotechnology: Global strategies, Industry Trends and applications 2005John Wiley & sonsLtd.

Reference Book:

- 1. CPCSEA Guidelines for Laboratory Animal Facility, CPCSEA, 2003.
- 2. Kumar, H.D. Modern Concept of Biotechnology. Vikas Publishing House Pvt. Ltd., 2007
- 3. Animal Biotechnology: Models in Discovery and Translation, Second Edition (Elsevier)
- 4. Arun Bahl, B.S. Bahl and G.D. Tuli. Essentials of Physical Chemistry. Sultan Chand & Sons, 2014.
- 5. P.L. Soni. Textbook of Inorganic Chemistry. Sultan Chand & Sons, 2013.
- 6. P.L. Soni and H.M. Chawla. Textbook of Organic Chemistry, Sultan Chand & Sons, 29th Revised Edition, 2014
- 7. Subbiah Balaji. Nanobiotechnology, MJP Publishers, 2010.
- 8. W.J. Moore. Physical Chemistry, Longman, 5th Edition. 1972.
- 9. Robert R Crichton. Biological inorganic chemistry: a new introduction to molecular structure and function. Amsterdam: Academic Press, 3rd edition, 2018.

Course Material:

Website links: https://jnanobiotechnology.biomedcentral.com/,

E-Books: <u>http://www.a-zshiksha.com/forum/viewtopic.php?f=148&t=61561</u>**E- journals:** <u>https://digital-library.theiet.org/content/journals/iet-nbt</u> Mapping with Programme Outcomes

Ι	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	М	S	S	М	М	М	S	М	S	S
Ī	CO2	М	S	М	М	М	S	S	S	М	М
Ī	CO3	S	М	М	S	S	М	М	S	М	S
Ī	CO4	М	S	S	М	М	S	М	М	S	S
Ī	CO5	S	М	S	М	S	М	S	М	S	S

PO - Programme Outcome, CO - Course outcome, S - Strong, M - Medium, L - Low

CORE ELECTIVE IV (B): BIOETHICS, BIOSAFETY AND IPR

Paper code:

Name of the paper: Bioethics,

Credits: 3

Biosafety and IPRHours of teaching: 3

Aim: Students get an idea about the advantages and disadvantages of biotechnological applications, ethical implications, and intellectual property rights.

Course objectives :

- 1. To provide basic knowledge on intellectual property rights and their implications inbiological research and product development
- 2. To become familiar with India's IPR Policy

 To learn biosafety and risk assessment of products derived from biotechnology and regulation of such products

- 4. To become familiar with ethical issues in biological research.
- 5. This course will focus on consequences of biomedical research technologies such as cloningof whole organisms, genetic modifications, DNA testing

Course Out Comes (five outcomes for each units should be mentioned)

- 6. After studied unit-1, the student will be able to Understand the rationale for and againstIPR and especially patents.
- 7. After studied unit-2, the student will be able to Understand why India has adopted anIPR Policy and be familiar with broad outline of patent regulations.
- 8. After studied unit-3, the student will be able to Understand different types of intellectual property rights in general and protection of products derived frombiotechnology research and issues related to application and obtaining patents
- 9. After studied unit-4, the student will be able to Gain knowledge of biosafety and riskassessment of products derived from recombinant DNA research and environmental release of genetically modified organisms, national and international regulations
- 10. After studied unit-5, the student will be able to Understand ethical aspects related tobiological, biomedical, health care and biotechnology research plant

