M.SC., ANALYTICAL CHEMSITRY

MODEL SYLLABUS

AUGUST- 2022

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

	DEPARTMENT OF Analytical Chemistry
Programme:	M. Sc Analytical Chemistry
Programme Code:	CHE 001
Duration:	2 years
Programme Outcomes:	PO 1 To understand the application of the analytical chemistry in today's changing technological world.
	PO 2 To deliver an in-depth information to learners in the area of Analytical Chemistry and to empower them to work independently.
	PO 3 To possess realistic and experimental knowledge across the principles of analytical chemistry.
	PO 4 To learn fundamental tools in analytical chemistry, classical analysis, modern microscopy, thermal, radio analytical, optical and instrumentations tools and their applications to different disciplines of chemical analysis.
	PO 5 To advances the acquaintance on the significance of spectroscopy, electrochemical, chromatography and surface analytical techniques.
	PO 6 To demonstrate competence in solving industrial and scientific research problems through experiments by selection of the relevant international standard protocols.
	PO 7 Professionally skilled towards employment in industries and higher studies in internationally renowned research institutions were they are competent to work as an individual and as a collaborative team member.
	PO 8 Execute and implement the analytical chemistry concepts to critical innovative thinking in the laboratory and problem solving to meet current day challenges.
	PO 9 To develop an appreciation for the problematic mission of adjudicating the accuracy and precision of data collected from the lab experiments and sharpened to them towards using appropriate computational statistical methods.
	PO 10 To apply effectively the concepts of analytical chemistry towards interdisciplinary nature of chemistry, biology, medicine, material science, forensic science and other related fields to meet the ever-growing variety of chemical challenges.

Programme Specific Outcomes:	• 1 Trained to be a responsible analytical chemist and implement safe laboratory practices by handling glassware, equipment and chemical reagents appropriately following international standard operating procedures
	• 2 Comprehensive analytical chemistry proficiency and research experience through methodically delivered courses and a mentored master project.
	• 3 Competent in applying analytical chemistry to analyze complex materials to any substances using classical and modern separation, isolation and identification techniques.
	• 4 Familiarity with spectroscopy, electrochemical, chromatography and surface analytical techniques along with the interpretation of spectra of unknown compounds
	• 5 Highly skilled and knowledgeable to clear competitive exams for higher studies in premier research institutions and industrial sector.

List of Courses:

Semester	Course Code	Title of the Course	Core/ Elective/ Soft skill	Credit s
	CHE C001	Fundamentals of Analytical Chemistry	Core	3
	CHE C101	Coordination and Nuclear Chemistry	Core	3
	CHE C201	Stereochemistry and Organic ReactionMechanism	Core	3
	CHE C301	Thermodynamics and Chemical Kinetics	Core	3
	CHE C202	Organic Chemistry Practical-I	Core	3
-	CHE C302	Physical Chemistry Practical-I	Core	3
Ι	CHE E101	Inorganic Reaction Mechanism	Elective	3
	UOSM115	Lab Safety and First Aid	Soft skill	2
	UOMS117	Chemistry Databases-SciFinder, Mendeleev,Scopus, Web of Science and Google Scholar	Soft skill	2
	CHE C002	Analytical Instrumentation	Core	3
	CHE C102	Main Group Elements andInorganic Polymers	Core	3
	CHE C203	Organic Reaction Mechanism	Core	3
	CHE C303	Quantum Chemistry and Group Theory	Core	3
П	CHE C003	Analytical Chemistry Practical-I	Core	3
**	CHE C103	Inorganic Chemistry Practical-I	Core	3
	CHE E302	Macromolecular Chemistry	Elective	3
	UOMS116	Fire Safety and Firefighting	Soft skill	2
	UOMS147	Software packages for Chemists- MATLAB, ORIGIN and CHEMDRAW	Soft skill	2
	UOM I001	Internship	Internship	2

	CHE C601	Physical Methods in Chemistry	Core	4
	CHE C004	Analysis of complex materials and	Core	3
III		separation techniques Practical – II		
	CHE C005	Instrumental Methods Practical – III	Core	3
	CHE E601	Biological Chemistry	Elective	3
	CHE E003	Classical & Radio analytical methods of analysis	Elective	3
	PHY E008	Fundamentals of Molecular Spectroscopy	Elective	3
	CHE C006	Optical and Surface analytical techniques	Core	4
IV	CHE C007	Separation techniques	Core	4
	CHE C008	Project	Core	6
	CHE E503	Energy Conversion Phenomena	Elective	3
	CHE E004	Electro analytical Chemistry	Elective	3
		Total Credits		91

Method of Evaluation:

Sessional I	Sessional II	End Semester Examination	Total	Grade
20	20	60	100	A, A+, B, D, D+, O

Methods of assessment:

Recall (K1) - Simple definitions, MCQ, Recall steps, Concept definitions

Understand/ Comprehend (K2) - MCQ, True/False, Short essays, Concept explanations, Short summary or overview

Application (K3) - Suggest idea/concept with examples, Suggest formulae, Solve problems, Observe, Explain

Analyse (K4) - Problem-solving questions, Finish a procedure in many steps, Differentiate between various ideas, Map knowledge

Evaluate (K5) - Longer essay/ Evaluation essay, Critique or justify with pros and cons.

Create (**K6**) - Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations

Cour	se code	CHE C001	FUND	AMEN' CI	FLS OF HEMIS			ICAL	L	Т	Р	С
Core	/Elective/	Supportive	Core	0					3	0	0	3
	requisite		Student chemical		have is	an	idea	about	•	labu rsior		R2021
	rse Objec											
The r		ctives of this cour										
•		rpret and analyze	-		-	-	-		1			
•		erentiate the natur erstand the nature	1			ne coi	rect sa	mpling to	ecnn	Ique		
•		pare and contrast				ods v	with sou	und theor	retics	al kn	owle	edge for
		ion of ions.		is that	JII IIICUI	ous v	vitii 500			u KII	0 ** 10	Juge 101
Expe		rse Outcomes:										
On th	ne success	ful completion of	the course	, studen	t will be	able	to:					
1.	The stude analytica	ents will be able t	to understa	nd and	apply th	ne con	rect m	ethod to	anal	yze	K1	-K4
2.	They will	ll be able to emp	ploy the co	orrect te	echniqu	e to (collect	samples	of	any	K2	-K4
3.	Can eval	r analysis uate the accuracy activities.	and summ	aries th	e metho	ods ac	lapted	for certa	in		K3	-K4
4.	Can expl	ain and summariz	the vario	us titrim	netric teo	chniq	ues use	ed for ana	alysis	5	K2	
5.	To under	stand the chemica	d equilibria	a to pred	lict the s	oluti	on chei	nistry			K5	
6.	Compare samples	and contrast the	e various n	nethods	of titra	tion	based (on the na	ature	of	K5	& K6
K1 -		er; K2 - Understar	nd; K3 - Aj	oply; K 4	1 - Anal	yze; l	K5 - Ev	valuate; I	X6 -	Crea	te	
Unit	:1	TREATN	MENT OF	ANALY AMPLI		L DA	TA A	ND	2	0 ho	urs	
	-	ntitative measure								-		
		systematic, mean										
		rves, Null Hypo tests. Reliability										
chart		iesis. Renability	of fesuits,	Regies	sion and		ciation	. Quant	y coi	luoi	anu	control
Anal	ytical Che	emical standards, ation. Chemical N	• •		•			•	-	ocess	, Ar	nalytical
						,		-		lina	C -	mnlar's
respo	onsibility a	sampling metho and pitfalls, hazar	ds of samp	ling.	-		-		-			impler's
Unit	:2	CHEMICAL	-	BRIA AL EACTI		UTR	ALIZA	TION	20) hou	ırs	
of act Buffe	ids and ba ers – types	ilibria - Activity uses. Concept of p s, range and capac reactions – Theor	oH, hydroly city, dissoci	vsis of station of	alts, hyc Polypro	lrolys otic a	sis cons cids, co	stant and ommon io	degr on ef	ee of fect,	f hyc salt	drolysis, effect.
		ems, titration curv						-	1			tions
Unit	:3	REDOX TITR							20	houi	S	
Redo	x titration	AND CO - Redox potentia	OMPLEX als_theory						 culat	ion	of pr	tentiale
		ges of titrations, r	•		•				Cuid	1011 (л рс	nentials

Precipitation titrations – Theory and types, Mohr, Volhard and Fajan's methods. Adsorption indicators – theory, choice and applications.

Complexometric titrations – Theory, Stepwise and overall formation constants, Titrations involving chelates (EDTA). Metallochromic indicators – Theory and Choice. Masking and demasking and extractive methods. Direct, indirect (including substitution) titration and applications.

Contemporary Issues Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters. Total Lecture hours 60 hours Text Book(s) 1. Fundamentals of Analytical Chemistry - Skoog, West and Holler, Saunders College Publishing, VI Edition, 1991, and VII Edition, 1996. 2. Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition, 1985 3. Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education Ltd, VI
webinars for strengthening the subject matters. Total Lecture hours 60 hours Text Book(s) 1. Fundamentals of Analytical Chemistry - Skoog, West and Holler, Saunders College Publishing, VI Edition, 1991, and VII Edition, 1996. VI Edition, 1991, and VII Edition, 1996. 2. Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition, 1985
Total Lecture hours 60 hours Text Book(s)
 Fundamentals of Analytical Chemistry - Skoog, West and Holler, Saunders College Publishing VI Edition, 1991, and VII Edition, 1996. Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition, 1985
 Fundamentals of Analytical Chemistry - Skoog, West and Holler, Saunders College Publishing VI Edition, 1991, and VII Edition, 1996. Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV Edition, 1985
Edition, 1985
3. Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education Ltd, V
Edition, 2001
4. Analytical Chemistry – Gary D. Christian, John Wiley & Sons, INC, V Edition, 2001
5. Statistics for Analytical Chemistry – J.C. Miller and J.N. Miller, Ellis Harwood, Chichester 1984.
Reference Books
I Instrumental Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, I Edition, 1986
2 Analytical Chemistry – J.G. Dick, McGraw Hill Publishers, 1975
Analytical Chemistry- An Introduction – Skoog, West & Holler, Saunders College Publishing VI Edition, 1994.
Instrumental Methods of Chemical Analysis – G.W. Ewing, McGraw Hill Publishers, 1975.
5 Statistics for Analytical Chemists – R. Caulcutt and R. Boddy, Chapmann and Hall Publications, London, 1982
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1. <u>https://youtu.be/dlDnzswhTsU-Data</u> Analysis and decision making
2. <u>https://youtu.be/ozEWJAk4JCc-Acid</u> Base Reactions
3. <u>https://www.youtube.com/watch?v=n9wUdgxCLMQ-Neutralizations</u> Reactions
4 <u>https://www.youtube.com/watch?v=flCQz0QjPmA-Redox</u> Reactions
5. <u>https://youtu.be/dtTx5f9zdm0- Quantitative</u> Methods in Chemistry
Course Designed By: Dr. K. Ravichandran, Dr. T.M. Sridhar, Dr. K. Venkatachalam and Dr. Deepa P Nambiar
Monning with Programma Outcomes*

Mappin	g with P	rogramr	ne Outco	omes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	L	S	S	S	L	S	L
CO2	S	S	S	S	М	M	S	S	S	S
CO3	M	S	S	M	L	M	S	L	S	S
CO4	S	S	S	S	L	S	S	L	М	L
CO5	S	S	S	S	М	S	S	М	L	М
*0.0		1. T		~	1,1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	111		1.1