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Introduction To Biodiversity	12 hours
	Levels of biodiversity –values of biodiversity – loss of biodiversity	
	- Species concept - Classification and systematics: biological	
	nomenclature - biological classification; Biodiversity conservation: in	
	situ and ex situ - Magnitude and distribution of biodiversity -wild	
	life biology - conservation strategies - measures of biodiversity -	
	biodiversity in India and global level - biodiversity hot spots.	
	National Biodiversity Authority.(NBA)	
UNIT-II	Introduction To Ethics/Bioethics :	8 hours
	Framework for ethical decision making; biotechnology and ethics -	
	biotechnology in agriculture and environment: benefits and risks -	
	benefits and risks of genetic engineering - ethical aspects of genetic	
	testing – ethical aspects relating to use of genetic information – genetic	
	engineering and bio warfare	
UNIT – III	Ethical Implications	8 hours
	Ethical implications of cloning: Reproductive cloning , therapeutic	
	cloning ; Ethical, legal and socio- economic aspects of gene therapy,	
	germ line, somatic, embryonic and adult stem cell research- GM crops-	
	biotechnology and biopiracy – ELSI of human genome	
	project.	
UNIT – IV	Introduction To Biosafety	9 hours
	Biosafety issues in biotechnology - risk assessment and risk	
	management - safety protocols: risk groups - Biosafety levels -	
	Biosafety guidelines and regulations (National and International) -	
	operation of Biosafety guidelines and regulations - types of Biosafety	
	containments - definition of GMOs & LMOs; principles of safety	
	assessment of transgenic plants.	
UNIT-V	Introduction To Intellectual Property And Intellectual Property Rights	8 hours
	Types: patents, copyrights, trade-marks, design rights, geographical	
	indications - importance of IPR - patentable and non-patentable -	
	patenting life - legal protection of biotechnological inventions - patent	
	databases - country-wise patent searches (USPTO, EPO, India) -	
	History of world intellectual property rights organization	
	(WIPO), GATT, WTO and TRIPS.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	50 hours

Internal Assessment Methods: (25 marks)

Distribution for internals			Assignment	Total marks
Marks	15	05	05	25

Text Book

- 1. IPR, Biosafety and Bioethics (2013), by DeepaGoel, ShominiParashar
- 2. Biodiversity and Biomedicine: Our Future (2020), 1st edition by MunirOzturk,DilfuzaEgamberdieva, MilicaPešić.
- 3. The basics of bioethics (2019), 4th edition by Guidry-Grimes, Laura; Veatch, Robert.

Reference book

1. Introduction to bioethics (2018), 2nd edition by J.A. Bryan

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://swayam.gov.in/nd1_noc20_hs18/preview2. https://nptel.ac.in/courses/109/106/109106092/

3. <u>https://onlinecourses.nptel.ac.in/noc20_hs18/preview</u>4.

https://nptel.ac.in/courses/102/104/102104068/

5. https://www.futurelearn.com/courses/biosecurity

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

PO - Programme Outcome, CO - Course outcome S - Strong, M - Medium, L - Low

CORE ELECTIVE IV (C): SYSTEM BIOLOGY

Paper code: Hours/week: 3 Paper name: System Biology Credits : 3

Aim: To gain basic knowledge of systems biology and understand some of the larger questions and issues with systems biology and large-scale data collection and analysis

Course objectives:

- 1. To provide basic knowledge on databases that are related with systems biology
- 2. To teach microarray tools to become familiar with system biology
- 3. To learn KEGG and biochemical neural networks to find protein and
 - carbohydratemechanism related to systems biology
- 4. To teach Integration of networks, data integration, modeling for metabolomics.
- 5. To learn the AI technology of systems biology

Course out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to understand the basic knowledge on databases that are related with systems biology
- 2. After studied unit-2, the student will be able to Understand microarray tools to become familiar with system biology

After studied unit-3, the student will be able to Understand KEGG and

- biochemical neuralnetworks to find protein and carbohydrate mechanism related to systems biology4. After studied unit-4, the student will be able to Gain knowledge of Integration of networks,data integration, modeling for metabolomics
- 5. After studied unit-5, the student will be able to Understand AI technology of systems biology

natening	Table (Tut Tes /	tto in the uppio				
Unit	i.	ii.	iii.	iv.	v.	vi.
	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

3.