			ELECTRONICS COMPLITEDS AND				
Cou	rse code	CHE E001	ELECTRONICS, COMPUTERS AND COMPUTER PROGRAMING FOR CHEMISTS	L	Т	Р	С
Core	/Elective/	Supportive	Elective	3	0	0	3
			Student must have an awareness about	Svl	labu	IS	Deced
Pre-	requisite		computers and electronics	•	rsior		R2021
	rse Object						
The	main objec	ctives of this cour	se are to:				
•	To unde	erstand the working	ng of electronic components used in instrument	ts			
•	To outl	ine the organization	on and working of a computer				
•	To state	e the development	and requirements of programing languages				
•	To intro	oduce modern con	cepts in computer science				
•	To criti	cally access the a	pplication of computer programming language	es in	cher	nist	ry
	applicat	tions.					
Expe	ected Cou	rse Outcomes:					
On th	ne success	ful completion of	the course, student will be able to:				
1.	Student c	an operate the co	mputer and install hardware and software with	out	any	K	I-K4
	assistance	_	I		5		
2.	They will	l be able to identif	fy the electronic parts and accordingly maintain	ther	n	K2	2-K4
3.	Possess v	vorking knowledg	e of how to develop computer programs				
4.	They will	Il be able to cho	pose the required programming language to	writ	e a	K	2-K5
		for their chemistr					
5.			p new programs for their chemistry requirement	nts.		K	3-K4
6.	Can evalu	uate new software	developed for chemistry applications			K5	5 & K6
K1 -			nd; K3 - Apply; K4 - Analyze; K5 - Evaluate; H	X6 -	Crea		
					0100		
Unit	:1	BASIC E	LECTRONICS AND COMPUTERS IN CHEMISTRY	1	5 ho	urs	
Basi	c electror	nics – Resistors,	capacitors, transistors, operational amplifiers	, int	egra	ted	circuits,
			fiers and battery eliminators, signal to noise ra	tio, o	optin	niza	tion and
limit	of detection	on.					
Com	puters in	chemistry - Bas	sic structure of a computer – input / output c	levic	es, r	nen	nory and
stora	ge system	s, central processi	ing unit, peripherals, computer codes and arithmetical	metio	e, bir	nary	number
syste	ms – float	ing point represer	ntation, floating point arithmetic, computational	erro	ors.		
		ſ		-			
Unit			COMPUTER PROGRAMING		5 ho		
	-	0 0	ples and techniques of programming, High and				0 0
-		ems, algorithms e	essentials of BASIC. C, C++, Java, Visual Ba	asic,	For	tran	, Pascal,
SQL		-					
Unit			PROGRAMS FOR CHEMIST	1	5 hou	urs	
			outing, Artificial Intelligence		1 0	c	VDD
			culations – monobasic and polybasic acid syst				
-	-		netry, potentiometry, equilibrium constants,			y I	products,
stanc	iaru deviat		regression analysis, half-wave potential calcula	auton	S .		
Dr.		Contemporary Von Tubes Vid					
-			eos, Animations, NPTEL, MOOC videos, onl	ine s	emii	lars	_
web1	nars for st	rengthening the su				A /	horre
1		Total Lecture h	IUUIS			4:	5 hours

Tex	xt Book(s)
1	Principles of Instrumental Analysis – Skoog and Leary, IV Edition, Saunders College
	Publishing, 1992.
2	Text book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV
	Edition, 1985
3	Electronic Principle – A.P. Malvino, PMH Publishers, III Edition, 1984.
4.	BASIC Programming for Chemists – Peter C. Jurs, T.L. Isenhour and C.L. Wilkins, John Wiley
	and Sons, 1987
5.	Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Education Ltd,
	VI Edition, 2001.
Ref	ference Books
1	Instrumental Methods of Analysis – Willard, Merit, Dean and Settle, CBS Publ.& Distributors,
	VI Edition, 1986
2	BASIC Programming – B.J. Holmes, Galgotia Book source Pub., 1983.
3	Programming for BASIC – M. Subramanian, A.H. Wheeler and Co. Pvt, Ltd., II Edition, 1987.
4	Programming and Computing with Fortran IV - K. P. Sharma, Affiliated East-West Press, Pvt.
	Ltd., 1976
5	Principles of Instrumental Analysis – Skoog, Holler & Nieman, Saunders College Publishing,
	V Edition, 2000
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	An Introduction to Programming through C++ <u>https://youtu.be/efXI8anQwXo</u>
2.	An Introduction to Artificial intelligence https://youtu.be/GHpchgLoDvI
3.	https://youtu.be/woVJ4N5nl_s-Phyton Basics
3.	https://youtu.be/JMUxmLyrhSk-Artificial Intelligence
Cou	urse Designed By: Dr. T.M. Sridhar

Mapping	g with P	rogram	ne Outco	omes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	М	L	S	L	М	S	S	L	L
CO2	M	М	M	L	L	L	М	М	L	М
CO3	S	S	S	М	М	S	S	S	М	М
CO4	M	М	S	S	S	S	L	М	М	S
CO5	S	L	S	S	S	L	S	S	S	S

Course code	UOMS115	SOFT SKILL Laboratory Safety Skills	L	Т	Р	С
Core/Elective	/Supportive	Supportive	4	0	0	5
Pre-requisite		Students should have an idea about science laboratories	•	llabu rsior		R2021
Course Objec	ctives:	laboratories	VC.	1 5101	1	
v	ectives of this cour	rse are to:				
		v to work safely in the lab and protect others				
• To out	line the organizati	on of a chemistry laboratory				
• To stat chemic		DS and universal precautions for disposal and ha	andli	ing c	of ha	zardou
-	irse Outcomes:					
On the success	sful completion of	f the course, student will be able to:				
1. To work	in a lab safely an	d prevent human accidents			K1	-K4
2. To pract	ice best lab practi	ces			K2	-K4
3. Student	should know how	to design a safe chemistry lab			K3	-K4
4. Knowled chemica	-	Safety Data Sheet (MSDS) and handling of I	harm	nful	K2	-K5
5. Setting u	p and handling cl	ean room facilities			K5	& K6
K1 - Rememb	er; K2 - Understa	nd; K3 - Apply; K4 - Analyze; K5 - Evaluate; F	K6 -	Crea	te	
	1					
Unit:1		Lab safety procedures practiced in the Chemical laboratory		5 ho		
gonorai iadulfa	iory safety and av	vareness including eye shower to fume hoods.				
Safety kits, de		vareness including eye shower to fume hoods. orage. SOP for personal safety.	14	<u>5 ho</u>	urs	
Safety kits, de U nit:2	vices, uses and sto			5 hou fety;		an roon
Safety kits, de U nit:2 Material Safet Facility Universal Pred	vices, uses and sto y Data Sheet (MS cautions and its ir	Drage. SOP for personal safety. Universal precautions	s saf	ety;	Clea	
Safety kits, de Unit:2 Material Safet facility Universal Pred	vices, uses and sto y Data Sheet (MS cautions and its ir	Drage. SOP for personal safety. Universal precautions SDS), chemical, radiation, fire, electrical and ga nportance in the handling of hazardous chemica nd biohazardous materials	s saf	ety;	Clea	
Safety kits, de Unit:2 Material Safet facility Universal Prec nandling radio	vices, uses and sto y Data Sheet (MS cautions and its in pactive materials a Contemporary s, YouTubes Vid	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and ga nportance in the handling of hazardous chemica nd biohazardous materials Issues leos, Animations, NPTEL, MOOC videos, online	s saf Ils in	fety; the	Clea lab;	
Safety kits, de Unit:2 Material Safet Facility Universal Prec nandling radio	vices, uses and sto y Data Sheet (MS cautions and its ir pactive materials a Contemporary	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and ga nportance in the handling of hazardous chemica nd biohazardous materials Issues leos, Animations, NPTEL, MOOC videos, onli- subject matters.	s saf Ils in	ety; the	Clea lab; nars	
Safety kits, de Unit:2 Material Safet facility Universal Prec handling radio	vices, uses and sto y Data Sheet (MS cautions and its in active materials a Contemporary s, YouTubes Vic trengthening the s	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and ga nportance in the handling of hazardous chemica nd biohazardous materials Issues leos, Animations, NPTEL, MOOC videos, onli- subject matters.	s saf Ils in	ety; the	Clea lab; nars	
Safety kits, de Unit:2 Material Safet Facility Universal Prechandling radio Expert lecture webinars for s Text Book(s) Laborator	vices, uses and ste y Data Sheet (MS cautions and its in pactive materials a Contemporary s, YouTubes Vic trengthening the s Total Lecture	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and gate anportance in the handling of hazardous chemical nd biohazardous materials Issues eleos, Animations, NPTEL, MOOC videos, onlight subject matters. hours and Practice 1st Edition Anthony Fuscaldo Dece	s saf Ils in ine s	Tety; 1 the semin	Clea lab; nars 30 l 30	- nours
Safety kits, de Unit:2 Material Safet facility Universal Prec nandling radio Expert lecture webinars for s Text Book(s) Laborator	vices, uses and ste y Data Sheet (MS cautions and its in pactive materials a Contemporary s, YouTubes Vic trengthening the s Total Lecture	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and gate nportance in the handling of hazardous chemical nd biohazardous materials * Issues leos, Animations, NPTEL, MOOC videos, onlight subject matters. hours	s saf Ils in ine s	Tety; 1 the semin	Clea lab; nars 30 l 30	- nours
Safety kits, de Unit:2 Material Safet facility Universal Prece handling radio Expert lecture webinars for s Text Book(s) 1 Laborator 2 The Foun Reference Bo	vices, uses and sto y Data Sheet (MS cautions and its in pactive materials a Contemporary s, YouTubes Vic trengthening the s Total Lecture b ry Safety Theory a dations of Labora	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and gate nportance in the handling of hazardous chemical nd biohazardous materials * Issues leos, Animations, NPTEL, MOOC videos, onlight subject matters. hours and Practice 1st Edition Anthony Fuscaldo Dece tory Safety Stephen R. Rayburn 1990 Springer-V	ine s	ety; the semin	Clea lab; nars 30 l 80 ew Y	– nours Zork
Safety kits, de Unit:2 Material Safet Facility Universal Pred handling radio Expert lecture webinars for s Text Book(s) Laborator 2 The Foun Reference Bo	vices, uses and ste y Data Sheet (MS cautions and its in active materials a Contemporary s, YouTubes Vid trengthening the s Total Lecture I ry Safety Theory a dations of Labora oks practices in the la	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and ga nportance in the handling of hazardous chemica nd biohazardous materials Issues leos, Animations, NPTEL, MOOC videos, onli- subject matters. hours and Practice 1st Edition Anthony Fuscaldo Dece	ine s	ety; the semin	Clea lab; nars 30 l 80 ew Y	– nours Zork
Safety kits, de Unit:2 Material Safet Sacility Universal Pred andling radio Expert lecture webinars for s Text Book(s) Laborator 2 The Foun Reference Bo 1 Prudent p version. N 2 Guideline	vices, uses and ste y Data Sheet (MS cautions and its in active materials a Contemporary s, YouTubes Vic trengthening the s Total Lecture y Safety Theory a dations of Labora oks practices in the la Vational Academic	Universal precautions Universal precautions SDS), chemical, radiation, fire, electrical and gate nportance in the handling of hazardous chemicate nd biohazardous materials * Issues leos, Animations, NPTEL, MOOC videos, onlight subject matters. hours and Practice 1st Edition Anthony Fuscaldo Dece tory Safety Stephen R. Rayburn 1990 Springer-V aboratory: handling and management of chemices aboratory Safety in Academic Institutions Ame	mber mber verla	r 198 r 198 r 198 r 198	Clea lab; nars 30 l ow Y	- nours Zork updated

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. <u>https://youtu.be/qrUja_ILrOI</u> Material safety Data Sheet
- 2. <u>https://youtu.be/FD2hXZjgcEM- Problems</u> related to safety and loss statistics
- 3. https://youtu.be/8queMM7VVfw- Chemical Hazards / Lab Safety
- 3. <u>https://youtu.be/GjAD83B4JaY-PPE</u> and Lab Safety
- 4. https://youtu.be/ICz1GUQoiAQ-Fire Extinguishers
- Course Designed By: Dr. Deepa P Nambiar and Dr. K. Venkatachalam

Mappin	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	S	L	М	S	S	S	М	S	S		
CO2	S	S	S	S	S	S	S	S	S	S		
CO3	S	S	S	S	М	S	S	Μ	S	S		
CO4	S	S	S	S	М	S	S	S	S	S		
CO5	M	S	М	S	L	M	S	Μ	S	S		

Сош	rse code	CHE C002	ANALYTICAL INSTRUMENTATION	L	Т	Р	С
		Supportive	Core	4	0	0	4
COIG		Supportive	Student is required to have acquaintance with	-	u labu		-
Pre-	requisite		spectroscopic and chromatographic analysis	-	rsior		R2021
Cou	rse Object	tives:	specific and enformatographic anarysis	V CI	5101	•	
		ctives of this co	ourse are to:				
•			nts to basic electronics in instrumentation				
•	Introdu	ce EMR and st	udy the principle of Electronic and Molecular abso	rpti	on in	mo	lecules
•			ar species using spectrophotometers	1			
•			ciple of absorption and emission using flame				
•		-	atographic technique to separate and identify mole	cule	es an	d io	ns
•			of modern instrumentation in chromatography				
•		luate and criti	cally assess the organization and functioning of	spe	ctros	cop	ic
•	To cond	ceive different	ideas and conceptualize different hypotheses for q	uali	itativ	e ar	nd
I			f chemical compounds using modern instrumentati				
Expe	ected Cou	rse Outcomes	•				
On the	ne success	ful completion	of the course, student will be able to:				
1.	The stude	ent can interpre	t the electromagnetic spectra			K1	-K4
2.	Understa	nd the electron	ics and block diagram of spectroscopic instruments	5.		K2	-K4
3.	-	of absorption	/ emission and their molecular interaction with lig	ght a	and		
4	flame.	1.1				TZ O	17.5
4.	_		ation of molecules and ions using chromatography.				-K5
5.			ion of modern chromatographic equipment's				-K4
6.		-	tation of data from spectroscopic and chromatog	grap	hic	K5	& K6
V1	instrumer Romombo		stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	6	Croo	to	
NI -	Kemembe	ci, N2 - Olideis	stand, KS - Apply, K4 - Analyze, K5 - Evaluate, K	.0 - 0	ciea	le	
Unit	•1		Molecular Spectroscopy	2	0 ho	irc	
		vice - Resistor	s, capacitors, transistors, operational amplifiers,				circuite
	conductor		s, capacitors, transistors, operational amplifiers,	mu	egra	uu	circuits,
			photometry, Types of electronic excitation.	Ch	rome	onha	ore and
			and Hypsochromic shift, UV-visible Spectrophotor			-	
		tion rates, Cor			5		
Fluo	rimetry – I	Principles of f	uorescence, Instrumentation and Applications.				
Turb	idimetry a	nd Nephelome	try – Theory, Instrumentation and Applications				
Unit			Emission Techniques	20) hou	ırs	
Flan	ne Photom	etry-Theory,	Instrumentation and a few important applications.				
		-	ory, techniques of excitation, electrodes and their	r sh	apes	, fla	me and
-			<i>v</i> – instrumentation and application.				
	-	ption Spectrom	etry – Theory, instrumentation (flame and flamele	ess a	tom	izati	on) and
	cations.	1 1	ad a sum of a surd as a list of a sur				
• •		aces, backgrou	nd correction and applications	24) k	1 14 ~	
Unit		of observed -	Chromatography) hou		in laver
		-	raphy – Introduction, principle and applications o romatography.	1 CO	IUIII	.i, th	III layer
		• • •	hniques – Principle and applications of flash va	cum	m co	lum	nn
		• •	tography and High performance liquid chromatogra				

Contemporary Issues	
Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, onlin	ne seminars –
webinars for strengthening the subject matters.	
Total Lecture hours	60 hours
Text Book(s)	
1 Principles of Instrumental Analysis – Douglas A. Skoog, Saunders Colleg 1985.	
2 Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Ed Edition, 1985.	
3 Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson Edition, 2001	n Education Ltd, VI
4. Principles of Instrumental Analysis – Skoog and Leary, Saunders Colleg 1992.	
5. Analytical Chemistry – Gary D. Christian, Wiley, New York, V Edition, 200	01.
6 Handbook of Instrumental Techniques for Analytical chemistry – F. Settle, I inc, 1997	Prentice Hall
Reference Books	
1 Instrumental Methods of Analysis – Willard, Merit, Dean and Settle, CBS P Distributors, VI Edition, 1986.	ubl. &
2 Instrumental Analysis – Gary D. Christian & James, E. O'Reilly, Ally Edition, 1986.	n & Bacon Inc, II
3 Analytical Chemistry – J.G. Dick, McGraw Hill Publishers, 1975	
4 Instrumental Methods of Chemical Analysis – G.W. Ewing, McGraw Hill P	ublishers, 1975.
⁵ Quantitative Chemical Analysis – D.C. Harris, W.H. Freeman Publication, I	V Edition, 1995.
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1. https://youtu.be/9KkcioAoO-Y-Gas chromatography	
2. <u>https://youtu.be/DAwXk77DXUM-</u> Introduction to Industrial Instrumentation	on
3. <u>https://youtu.be/5wR9H1FryLs-Fluoroscence</u> Spectroscopy	
4. <u>https://youtu.be/Yzan11nP6Ls-Atomic</u> Absorption Spectroscopy	
5. <u>https://youtu.be/SnbXQTTHGs4-Chromatographic Techniques</u>	
6. <u>https://youtu.be/1F6CxVF5I9g-Flame Photometer</u>	
Course Designed By: Dr. K. Ravichandran, Dr. Deepa P Nambiar and Dr. K. Ver	nkatachalam

Mapping	g with P	rogramr	ne Outco	omes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	S	S	S	S	М	S	S
CO2	S	S	S	S	М	S	М	М	М	L
CO3	S	S	S	S	L	S	S	S	S	S
CO4	S	Μ	S	S	L	S	S	L	S	М
CO5	S	S	S	М	S	S	S	S	S	М

Course code	CHE E002	ANALYSIS OF COMPLEX MATERIALS	L	Т	Р	С
Core/Elective/S	upportive	ELECTIVE	3	0	0	3
Pre-requisite		Students should know about chemical analysis		labu rsior		R2021
Course Object						
The main object						
•	to analyze ore	•				
		ures to be used for different types of ores and alloy	S			
		ompounds using chemical analysis				
		cules and ions present in organic compounds.				
		perties of fuels etermine their properties				
Expected Cou						
-		of the course, student will be able to:				
		thods used in analysis of complex materials			K1	-K2
2. Toidentif	y the procedur	e to analyze the chemical nature of Ore and alloy s	amp	les	K2	-K4
		ical reactions involved in analysis of materials	1		K3	-K4
		tiple and assimilate the various steps involved in cl	nemi	cal	K3	3-K5
analysis						
		y assess properties of complex materials				-K5
	-	analyze any ores, alloys, organic compounds and fuel	s tha	it is	K5	5 - K6
		analytical procedures stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	X6 -	Crea	te	
		stand, No Apply, N Amalyze, N Evaluate, E	10			
Unit:1		Ore and Alloy Analysis	1	5 ho	urs	
		Sample preparation – Decomposition and dissolu	utior	of	the	sample,
		– acid and alkaline fluxes.				
		te analysis of Ores and Alloys – Oxide Ore- Haem	atite	e, Ca	rboi	nate Ore
– Dolomite, Al	loys – Solder a					
Unit:2		Analysis of Organic Compounds		5 hou		11 11
	•	position of organic compounds – Dry and wet ash oon, nitrogen and hydrogen in organic compounds.	<u> </u>	Fus	10N	- alkalı
	•					
Fischer's reage		ater in liquids and solids. Direct and indirect met	nod	s – u	ise o	of Karl-
•			Incre	1 1	dah	vida and
-		mine, phenolic – OH, alcoholic – OH, vicinal hydruration in oils and fats – Bromination and iodine n		-		•
	•	hetry – Theory, instrumentation (flame and flame)				-
applications.						
Unit:3		Fuel Analysis	1	5 hou	ırs	
Fuel Analysis	- Solids, liqui	ds and gaseous fuels - Sampling procedure, ulti	imat	e and	d pr	oximate
	_	ex, ash content, Calorific value by bomb calorime			-	
calorimeter.						
Liquid fuels –	Flash point, v	iscosity, carbon residue, aniline point, pour point	– D	etern	nina	tion and
significance	1					
	Contempora					
-		Videos, Animations, NPTEL, MOOC videos, onli	ne s	emir	nars	-
	rengtnening th	e subject matters.				

	Total Lecture hours	60 hours
Tex	t Book(s)	
1	Text book of Quantitative Inorganic Analysis - A.I. Vogel, ELBS, III Edn., 1	.982.
2	Vogel's Text Book of Quantitative Chemical Analysis – A.I. Vogel, Pearson	Education
	Ltd, VI Edition, 2001.	
3	Instrumental Methods of Analysis - Willard, Merit, Dean and Settle, CH	BS Publ. &
	Distributors, VI Edition, 1986.	
4.	Instrumental Analysis – Gary D. Christian & James, E. O'Reilly, Allyr Edition, 1986	n & Bacon Inc, II
5.	Principles of Instrumental Analysis – Douglas A. Skoog, Saunders Colleg 1985.	e Publ. III Edition,
6	Text Book of Quantitative Inorganic Analysis - A.I. Vogel, ELBS, III Edi	tion, 1976, and IV
	Edition, 1985.	
7	Fundamentals of Analytical Chemistry – D.A. Skoog and D.M. West,	Holt Rinehart and
	Winston Publications, IV Edition, 1982.	
8	Quantitative Organic Analysis – S. Siggia and J.G. Hanna, Wiley –Intersci 1979.	. Publ. IV Edition,
Ref	erence Books	
1	Fuel Testing – G.W. Himus, Leonard Hill, 1954	
2	Technical Methods of Analysis – R.C. Griffin, McGraw Hill, 1965.	
3	Analytical Chemistry – J.G. Dick, McGraw Hill Publishers, 1975.	
4	Chemistry of Engineering Materials - C.V. Agarwal, TARA Publicaions, II	Edition, 1965.
Rela	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1.	https://youtu.be/KgUmNQD6m5Q-Alloy and their Properties	
2.	https://youtu.be/m-5EnGAMKF4-Determination of Copper in Brass	
3.	https://youtu.be/qu1v60L1Chk- Proximate Analysis of Fuel/Coal	
4.	https://youtu.be/_GqBl83Koig- Testing for Hydrogen, Oxygen, Carbon Dio	xide, Ammonia
	Course Designed By: Dr. Deepa P Nambiar and Dr. K. Ravichandran	