JNIT I	Molecular databases: accessibility, compatibility, comprehensive	10 hours			
	database, portability, quality, and navigability. Systems Biology:				
	Definition, Hypothesis-driven research in systems biology, Wet				
	experiments-Dry experiments: predictions and simulations.				
	Reductionist and Integrative				
	approach.				
JNIT-II	Interpreting expression data using Gene Ontology; Evolution of				
	modularity and transcriptional networks, Riboswitches, metabolite				
	sensing, and translational control; Microarrays-types				
	and applications, Importance of non-coding sequence.				
JNIT – III					
	Protein-carbohydrate metabolism; Biochemical cycles;				
	Interconnection of pathways- metabolic regulation; Translating				
	biochemical networks into linear algebra; KEGG: theory and				
	practice				
JNIT – IV	Genomics, Proteomics, Metabolomics, Transcriptomics,	08 hours			
	Interactomics, Phenomics, Localizomics; Gene networks -				
	Integration of Networks. Combination of omics approaches:data				
	integration, modeling;				
JNIT-V	Synthetic biology, Artificial Intelligence (AI): Methodology,	08 hours			
	tools, and its application in agriculture, drug discovery, and				
	biomedicine.				
JNIT-VI	Internal Assessment: Assignments, Seminars and Guest	5 hours			
	lecturers				
otal Lecture	e hours 65 hours	50 hours			

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books & References

1. Kitano, Systems Biology: A Brief Overview. Science, 2002, 295: 1662-1664.

 Ideker et al. A new approach to decoding life: Systems Biology. Annual Review onGenomics and Human Genetics 2001, 2: 343-372.
 Ideker et al. Integrated Genomic and Proteomic Analyses of a Systematically PerturbedMetabolic Network. Science, 2001, 292: 929-934.
 Ge et al. Integrating "omic" information: a bridge between genomics and systemsbiology. Trends in Genetics, 2003, 19, 10: 551-560.

5. Chong et al. Wholistic Biology, Science, 200820, 295:1661.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. https://swayam.gov.in/nd1_noc20_hs18/preview
- 2. https://www.tandfonline.com/toc/iaan20/current,
- 3. https://www.tandfonline.com/toc/iaan19/32/3,
- 4. https://chico-primo.hosted.exlibrisgroup.com

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	Μ	М	Μ	S	М		
CO2	S	М								
CO3	S									
CO4	М									
CO5	М									

PO – Programme Outcome, CO – Course outcome

S-Strong , $M-Medium,\,L-Low$

PROJECT / DISSERTATION WITH VIVA-VOCE

For question paper settingANNEXURE - III

BLOOM TAXONOMY QUESTION PAPER SETTING CHECKLIST

Q. No.	COs	i.	ii.	iii.	iv.	v.	vi.
•		Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
PART –	A (Two quest	tions from each ca	tegory except vi. C	reating)			
1.	CO1	1	Nil	Nil	Nil	1	Nil
2.	CO1	Nil	Nil	Nil	1	Nil	Nil
3.	CO2	Nil	1	Nil	Nil	Nil	Nil
4.	CO2	Nil	Nil	1	Nil	Nil	Nil
5.	CO3	Nil	Nil	Nil	Nil	Nil	Nil
6.	CO3	Nil	Nil	Nil	1	Nil	Nil
7.	CO4	Nil	Nil	Nil	Nil	1	Nil
8.	CO4	Nil	Nil	Nil	Nil	Nil	Nil
9.	CO5	Nil	Nil	1	NII	Nil	Nil
10.	CO5	1	Nil	Nil	1	Nil	Nil
	B (At the leas	st one question fro	m each category no	ot more than	two questions	from one catego	ory)
11. A.	CO1	Nil	Nil	1	Nil	Nil	Nil
11. B.	CO1	Nil	Nil	Nil	Nil	1	Nil
12. A.	CO2	Nil	Nil	1	Nil	Nil	Nil
12. B.	CO2	Nil	Nil	Nil	1	Nil	Nil
13. A.	CO3	Nil	Nil	Nil	Nil	Nil	1
13. B.	CO3	Nil	Nil	Nil	Nil	1	Nil
14. A.	CO4	1	Nil	Nil	Nil	Nil	Nil
14. B.	CO4	Nil	1	Nil	Nil	Nil	Nil
15. A.	CO5	Nil	Nil	Nil	Nil	1	Nil
15. B.	CO5	Nil	Nil	Nil	Nil	Nil	1
	C (One quest	ion from each cate	egory except i. Rem	embering)			
16.	CO1	Nil	Nil	Nil	1	Nil	Nil
17.	CO2	Nil	Nil	Nil	Nil	Nil	1
18.	CO3	Nil	1	Nil	Nil	Nil	Nil
19.	CO4	Nil	Nil	Nil	Nil	1	Nil
20.	CO5	Nil	Nil	1	Nil	Nil	Nil
Total M	arks *						

* Not exceeding 24 total marks in each category of (ii), (iii), (iv) and (v). Not exceeding 14 marks in category (i) and 20 marks in category (vi).