Mapping	Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	Μ	S	М	L	М	M	Μ	S	L			
CO2	S	S	S	S	S	S	S	Μ	М	М			
CO3	S	S	S	S	М	М	S	Μ	S	S			
CO4	Μ	S	S	S	М	S	S	Μ	S	S			
CO5	S	Μ	S	М	S	М	S	S	S	S			

Course code	CHE C003	ANALYTICAL CHEMISTRY- PRACTICAL-I		L	Т	Р	С
Core/Elective	/Supportive	Core		0	0	3	3
Pre-requisite		Students should know about analy chemistry		-	labu rsior		R2021
Course Object	tives:						
The main obje	ctives of this co	ourse are to:					
• To lea	rn the practical	knowledge about the conductivity and pote	ntiome	tric	titra	tion	IS,
nephel	ometry and flue	prometry using lab scale experimental metho	ds.				
• To mo	tivate the stude	nts to understand the basic principles of sp	ectroph	noto	meti	y a	nd carry
out qua	antitative analy	sis.					
		tical instrumental analysis					
		enance of records, observations and data inte	rpretat	ion			
Expected Cou	irse Outcomes	•					
On the success	sful completion	of the course, student will be able to:					
1. To prepa	re for each exp	eriment by studying lab handouts and links t	herein			K1	-K4
	-	lern problems and scientific controversies		lvti	cal	K 2	2-K4
chemistr				<u></u>)			
	2	n experiments to estimate the amount of s	species	us	ing		
	ntation techniq		1		υ		
		's law and determine the unknown concentra	ation			K2	-K5
		of electrochemistry and the measurement		ectri	cal	K3	S-K4
		e practical seasons.	01 010				
		concepts of conductometric and potentioned	etric tit	rati	ons	K5	& K6
		nalysis of unknown solutions using the c					
instrume	-		1		U		
K1 - Rememb	er; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Evalu	iate; K	6 - (Crea	te	
List of Exper-							
-	Spectrophoto	metry:					
		ation of Iron /Cobalt.					
	2. Determin	ation of dissociation constant of an indicator.					
	3. Determin	ation of Binary mixtures.					
	4. Determin	ation of Mn in steel.					
	Gas Chromat	ography:					
		nination of efficiency of a column.					
		nination of Rt values for various organic cor	npound	ls.			
		ution of mixtures - Hydrocarbons, alcohols					
	Potentiometry						
		nination of pKa of an acid.					
		nination of zinc with ferrocyanide.					
		nination of ferrous ion with dichromate.					
		nination of carbonate/bicarbonate and mixtu	res.				
	Conductomer	•					
	Conductorme						
	Nephelometry						
	Determination Fluorimeter:	i oi suipilait.					
	Determinatio	of Quinine					
	Flash Point -	analysis					

	Contemporary Issues	
You	Tubes Videos, Animations, NPTEL, MOOC videos,	
	Total Lecture hours	60 hours
Tex	tt Book(s)	
Ref	Cerence Books	
1	Instrumental Methods of Analysis – Willard, Merit, Dean and Settle, CBS Distributors, VI Edition, 1986.	S Publ. &
2	Text Book of Quantitative Inorganic Analysis – A. I. Vogel, ELBS, III an	nd IV Edition
3	Instrumental Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Edition, 1986	z Bacon Inc, II
4	Principles of Instrumental Analysis D. A. Skoog, Saunders College Pub. 1985	Co., III Edition,
5	Instrumental Methods of Chemical Analysis – G.W. Ewing, McGraw Hil	l Publishers, 1975.
Del	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1.	https://youtu.be/xHQM4BbR040-Spectrophotomettry	
2.	https://youtu.be/anlIEj4xWhU-Potentiometry	
3.	https://youtu.be/u9t4vBF0h9k-Conductometry	
Coi	urse Designed By: Dr. K. Venkatachalam	

Mappin	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	М	L	S	M	S	L	S	М	L	S		
CO2	S	S	S	S	М	S	S	М	М	S		
CO3	S	S	S	L	L	S	S	S	S	S		
CO4	S	S	S	S	S	М	S	L	М	S		
CO5	S	S	S	S	М	L	S	М	S	S		

Cour	se code	UOM1001	INTERNSHIP	L	Т	Р	C					
Core/	Elective/S	Supportive	Supportive	0	0	0	2					
Pre-r	equisite		Students should have an idea about analytical chemistry	· · · · ·								
Cour	se Objec	tives:		•								
The n	nain obje	ctives of this co	burse are to:									
٠	To train	n the student he	ow to work safely in industries, research institu	tions, R	&D	labs	s, etc.,					
•	To und	erstand the SO	P for recording of data and analysis.									
٠	To exp	ose the student	to new products and analysis									
Expe	cted Cou	rse Outcomes	:									
On the	e success	ful completion	of the course, student will be able to:									
1.	To work i	n a lab safely ar	d understand SOP			K	1-K4					
2.	To practic	e best lab practi	ces and maintenance of instruments			K	2-K4					
3.	Submissio	on of a detailed i	report and its oral presentation			K.	3-K5					
K1 - 1	Remembe	er; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e; K6 -	Crea	ite						
NI - 1	Keinembe	er; K2 - Under	stand; KS - Appry; K4 - Anaryze; KS - Evaluat	e; NO -	Crea	ue						

					Intern	ship					
Students can observation			ıstry, R&D la	ıbs, F	Resear	ch insti	tution	ns for a per	riod (of 15 d	lays for on-site
<u> </u>	1.5	-	TIME OF 11	-		1 /		1.5.7		DN	

Course Designed By: Dr. T.M. Sridhar, Dr. K. Venkatachalam and Dr. Deepa P Nambiar

Mappin	g with P	rogramn	ie Outco	mes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	L	М	S	S	S	М	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	М	S	S	М	S	S
CO4	S	S	S	S	М	S	S	S	S	S
CO5	М	S	М	S	L	М	S	М	S	S

*S-Strong; M-Medium; L-Low

Course code CHE C601	PHYSICAL METHODS IN CHEMISTRY	L	Т	Р	С
Core/Elective/Supportive	Core	4	0	0	4
Pre-requisite	Students should know about the fundamental aspects on spectroscopy and their importance in the characterization of chemical compounds. Basic knowledge on UV-Vis, IR, NMR and Mass spectroscopic techniques will be advantageous.	•			R2021

Course Objectives:

The main objectives of this course are to:

- To provide the deep understanding of electronic structural changes of metal coordination complexes upon interaction with visible light.
- To understand basic theory and instrumentation involved in the origin of spectroscopy.
- Understand UV, IR, NMR and Mass spectra and their significance in the characterization of organic compounds.
- Illustrate the basic principle of splitting of spectral line of inorganic complexes in the presence of magnetic field upon interaction with electromagnetic radiation.
- To understand role of spectroscopy (UV, IR, NMR & Mass spectroscopy) to determine the structure of organic compounds.
- To learn ESR and their importance in the characterization of radicals.
- To understand basic theory & instrumentation involved with analytical techniques for characterization and imaging

Expected Course Outcomes:

On the successful completion of the course, student will be able to:

	-	
1.	Interpretation of various absorption band in the visible, IR and microwave region	K1-K4
	to understand the structural bonding, geometry and reactivity of inorganic	
	coordination complexes (K1-K4)	
2.	To understand the basic concept, interpretation and application of electronic	K2-K4
	spectra of hydrogen and many electron atoms also to derive angular momentum	
	of many electron atoms and term symbols of atoms (K2-K4)	
3.	Knowledge of crystal, vibrational, thermal, ATR and imaging modes to	K3-K4
	characterize chemical compounds (K3-K4)	

	rstand basic theory as well as instrumentation techniques for recordir	
	MR, ESR, MS, XRD, Raman, Mossbauer and Thermal spectra of ch	emical
	ounds (K2-K5)	
	pretation of UV, IR, NMR, TGA, DSC, XRD, Raman, Mossbauer, ES	
	pectra of compounds to understand their structural characteristics (K2	
KI - Reme	mber; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	6 - Create
Unit:1	ELECTRONIC SPECTROSCOPY (PHYSICAL &	20 hours
	INORGANIC CHEMISTRY)	
Q (1)		1
	hydrogen and many electron atoms, angular momentum of many e	
•	spectra of many electron atoms- Zeeman effect. Spectra of d	
	tion of electronic states through potential energy diagrams-Frank Con	
	ies of electronic transitions- theoretical treatment of absorption in nent integral, oscillator strength, selection rules parity, spin and symmetry	-
	ucing forbidden transitions vibronic and spin orbit coupling, polarizat	
	Formaldehyde, butadiene and benzene –group theoretical discussion.	ion bands.
	nic spectra of inorganic complexes – Selection rules (Laporte, orbita	al and spin selection
	l intensities, band widths, spectra in solids, spectra of aqueous solut	
	environments.	
Unit:2	MOSSBAUER & RAMAN SPECTROSCOPY, X-RAY	20 hours
Unit.2	AND THERMAL METHODS OF ANALYSES	20 110013
	(ANALYTICAL CHEMISTRY)	
Mossbauer	spectroscopy: Introduction, principle, instrumentation, recoil ener	gy, Doppler effect,
number of	MB signals, isomer shift, quadrupole splitting, magnetic hyperfine s	
to ⁵⁷ Fe, ¹¹⁹	Sn and ¹²⁹ I compounds	
Raman	Spectroscopy: SERS, SERRS. ATR techniques – UV, IR, Raman. Pri	nciple &
application	of ORD and CD in the identification of complexes.	
	0 & 5D NMR imaging techniques	
	diffraction - Bragg equation, space groups and point groups, di	
Thermal m	ethods of analysis – TGA, DTA and DSC – Principle and applications	5.
:3 Unit	NUCLEAR MAGNETIC RESONANCE (ORGANIC	20 hours
	CHEMISTRY)	

Origin of NMR spectrum-Nuclear spin states – NMR active nuclei – Nuclear magnetic moment– Larmor equation – Absorption of energy and Resonance – Population density of nuclear spin states. Saturation phenomena – Relaxation mechanisms, Bloch equation (only significance and derivation not required). Comparison of CW and FT instrument–Chemical shift - Standards in NMR – Shielding and De-shielding – Factors affecting chemical shift – electronegativity, hybridization, hydrogen bonding - anisotropic effect – double, triple bond, aromatic compounds and carbonyl compounds. Spin-spin coupling – splitting origin and rules – factors affecting coupling constant: cis, trans, gem, ortho, meta, para coupling – exchange with deuterium. Vicinity of the proton, Long range coupling, Karplus equation and curve. ¹J, ²J, ³J, ⁴J and ⁵J coupling in NMR, order of NMR spectrum. Spin systems: Two interacting nuclei: A2, AB, AX, AA'BB', dd, pair of doublet, AB quartet. Three interacting nuclei: AMX, ABX, ABC systems (only pattern is required). Simplification of complex NMR spectra-Lanthanide shift reagents, CIDNP and NOE. Basic principles and applications of VT NMR & MRI.

¹³C NMR – difficulties in recording ¹³C NMR: Homo nuclear and heteronuclear coupling. Decoupling technique: SFORD and Off Resonance decoupled spectrum identification of various types of carbon using ¹³C NMR. APT & DEPT spectra (DEPT-45, DEPT-90 and DEPT-135).

¹⁹F NMR Precessional frequency and heteronuclear coupling. Identification of organofluoro compounds (CF3CO2Et and CF3CH2OH) using NMR. ³¹P NMR – Chemicalshift and heteronuclear coupling. Identification of organophosphorus compounds suchas (CH3)3P, (C2H5O)2P=O and Ph3P. P-P bond in NMR. Basic principles of 2D NMR (COSY, NOSEY,

HSQC & HMBC).

Unit:4	UV,	IR,	MS	(ORGANIC	CHEMSITRY)	&	ESR	20 hours
	(INO	RGAN	NIC CI	HEMSITRY)				

Electronic absorption-Beer-Lamberts law, Types of electronic excitation. Chromophore and Auxochrome-Bathochromic and Hypsochromic shifts. UV-vis spectra of simple organic compounds such as alkenes, phenols, anilines, carbonyl compounds and 1,3-diketones. Woodward and Fieser rule for calculation of λ -max values of dienes and unsaturated ketones.

Infrared Spectra: Identification of functional groups in Organic Compounds, Finger print region. Inter and Intramolecular hydrogen bonding

Origin, basics and bloc diagram of Mass spectrum-Various types of Ionization techniques-Stability of Molecular ions, Meta stable ions. Base peaks and Isotope peaks. Fragmentation patterns of organic molecules such as benzenes, phenyl halides, phenols, benzyl alcohols, benzyl halides, aliphatic alcohols, aliphatic as well as aromatic aldehydes, ketones, acids, esters and amides. Fragmentation patterns of aliphatic/aromatic nitro and amine compounds. Fragmentation patterns of heterocyclic compounds (furan, pyrrole and pyridine only). McLafferty rearrangements of organic molecules.

Structural determination of Organic Compounds using UV, IR, NMR and Mass Spectra.

ESR Spectra of d¹-d⁹ Transition Metal Complexes with examples. Interpretation of g in cubic, axial and rhombohedral geometries. Calculation of g values with simple examples. Intensities of 'g_{||} and g_{\perp} peaks. Evidence for Metal-Ligand Bond Covalency- Cu(II)- Bis –Salicylaldimine, Bis-Salicylaldoximato copper(II) [(NH₃)₅CoO₂CoNH₃)₅]^{5+,} Cu(II)-diethyldithiophosphinate,

Vanadyldithiophsphinate, Copper(II) tetraphenylporphyrin, Co(II)- phthalocyanine, $K_2[IrCl_6]$. Interpretation of 'g' and 'A' values from ESRspectral data in- i) MnF₆⁴⁻, ii) CoF₆⁴⁻, and CrF₆³⁻.

interpretation	of g and A values from ESRspectral data in-1) with 6, if) core	$,$ and CII_0 .
	Contemporary Issues	
Expert lecture	s, YouTubes Videos, Animations, NPTEL, MOOC videos, onlin	ie seminars –
webinars for s	trengthening the subject matters.	
	Total Lecture hours	80 hours
Text Book(s)	·	·
1 Chang I	R (1971); Basic Principles of Spectroscopy, McGraw Hill, ISBN-13	078 007010517
1. Chang, I	(1971), basic Finicipies of Spectroscopy, McOraw Inn, ISBN-15	0.978-007010317

McGraw Hill, ISBN 0-07-707976-0

3.	Kemp, W. (2016); Organic Spectroscopy, 3 rd Ed, Palgrave
4.	Kalsi, P. S (2016); Spectroscopy of Organic Compounds, 7th Ed, New Age International
5.	Silverstein, R. M, Webster, F. X, Kiemble, D. J, Bryce, D. L (2015); Spectrometric
	Identification of Organic Compounds, 8 th Ed, Wiley
6	Jag Mohan (2016); Organic Spectroscopy Principles & Applications, 3 rd Ed, Narosa
	Publishing House
7	Pavia, L, Lapman, G. M, Kriz, S, Vyvyan, JR (2015); Introduction to Spectroscopy, Cengage
-	Learning, ISBN 13: 978-81-315-2916-4
8	Russell S. Drago, R. S (2016), Physical Methods for Chemists, II Ed
9	Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Medhi, O. K (2006); Inorganic Chemistry:
	Principles of Structure and Reactivity, IVth Ed, Pearson Education
10	Skoog, D. A; Holler, F.; Crouch, S (2017); Principles of Instrumental Analysis, 7th Ed,
11	Brooks/Cole publisher
11	Ebsworth, E. A. V.; Rankin, D. W. H.; Craddock, S (1986); Structural Methods in Inorganic Chemistry, Wiley-Blackwell, ISBN-13: 978-0632015924
12	Willard, H. H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F. A. Jr. (2004); Instrumental methods of
12	analysis CBS Publishers & Distributors; 7th Ed, ISBN 13: 9780534081423
13	Macomber, R. S (1998); A complete introduction to Modern NMR Spectroscopy, John Wiley,
15	ISBN: 0-471-15736-8
Rela	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
	https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod2.pdf
	• https://www2.chemistry.msu.edu/courses/cem351/FS16_HUANG/Lecture_Presentation/C
	h_10_Lecture_Presentation.pdf
	• https://www.slideshare.net/siraj174/sir-aj-nmr-spectroscopy-lecture
	http://web.iyte.edu.tr/~serifeyalcin/lectures/chem305/cn_1.pdf
	• <u>https://www.youtube.com/watch?v=qtpVfccYEHE&t=98s</u>
	• http://www.digimat.in/nptel/courses/video/104106122/L54.html
	• https://pubs.rsc.org/en/content/articlelanding/2018/cs/c6cs00565a
	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Map
	s/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Re
	sonance_Spectroscopies/Electron_Paramagnetic_Resonance/EPR%3A_Application
	rse Designed By: Prof. A. K. Mohanakrishnan, Dr. K. Parthasarathy, Dr. A. Murugadoss, Dr.
R. S	asikumar, Dr. T.M. Sridhar, Dr. K. Venkatachalam and Dr. Deepa P Nambiar.

Mapping	g with P	rogramr	ne Outco	omes*						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	S	S	М	М	S	М	Μ	L	L
CO2	S	Μ	S	S	М	М	S	Μ	L	L
CO3	S	Μ	S	М	L	М	S	L	L	L
CO4	Μ	S	S	S	L	S	М	L	L	L
CO5	S	S	S	Μ	L	L	S	L	L	L

Cou	rse code	CHE E00)N DI(0		1	N	A		L	Y	[]	ΓΙ	[(2	A	Í	L													L	1	Т		Р	•	(С		
Core e	e/Elective	/Supportiv	Elec	lect	ect	ect	ec	ec	ec	ec	c	c	c1	c1	ct	ti	iv	ve	e																																	3		0		0			3		
Pre-	requisite		Stud anal																	sh	10	oul	ld	11	kn	10)V	N		al	bo	D	lt	. (cl	la	IS	si	ic	28	al	1	n	n	et	h	00	ls		of			•	lal rsi				R	20)2	1
	rse Objec																																																	_											
The	•	ctives of thi																																																											
•	-	to analyze																			-						_								_														_								_				
•		edge of proc																													•			~										•	-							•	ez	c n	ıa	ter	ia	ls			
•		erstand the															~	-													•																			en	its	•									
•		e the develo	-																		_	-										-		_											-		_														
•		ically acces	s the	le a	e a	e a	e a	e :			ć	ć	2	8	а	ap	p	pl	lic	ca	iti	101	n	01	f (c	01	m	ŋ	ວເ	ut	e	r	p	r	0	gı	ra	ar	n	n	m	11	n	g	la	ar	lg	u	ag	ze	S 1	n	ch	eı	nis	sti	зy			
	applica	ations.	ainla	100	•	•	~	~	~	•	•						~	f			<u>_</u> 1	00	.		h	~ *	~	:.	a f	-	• •		n			~		~1				n		1.																	
•		f radio analy	-																												•						•							<u>п</u> .	ys	515	5														
Exne		irse Outcon				1 U	1 (. ι	. ι	ι	U	U			-11		IY	<u>1</u> u	i Ce	51		a	.110	a	1	y ı			11		-0	u		110	a	u	.0	Л.	10	5																		
		ful complet				of	of	of	of	of	of	of	of	f	f	- t	th	ne	e c	co)111	rs	se.	. s	stu	ıd	le	er	nt		W	il	1	b	e	2	h	bl	e	t	C):																			
1.		lge of metho																																										n	กร	ate	۲	ia	14							K	1	-K	74		
2.		ify the product																					-							•																					10	110		<u></u>	1			-k			—
۷.		compounds																		an	1a.	пy	γZ	C	u		-	Ľ	-1	10	-1	11	IC	a	.1	1	10	aı	u	11	C	-	C	л	. '	U	IC	5	,	aı	ю	iyə	Ċ	unc	L	N		/- Г	74		
3.	<u> </u>	naries the d		-			-	-	-	_									re	ea	act	tio	or	ns	s i	in	IV	'C	bl	V	e	d	i	in	l	a	n	a	ŀ	y	si	is	s	(of	1	n	at	e	ri	al	S 1	JS	inş	5						
		alytical tech																																																											
4.		rstand the u	upto d	da	d	d	d	d	d	Ċ	d	d	d	d	d	la	ato	e	d	le	eve	el	lop	pn	me	er	nt	S		ir	1	С	0	m	ŋ	pı	ut	te	er		p	or	0	g	gra	an	ni	n	g	1	ar	ıgı	ıa	ge	3	K	2	-K	ζ5		
	and tech																																																												
5.	•	o choose the	-	quii	ui	ui	ui	ui	ui	ui	ui	Ji	ii	ii	i	ir	e	ed	l p	oro	08	gra	ar	m	m	ir	18	5	1	aı	ng	gı	18	ag	ge) 1	tc)	W	V1	ri	it	e	8	1]	pr	0	gı	a	m	ı f	or	tł	iei	ſ	K	3	-K	ζ4		
6		y application															1	1											11	1						1						•									1	.1		<u>.</u>		T		0	т	7.	_
6.		e a protoco																•				•	•								ŊУ	'S	ć	an	10	1	0	or	g	a	n	11	C	; (c	on	nţ)(ou	n	as	tł	ıa	t 19	3	K	.5	&	z ł	26)
V1		l using class er; K2 - Uno																														٨	n	. n [.]	1.	. 75	70	<u>.</u> .	. 1	Ľ	- 1	5		1	C,	uc	1.	16	.t.	<u> </u>	Ľ	6		$\overline{\mathbf{Cr}}$	20	to					—
1/1 -	Kemenib	u, 112 - Ull	uersta	stall	iai	ıal	ıa	a	a	a	a	a	a1	11	11	110	u	, .	n		, -		Դի	γP	лу	у,	1		H		_		1	ıa	1,	y z	20	,ت	, 1	1		5		-]	Ľ	v č	11	10	u	, ت	Ľ	10			Ja	ιC					
Unit	:1			A	A	A	ł	1	1	1	ł	ł	P	A	A	A	n	1a	aly	ys				C gai															k	5	a	łr	n	d											1	5 h	0	ur	•S		

Analysis of Complex Materials:

Ore Analysis – Sample preparation – Decomposition and dissolution of sample, fusion process, use of fluxes – acid and alkaline fluxes.

General procedure of complete analysis of ores – oxides, sulphide and carbonate ores,one/two examples of each, cement, silicate, glass and industrial glasses.

Alloy analysis – Sample preparation, Ferrous and non-ferrous alloys :steel, solder, brass and bronze, aluminium alloy, etc.

Analysis of Organic Compounds:

Elemental analysis – Decomposition of organic compounds – Dry, and wet ashing. Fusion – lime, alkali metal fusion. Analysis of carbon, nitrogen, hydrogen, sulphur and halogens in organic compounds, equipment and methods, instrumental, Pregal method, Automatic CHN analysers.