Revised Bloom - Anderson 2000 Taxonomy: Code and Verbal Content

		om - Anderson 2				1
Definitions	<u> </u>	ii. Understanding	iii. Applying	, ,	v. Evaluating	vi. Creating
Bloom's	Exhibit memoryof		Solve problems	Examine and	Present and	Compile
Definition		understanding of	tonew	break	defend opinions	information
	•	facts and ideas by	situations by	information into	by making	together in a
	terms, basic,	organizing,	applying	parts by	judgments about	different wayby
	concepts, and	comparing,	acquired	identifying	information,	combining
	answers.	translating,	knowledge,	motives or		elements in a
		interpreting,	facts,	causes. Make	or quality of work	
		giving,	techniques and		based on a setof	
		descriptions, and	rules in a		criteria	alternative
		stating main ideas	different way	support	cintorna	solutions
			difference way	generalizations		3010113
Verbs	1.1: Choose	Classify	Apply	4.1. Analyse	Agree	Adapt
	1.2:Define	Compare	Build	Assume	Appraise	Build
	Find	Contrast	Choose	Categorize	Assess	Change
	How	Demonstrate	Construct	Classify	Award	Choose
	Label	Explain	3.6 Develop3.7		Choose	Combine
	List	Extend	Experimentwith	Conclusion	Compare	Compile
	Match	Illustrate	Identify	Contrast	Conclude	Compose
	Name	Infer	Interview	Discover	Criteria	Construct
	Omit	Interpret	3.10 Makeuse	4.9 Dissect4.10	Criticize	Create
	Recall	Outline	of	Distinguish	Decide	Delete
	Relate	Relate	3.11 Model	Divide	Deduct	Design
	Select	Rephrase	3.12 Organize	Examine	5.12 Defend	Develop
	Show	Show	Plan	Function	5.13 Determine	Discuss
	Spell	Summarize	Select	Inference	Disprove	Elaborate
	Tell	Translate	Solve	Inspect	Estimate	Estimate
	What		Utilize	List	Evaluate	Formulate
	When		Othize	4.17 Motive	5.17 Explain5.18	Happen
	Where			4.18 Relationships	-	Imagine
	Which			Simplify	Influence	Improve
	Who			Survey	Interpret	Invent
	Why			4.21 Take partin		Make up
	,			Test for	Justify	Maximize
				Theme	Mark	Minimize
				meme	Measure	Modify
					Opinion	Original
					Perceive	Originate
					Prioritize	Plan
					Prioritize Prove	Predict
						Propose
						Solution
					Recommend	Solve
					Rule on	
					Select	Suppose Test
					Support	
					Value	Theory

Technical Terms – Definition

Programme Objectives:

Total papers, teaching, learning and evaluation comes under programme. Aim of the study including theoretical, practical courses.

Programme Educational Objectives:

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

Programme Specific Outcomes:

Program specific outcomes are statements that describe what the Post Graduates of a specific Science Programme should be able to do.

Programme Outcomes:

Programme outcomes describe what students are expected to know and would be above to do by the time of Post-Graduation. These relate to the skills, knowledge, and behaviours that students acquire as they progress through the program.

Course Objectives:

Aim of the paper including unit wise contents.

Course Outcomes:

Statements indicating what a student can do after the successful completion of a course. Every course leads to some course outcomes. The Course Outcomes statements are defined by considering the course content covered in each module of a course. For every course there may be 4 or 5 course outcomes. The keywords used to define course outcomes are based on Bloom's Taxonomy.