Determination of traces of water in liquids and solids. Direct and indirect methods – use of Karl-Fischer's reagent, Dean and Stark method and instrumental methods.

Functional group analysis - Amine, phenolic-OH, alcoholic-OH, vicinal hydroxyl, methoxyl, ketonic, aldehyde group analysis. Unsaturation in organic compounds including oils and fats – Bromination, hydrogenation, iodine number, Rancidity

Unit:2	Basic Electronics	15 hours
Basic electroni	cs -operational amplifiers in chemical instrumentation, integrated circu	iits,
integrators, dif	ferentiators, rectifiers and battery eliminators, analog and digital circuit	s, signal to
noise ratio, sou	rces of noise in instrumental analysis, optimization and limit of detection	on

Computer Programing: Principles and techniques of programming, High and low level languages, operating systems, algorithms essentials of BASIC. C, C++, Java, Visual Basic, Fortran. Pascal, SQL.

Concepts of Python, Could computing, Artificial Intelligence

Unit:3	Radioanalytical Techniques	15 hours
Characteristics	of radiation, Nuclear instrumentation, measurements of radioa	ctivity – Gas
ionisation, sem	niconductor, Nuclear emulsion and autoradiography.	
Sample prepa	aration for analysis, Neutron Activation analysis, Isotopic dilu	tion analysis,
Radioimmuno	assasy. Direct, reverse and special radiometric titrations. Ap	pplications of
Radiochromate	ography and Radioelectrophoresis, Tracer Application of radioisotopes	in agriculture,
industry and m	edicine.	
	Contemporary Issues	
Expert lecture	s, YouTubes Videos, Animations, NPTEL, MOOC videos, online ser	minars –
webinars for st	rengthening the subject matters.	
	Total Lecture hours	45 hours

	Total Lecture hours	45 hours
Tex	at Book(s)	
1	Instrumental Methods of Analysis - Willard, Merit, Dean and Settle, CE	3S Publ. &

	Distributors, VI Edition, 1986
2	Instrumental Analysis – Gary D. Christian & James, E. O'Reilly, Allyn & Bacon Inc, II Edition,
	1986
3	Principles of Instrumental Analysis – Douglas A. Skoog, Saunders College Publ. III Edition,
	1985.
4.	Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1976, and IV
	Edition, 1985
5.	Fundamentals of Analytical Chemistry – D.A. Skoog and D.M. West, Holt Rinehart and
	Winston Publications, IV Edition, 1982
6	Quantitative Organic Analysis - S. Siggia and J.G. Hanna, Wiley -Intersci. Publ. IV Edition,
	1979.
Ref	ference Books
1	Fuel Testing – G.W. Himus, Leonard Hill, 1954
2	Technical Methods of Analysis – R.C. Griffin, McGraw Hill, 1965.
3	Chemistry of Engineering Materials – C.V.Agarwal, TARA Publications, II Edition, 1965
4	Principles of Radiochemistry – D.D. Sood, N. Ramamoorthy and A.V.R. Reddy, Eds.,
	IANCAS, Bombay, 1993.
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=ZQQVIGCtEns- Ore Analysis
2.	https://www.youtube.com/watch?v=XxA-wwYnNjc-Dean and Stark method
3.	https://www.youtube.com/watch?v=iMg_U5n1ZXo- Autoradiography
3.	https://www.youtube.com/watch?v=GJWXUrE2ma4-Neutron Activation Analysis
Cou	urse Designed By: Dr. K. Ravichandran, Dr. T.M. Sridhar, Dr. K. Venkatachalam and Dr. Deepa
P N	lambiar

Mapping	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	M	М	L	М
CO2	S	S	S	S	М	S	S	S	М	S
CO3	S	S	S	М	L	М	S	L	L	S
CO4	S	Μ	S	S	М	L	S	L	S	L
CO5	М	S	М	S	S	S	S	М	S	S

Course code	CHE E602		BI	OLOGICA	L CHEMIS	STRY	L	Т	Р	С	
Core/Elective/	Supportive	Ele	ctive				3	0	0	3	
Pre-requisite		org the	anic comp fundame	pounds. Stud	lents should s on biolog	ole of bio- know about ical system, pols.	-	llabı rsioi		R2021	
Course Objectives:											
 The main objectives of this course are to: To understand the function of carbohydrate in biological chemistry, determination of ring size and study of starch and cellulose. To understand the significances of amino acids, proteins nucleic acids in biological system. Illustrate the importance of the various elements in the biological system and to gain more insights into the binding of metal complexes with biomacrmolecules and transport and storage mechanism involving in the metaloenzymes. To understand the role of heavy metals in the human body- therapeutic and toxicity levels. 											
Expected Course Outcomes:											
On the successful completion of the course, student will be able to:											
1.To learn about structural and functions of carbohydrates, lipids, membranes, amino acids, proteins, antibiotics and vitaminsK1-K5											
	nd structure a				of RNA and	DNA			K2	2-K4	
3. Understand the key function of metal ions such as Fe, Co, Ni Zn and Cu in living K1-K4 system, particularly in transports (energy and O ₂), storage, electron- and proton transfer, hydrolysis, etc. which are taking place at the active site of metalloproteins and enzymes											
4. Toxicity of metals and their effects in the biological system K1-K4											
5.To evaluate toxicity of drugs used in cancer and radiodiagnosisK5 & K6											
K1 - Remembe	er; K2 - Unde	rstan	nd; K3 - A	Apply; K4 - A	Analyze; K5	- Evaluate; F	K6 -	Crea	te		
Unit:1				rganic Chei	-			0 ho			
 Carbohydrates: Pyranose and furanose forms of aldo-hexose and ketohexose-methods used for the determination of ring size-conformation of aldo-hexopyranose-structure and synthesis of lactose and sucrose. A brief study of starch and cellulose. Lipids and Membranes: Molecular structure of lipids. Fatty Acids, TriglyceridesTypes of membrane lipids Amino acids and Proteins: Amino acids and Protein structure, Analysis of N-terminal and C-terminals in a polypeptide. Sanger method, Edman degradation and Enzymatic analysis. Primary, secondary and tertiary structure of proteins. Structure of collagen, myoglobin and haemoglobin. Nucleic acids: Chemistry of nucleic acids, nucleosides and nucleotides – Structure RNA and DNA and their biological importance. Biomolecules: Antibiotics and vitamins: A detailed study of structure, and stereochemistry of penicillin, cephalosporin. Chemistry and physiological action of ascorbic acid, thiamin, riboflavin and pyridoxine – Elementary aspect of vitamin A, E, K and B12. 											
Unit:2							1	5 ho	urs		

fixation: Introduction, types of nitrogen fixing microorganisms. Nitrogenase enzyme - Metal clusters in nitrogenase - redox property - Dinitrogen complexes - transition metal complexes of dinitrogen - nitrogen fixation via nitride formation and reduction of dinitrogen to ammonia. Biological redox systems: Cytochromes -Classification, cytochrome a, b and c. Cytochrome P- 450. Transport of electrons: Iron-Sulphur Proteins: Rubredoxins and Ferredoxins, Structural and Spectral features of Iron-Sulphur Proteins. Photosynthesis and chlorophyll's. **Bio-Physical Chemistry** Unit:3 15 hours Thermodynamics and biology-Basic concepts of structure and functionality-membranesstructure, function transport properties, aspects of electrochemical phenomena - active transport, ionophores, biological energy storage systems - stepwise mechanism of photosynthesis versus potential. Enzymes - Nomenclature and classification, chemical kinetics, the free energy of activation and the effects of catalysts, kinetics of enzyme catalyzed reactions - Michaelis - Menten equation - Effect of pH, temperature on enzyme reactions, Factors contributing to the catalytic efficiency of enzymes. Membranes - Phase Equilibria, Donnan effect, Donnan Potential, Phase transition in Lipid bilayers, Free energy determination for ATP hydrolysis from sodium-potassium pump, Allosteric effects – Monod-Wyman-Changeux Theory, Assigning of Statistical weights for Helix-Coil transition in proteins, Study by spectroscopic methods. **Bio-Analytical Chemistry** Unit:4 15 hours Essentials of trace elements and chemical toxicology: Trace elements in biological system. Metal ion toxicity - classes of toxic metal compounds- detoxification. Metals in medicine: Anti-arthritis drugs - Au and Cu in rheumatoid arthritis - Li in psychiatry - Pt, Au and metallocenes in anticancer drugs- metals in radio diagnosis, radio therapy and magnetic resonance imaging. Transport and storage of metals: Mechanism - Fe, Cu, Zn and V storage and transport - metallothioeins. Molecular mechanism of iron transport across the membrane – sodium and potassium ion pumps. Pollution studies - Effluent and water treatment.. **Contemporary Issues** Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars webinars for strengthening the subject matters. **Total Lecture hours** 60 hours **Text Book(s)** Zubay, G, L. (1997); Biochemistry, 4th edition, Brown (William C.) Co 1. Nelson, D, L Lehninger, A, L Cox M, M. (2008); Principles of Biochemistry, 5th Edition, New 2. York: W.H. Freeman. John McMurray, (2008); Organic Chemistry, 8th edition, Brooks/Cole. 3. Finar, I. L. Vol 2 (2018); Organic Chemistry: Stereochemistry and the Chemistry of Natural 4. product, IIIrd Ed, Pearson Williams D. R. (1976); Introduction to Bioinorganic Chemistry, Thomas, ISBN-13: 978-5. 0398034221. Kaim, W, Schwederski, B, Klein, A. (2013); Bioinorganic chemistry: Inorganic Elements in 6. the chemistry of life, 2nd edition, Wiley. Das Asim K. (2007); Bioinorganic Chemistry, 1st edition, Books and Allied (P) Limited. 7. Mugherjee G. N, Arabinda D, (1993); Elements of Bioinorganic Chemistry, 4th Edition, U. N. 8. Dhur & Sons Pvt. Ltd. 9. Satake M. Mido Y. (1996); Bioinorganic Chemistry, ISBN 81-7141-301-1, Discovery Publishing House, New Delhi. Eichorn, G, (1973); Inorganic Bio-Chemistry Vol. I and II, IV Ed, Elsevier. 10. Zhimin, T, (2008); Analysis of Cytotoxicity of Anticancer Drugs, VDM Verlag Dr. Mueller 11. E.K.ISBN: 9783639063486, 3639063481

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- <u>https://www.youtube.com/watch?v=iuW3nk5EADg</u> <u>https://www.youtube.com/watch?v=aeC7M9PDjQw</u> <u>https://www.youtube.com/watch?v=DhwAp6yQHQI</u> <u>https://www.youtube.com/watch?v=ZqoX2W1N6l0</u>
- https://www.youtube.com/watch?v=lsNalwRnaq0&list=PLbMVogVj5nJSHhL_cMKfzLv5 56ddrIT90

https://www.youtube.com/watch?v=pXztk04J7u0&list=PLFW6lRTa1g83-

gUOcT3ay875UG3a9Mu11

Course Designed By: Dr. T.M. Sridhar, Dr. K. Parthasarthy and Dr. P. Prabhu

Mappin	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	S	S	М	М	S	М	Μ	L	L
CO2	S	M	S	S	М	М	S	Μ	L	L
CO3	S	M	S	М	L	М	S	L	L	L
CO4	Μ	S	S	S	L	S	М	L	L	L
CO5	S	S	S	М	L	L	S	L	L	L

*S-Strong; M-Medium; L-Low

Course code	CHE C004	ANALYSIS OF COMPLEX MATERIALS AND SEPARATION TECHNIQUES - PRACTICAL	L	Т	Р	С
Core/Elective	/Supportive	Core	0	0	3	3
Pre-requisite		Students should know about separation and chemical analysis	Syllabus Version			R2021
Course Obies	timoge					

Course Objectives:

The main objectives of this course are to:

- To impart practical knowledge on the use of classical methods of analysis to complex materials
- To motivate the students to understand the basic principles of dissolution of complex materials and carry out quantitative analysis of substances important in day-to-day life
- To impart hands on training in chromatographic techniques.
- To separate and quantify samples using Ion exchange chromatography
- To analyse fuel samples
- To learn proper maintenance of record observations and data interpretation
- To conduct experiments in industry with real samples.

Expected Course Outcomes:
On the successful completion of the course,

Ont	the successful completion of the course, student will be use to.	
1.	Importance of analytical chemistry in the analysis of samples in day-to-day life	K1-K4
2.	To appreciate the modern problems and scientific controversies in analytical chemistry	K2-K4
3.	To design and perform experiments to separate the ions and estimate them qualitatively and quantitatively.	K3-K4

student will be able to.

4.	To verify	the nature of fuels and determine their properties as per standar	ds	K2-K5							
5.	To valida	te the theory of sampling, dissolution and separation of compl	ex	K4-K6							
	materials										
6.	To under	stand the principle of ion exchange chromatography and qua	ntify the	K5 & K6							
		less than 1% error.									
K1 -	Remembe	r; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - Crea	te							
Unit		Analysis of Complex Materials Employing Titrimetric and Gravimetric Methods									
1.		- solder, cupro-nickel alloy, stainless steel, brass, aluminium all	oy.								
2.		ate and suphlide ores, cement.									
3.		st, hydrogen peroxide, bleaching powder.									
4.		ceuticals – Asprin, Ascorbic acid, herbal medicine									
5.	Phosph	ate in cola beverages									
Unit	.2	Chromotographic Techniques									
		Chromatographic Techniques	_								
	-	matography - Separation of cations and anions, dyes in ink	ζ.								
-	er chromato										
Ion-e	Ion-exchange chromatography - Separation of Zn and Mg. Separation of Cd and Zn.										
Unit	Unit:3 Fuel Analysis										
Umt		Melting point, Flash Point, Pour point									
		Contemporary Issues									
Exne	ert lectures		line semir	nars —							
-	Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters.										
	Total Lecture hours 60 hours										
Text	Book(s)										
		xtbook of Quantitative Chemical Analysis Hardcover – 9 Octob	er 1989								
	0	gel (Author)	CI 1707								
		alitative Inorganic Analysis Paperback – 1 January 2012									
	by Svehla / Sivasankar (Author)										
	Reference Books										
	by J. Mendham (Author)										
		d Gunn'S Dispensing for Pharmaceutical Students, 12/E Paperba	ack – 1 Jai	nuary 2008							
Rela	ted Onlin	e Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
	-	w.youtube.com/watch?v=Pq9z3CPSJ_E-Analysis of Asprin									
	-	vw.youtube.com/watch?v=2K_C1SGIMU4-Analysis of Bleaching	-								
		vw.youtube.com/watch?v=23W5Z_redfs- Paper Chromatograph	•								
	<u> </u>	w.youtube.com/watch?v=qdmKGskCyh8-Thin Layer Chromate	ography								
Cour	rse Design	ed By: Dr. T.M. Sridhar									

Mapping	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	M	S	S	М	L	М	S	М	S	
CO2	S	M	M	S	L	S	S	S	М	S	
CO3	S	S	S	S	M	M	S	S	М	М	
CO4	S	S	S	S	S	М	М	S	S	S	

	CO5	S	S	S	S	М	S	S	S	S	L
--	-----	---	---	---	---	---	---	---	---	---	---

Cou	rse code	CHE C005	INST		ENTAL	METH(AL	DDS-	L	Т	Р	С
Cor	e/Elective/	/Supportive	Core					0	0	3	3
Pre-	requisite		Students s instruments	should	know	about	analytical	•	labu rsior		R2021
Cou	rse Objec	tives:									
The	main obje	ctives of this co	ourse are to:								
	• To imp	art practical kn	owledge on the	he use c	of instrur	nental m	ethods of an	alysi	S		
• To train using in conductivity and potentiometric titrations, pH measurements, CV for real											
time samples.											
 To impart hands on training in spectrophotometric and emission analysis of complex materials 											
• To understand the separation using GC and HPLC techniques											
 To conduct experiments in industry with real samples. 											
Expected Course Outcomes:											
On t	he success	ful completion	of the course	, studen	nt will be	able to:					
1.	Importan	ce of analytica	l instruments	in the a	nalysis o	of sample	es in day-to-o	lay l	ife	K1	-K4
2.	2. To appreciate the modern problems and scientific controversies in analytical K2-K4 chemistry and develop experimental skills required for analysis.										
3.	To design and perform experiments to analyze complex materials and biological K3-K4 samples										
4.	To estimate the ions present is samples using emission techniques K2-K5										
5.	To validate the theory of sampling, dissolution and estimation of complex K5 & K6 materials and compounds.										
K1 -	Remembe	er; K2 - Unders	stand; K3 - A	pply; K	4 - Anal	yze; K5	- Evaluate; H	K6 -	Crea	te	
				-							

Spectrophotometry

- 1. Determination of Mn in steel.
- 2. Analysis of Permanganate Dichromate mixture.
- 3. Determination of nitrite in water.
- 4. Determination of phosphate in water.
- 5. Photometric titration of copper and bismuth using EDTA.
- 6. Sulphate and phosphate determination
- 7. pKa of an indicator

Cyclic voltammetry

1. Estimation of metals, glucose, uric acid

Potentiometry:

- 1. Determination of cobalt using ferricyanide.
- 2. Complexometric titrations with EDTA.
- 3. Determination of chloride and iodide in a mixture.
- 4. Determination of chloride in tap water/ground water.

Conductometry:

- 1. Conductometric titrations.
- 2. Hardness of water.

Biamperometry:

- 1. Determination of Ferrous with ceric sulphate
- 2. Determination of thiosulphate.

Gas Chromatography:

1. Separation of hydrocarbons.

Flame Photometry:

- 1. Determination of sodium, potassium and calcium.
- 2. Determination of potassium in combined fertilizer.
- 3. Determination of calcium in wine.
- 4. Simultaneous determination of sodium and potassium in soil samples.
- 5. AAS Determination of Cr, Pb, Ni

HPLC, Contact angle meter, Optical microscope

	Contemporary Issues							
Exp	pert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, or	nline seminars –						
wel	binars for strengthening the subject matters.							
	Total Lecture hours	60 hours						
Tex	xt Book(s)							
1	Conductometric Analysis: Principles, Technique, Applications <u>Hubert T</u> Chapman & Hall, Limited, 1934	homas Stanley Britton						
2	Flame photometry. John A Dean, New York, McGraw-Hill, McGraw-Hill series in advanced chemistry, 1960,							
Ref	ference Books							
1	Understanding Voltammetry by Richard Guy Compton, Craig E Banks · 2	2007						
2	Advanced Potentiometry Potentiometric Titrations and Their Systematic I	Errors						
	By Erzsébet Néher-Neumann · 2009							
3	Introduction to Voltammetric Analysis Theory and Practice							
	By Francis George Thomas, Günter Henze · 2001							
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1.	https://www.youtube.com/watch?v=LpiU6NRa560-Analysis of Binary m	nixture						
2.	https://www.youtube.com/watch?v=8CudRJjsrhU-Cyclic Voltammetry							

3.	https://www.youtube.com/watch?v=H7sL5Ym3Z5Y-Conductometric Titrations.

4. <u>https://www.youtube.com/watch?v=7i6sGH5Me6g-Complexometric</u> Titrations Course Designed By: Dr. Deepa p Nambiar

Mapping	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	М	S	S	М	S	L	М	S	S	S		
CO2	S	Μ	S	S	М	S	S	М	М	S		
CO3	S	S	S	S	L	М	S	М	М	S		
CO4	S	S	S	М	S	S	S	М	L	S		
CO5	S	S	S	S	L	S	S	М	S	S		

Course	code	CHE C006	OPTICAL AND SURFACE ANALYTICAL TECHNIQUES	L	Т	Р	С				
Core/El	Core/Elective/Supportive Core 4						4				
Pre-req	ıisite		Students should know about the analytical instrumentation								
Course	Objec	ctives:				Ī					
The main objectives of this course are to:											
• To describe the theory and instrumentation for analysis by interaction with light.											
• To identify the procedure to analyze the chemical nature and properties of fuels											
			nciple of microscopy and apply them to sample ana								
•]	'o obt	ain the structur	e of atoms and molecules as images using scanning	g pro	be te	echn	iques				
			rious types of crystals and analyze their properties		0						
			e composition of surfaces using state of the art tee	chnc	logi	cally	1				
		ed instrumenta									
-		irse Outcomes									
On the s	access	sful completion	of the course, student will be able to:								
1. De	termi	nation of optica	l properties of the given samples			K1	-K4				
2. Kr	owled	lge of procedur	es to be used for analysis of different types fuels			K2	-K5				
3. De	termi	ne the microstru	acture and chemical composition of samples			K2	-K4				
4. Im	aging	of atoms and n	nolecules of surfaces.			K2	-K5				
5. Ide	Identification of crystal stricture and properties of compounds K3-K4										
6. To	To determine the oxidation states of elements and their composition using K5										
su	surface analytical techniques										
K1 - Rei	nemb	er; K2 - Under	stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; F	K6 -	Crea	te					
Unit:1		0	ptical Instruments and Fuel Analysis	2	0 ho	urs					

lications,
Frich and
roximate
ker's gas
physical
cance.
d
,• ,
ations to
X-rays,
ative and
unve und
source,
kidation
kidation
kidation
-
-
- 5 —
- 5 —
- 5 —
- 5 —
5 — 0 hours
5 — 0 hours
6 – 0 hours Edition, Edition,
5 – 0 hours Edition,
D hours Edition, Edition, , and IV
6 – 0 hours Edition, Edition,
6 – 0 hours 6 Edition, Fdition, , and IV Ltd,
D hours Edition, Edition, , and IV
Edition, Edition, , and IV Ltd,
6 – 0 hours 6 Edition, Fdition, , and IV Ltd,

Ref	ference Books
1.	Chemical Instrumentation – H.A. Stuobel, Addison – Wesley Publ. Co., 1976.
2.	Handbook of Chemical Microscopy – E.M. Chamot and C.W. Mason, John Wiley, Vol. I – II,
	1944
3.	Treatise on Analytical Chemistry – Kolthoff and Elwing (all series).
4.	Comprehensive Analytical Chemistry – Wilson and Wilson (all series).
5.	Handbook of Instrumental Techniques for Analytical chemistry - F. Settle, Prentice Hall inc,
	1997
6.	Principles of Instrumental Analysis – Skoog, Holler & Nieman, Saunders College Publishing,
	V Edition, 2000
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1.	https://www.youtube.com/watch?v=1mhcLO8LLoI-Polarimetry
2.	https://www.youtube.com/watch?v=DBiEc8KM1e0-Scanning Electron Microscopy
3.	https://www.youtube.com/watch?v=D3JY4LgyX6Q-Transmission Electron Microscopy
4.	https://www.youtube.com/watch?v=jozx6dOoyxA-XPS
Co	urse Designed By: Dr. Deepa P Nambiar and Dr. K. Venkatachalam

Mapping	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	S	S	М	М	L	М	S	L	S		
CO2	S	Μ	S	М	S	М	S	S	М	S		
CO3	S	S	S	L	L	М	S	S	S	S		
CO4	M	S	S	M	M	М	М	S	L	S		
CO5	S	S	S	S	М	L	М	S	М	S		

Course code	CHE C00	07	SEPARATION TECHNIQUES		L	Т	Р	С		
Core/Elective/	Supportiv	Core			4	0	0	4		
e		Stude	nts should know about the separat	tion	Svl	labu	IS			
Pre-requisite		techn	1	.1011	-	rsioi		R2021		
Course Objectives:										
The main object										
			iple and theory of simple separation pro	cess	emp	loye	d in	the lab		
theory and instrumentation for analysis by interaction with light.										
• To outline the principles of various chromatographic techniques along with the methodology used.										
	lav the role	ofsiz	e of a molecule involved in separation using	no siz	ze ex	clus	ion			
-	tography	01 512	e of a molecule involved in separation ash	15 512		icius	1011			
		btain s	eparation of natural compounds to chen	nicals	and	d est	tima	te them		
	hromatogra									
		princi	ple, instrumentation of separation of gas	eous	mix	ture	s us	ing Gas		
	tography									
• To diff using H		solate a	nd characterize the various types of com	poun	ds p	rese	nt 11	n liquids		
Expected Cou		nes•								
			the course, student will be able to:							
1	-		using distillation, floatation, dialysis and	solve	ent		K1	-K4		
extraction	-	Junus	using distinution, noutation, dairysis and	50170	/11 t			111		
2. Selection	of procedu	res to	separate compounds using chromatograph	у			K2	2-K4		
3. Demonst	rate the wor	rking c	f instruments with block diagrams							
-	and contra		role of various separation techniques used	d in a	naly	vsis	K2	2-K5		
			of ions in solution using ion chromatograp	hy			K3	8-K4		
1			he molecules after separation using GC &	•	C		K5	5 & K6		
	-		d; K3 - Apply; K4 - Analyze; K5 - Evalua			Crea				
				,						
Unit:1			Techniques		2	0 ho	urs			
Distillation – P	rinciple – tl	heoreti	cal plates and HFTP, Applications							
	tion – Distr	ibutio	h law, Batch and continuous extraction. E	xtrac	tion	of se	olid	S-		
applications.										
	•		operation and applications.							
Dialysis – Theory, membranes and their choice, Electro dialysis- applications.Unit:2Chromatographic Techniques20 hours										
Unit:2	aia Mathad		Chromatographic Techniques	ontio				n Dond		
broadening and			neral aspects of chromatography, classifi	catio	11, 111	echa	unsi	II, Dallu		
0			y. truction and operation of column, choice	of ad-	sorh	ents	elu	ents and		
applications.	and Brubilly	0113	a section and operation of column, choice (or uu	.010	-1100,	UIU	und and		
	ography – N	Aechar	ism of separation, qualitative and quantita	tive a	appli	catio	ons.			
1	U I I		oice of adsorbent, solvents and application					nce thin		
layer chromato	01	•			- 1					
-	chromatogra	aphy –	Techniques and applications.							
Unit:3			Gas Chromatography	4	20 h	ours	5			

- Types, nature and selection of stationary and mobile phases, solid supports and their choice, columns - packed, open and capillary, sampling methods, instrumentation, detectors - types, sensitivity, limit of detection, operative principles of TCD, FID and ECD, comparison of detectors, temperature programming, derivative chromatography, hyphenated techniques qualitative and quantitative applications GC-MS and GC-IR

High Performance Liquid Chromatography Unit:4 20 hours Theory and equipments, types of pumps and their choice, types of columns and choice of column materials, detectors and applications. Size exclusion chromatography – Theory, gel filtration and gel permeation Supercritical fluid chromatography.

Contemporary Issues

Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars webinars for strengthening the subject matters.

	Total Lecture hours	60 hours					
Tex	at Book(s)						
1	Thin Layer Chromatograph – Egon Stahl, Toppan Printing Co., Pvt, Ltd.	, II Edn., 1969					
2	Physical and Chemical Methods of Separation – E.W. Beg. McGraw Hill, 1963.						
3	Gas Chromatography (Analytical Chemistry by Open Learning) – John	Willet, John Wiley &					
	Sons, 1991						
4.	Instrumental Methods of Analysis - Willard, Merrit, Dean and Settle, V	I Edition, CBS					
	Publishers and Distributors, 1986.						
5.	Principles of Instrumental Analysis - Skoog and Leary, IV Edition, Sa	unders College					

- Publishing, 1992 Principles of Instrumental Analysis – Skoog, Holler & Nieman, Saunders College Publishing, 6
- V Edition, 2000

Reference Books

- 1 Treatise on Analytical Chemistry – Kolthoff and Elwing (all series).
- 2 Quantitative Analysis – Day and Underwood
- Comprehensive Analytical Chemistry Wilson and Wilson (all series). 3
- 4 Physico - Chemical Techniques of Analysis - P.B. Janardhan, Vol. I & II.
- Principles and Methods of Chemical Analysis F. Walton, Prentice Hall, II Edn., 1966 5
- Modern Analytical Chemistry W.F. Pickering, Maroel Dec, 1971. 6
- Gas Analysis and Testing of Gaseous Materials Alteri, Mmer. Gas Asso. 1965. 7
- 8 Chromatography -Harry and Calvin, Van Nostrand Reinhold Company, II Edition, 1967
- 9 Quantitative Analysis Using Chromatographic Techniques - E.Katz, John Wiley & Sons Ltd, 1987

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- https://www.youtube.com/watch?v=Ia8yrBL2Xwc-HPLC 1.
- https://www.youtube.com/watch?v=iHrKsfw827c-Chromatographic Techniques 2.
- https://www.youtube.com/watch?v=N96JaRnE7n0-Extraction Methods 3.
- https://www.youtube.com/watch?v=8Q0VfIbhEmM-Ion Exchange Chromatography 4.
- Course Designed By: Dr. T.M. Sridhar

Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	Μ	S	S	М	S	S	М	S	S		
CO2	S	S	S	S	L	Μ	S	М	L	S		
CO3	М	S	М	М	L	М	S	L	М	L		
CO4	S	S	S	S	S	М	М	S	L	S		
CO5	S	S	S	S	М	S	М	М	S	S		

Course code	CHE E004	ELECTROANALYTICAL CHEMISTRY	L	Т	Р	С	
Core/Elective/Supportive		Elective	3	0	0	3	
Pre-requisite		•	of electrochemistry is Syllabus Version R2				
Course Objec	ctives:						
0	ectives of this co						
		d basics of electrochemical techniques and their app	plic	atio	ns		
-		g of electrochemical sensors					
		ochemical Impedance Spectroscopy					
		nd practical applications of voltametric techniques a			rogi	aphy	
		ples and applications of coulometry and electrograv	ime	etry			
-	irse Outcomes						
On the success	sful completion	of the course, student will be able to:					
1. Working	knowledge on a	sensors and electrochemical impedance spectroscop	y		K1	-K4	
2. Types of	electrodes and	their functions			K3	8-K5	
3. Electrical	double layer a	nd electrokinetic properties			K2	2-K4	
4. Distingui	sh different typ	es of voltametric and polarographic techniques			K2	2-K5	
5. Interpret							
		stand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K 6	6 - (Crea	nte		
			0				
Unit:1	Electrical De applications	ouble Layer, Corrosion and Electrokinetic	1	5 ho	ours		
Electrical dou	<u> </u>	ctrode - electrolyte interface, Types of interfaces,	the	rmo	dyn	amics (
	•	tion of electrocapillary phenomena, Point of Z			-		

Electrical double layer – Electrode - electrolyte interface, Types of interfaces, thermodynamics of electrified interfaces, derivation of electrocapillary phenomena, Point of Zero Charge (PZC), Lippmann equation, estimation of surface charge and surface excess and Gibbs adsorption. Structure of electrified interfaces, Helmholtz-Perrin, Gouy – Chapman and Stern models, specific adsorption. Corrosion - Thermodynamic criteria of corrosion of metals – Dry and wet corrosion, homogenous (Wagner and Traud's) and heterogenous theories, classification of corrosion –Uniform, Galvanic, Crevice, Pitting and Intergranular corrosion- Povrbaix diagram. Corrosion prevention - passivation and inhibitors. Electrokinetic phenomena - overview of Zeta Potential – Principles, Mechanism and applications. Conversion and storage of electrochemical energy. Fuel cells and Lithium-ion battery.

Unit:2Potentiometric and sensing techniques15 hour	
--	--

Potentiometry - standard and formal potentials - Nernst equation. Types of electrodes indicator and reference electrodes. Ion selective electrodes - crystalline and non-crystalline electrodes - glass electrode for pH measurements, mechanism of electrode response and evaluation of selectivity coefficient, asymmetry potential, alkaline and acid errors, applications of ion selective electrodes. Chronoamperometry and Chronopotentiometry. Potentiometric titrations - manual and automatic titrators, titrations including differential methods titrations in non-aqueous systems, titrations with polarized electrodes. Bipoteniometry - principle, instrumentation and applications. Amperometric and Potentiometric sensors - Gas Sensors, Bio sensors. Impedance spectroscopy, RDE, RRDE, sensors Unit:3 **Voltametric Techniques** 15 hours Voltammetry-Polarography- DME, polarograms, currents in polarography, polarographic maxima, effect of dissolved oxygen and application to chemical analysis, amperometeric titrations, pulse polarography – normal and differential pulse, square wave polarography, stripping methods cathodic and anodic stripping, linear voltammetry, sweep cyclic voltammetry, types of electrodes and chemically modified electrodes. Coulometric analysis -Theory, Faraday's laws, types of coulometres, coulometric titrations; Electrogravimetry – Theory, electrogravimetry, order of deposition, constant potential, constant current deposition and deposition of complex ions. **Contemporary Issues** Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars webinars for strengthening the subject matters. **Total Lecture hours** 45 hours Text Book(s) Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, Fundamentals of 1. Analytical Chemistry, 8th Edition A. M. Bond, Modern polarographic methods in Analytical Chemistry, Marcel Decker Inc., 2 1980 Principles of Instrumental Analysis - Douglas A. Skoog, F. Holler, Stanley Crouch, 7th Edn 3. Brooks/Cole publish; 7th edition, 2017 4. E. Gileadi, E. Kirowa-Eisner and J. Penciner, 3. Interfacial Electrochemistry: An Experimental Approach, Addison-Wesley Publishing Company, Massachusetts, 1975. P.T. Kissinger and W.R. Heineman, 8. Electroanalytical Laboratory Techniques in 5 chemistry, Marcel Decker Inc., 1984 **Reference Books** John O'M. Bockris, Amulya K. N. Reddy, "Modern Electrochemistry", Vol. I and II, Plenum 1 Publishing, 2008 John O' M.Bockris & A.K.N.Reddy, Modern Electrochemistry - Fundamentals of Electrodics, 2 Plenum Publishers, New York, 2000. Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr., CBS Publishers & Distributors; 7th 3 edition (2004). Modern polarographic methods in Analytical Chemistry- A. M Bond, Marcel Decker Inc., 1980 4 Laboratory Techniques in Electroanalytical chemistry – P.T. Kissinger and W.R. Heineman, 5 Marcel Decker Inc., 1984 6 Chemical Instrumentation – H.A. Stoubel, Addison- Wesley, 1976 Stripping analysis – J. Wang, VCH Publication, 1985

Re	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1.	https://www.youtube.com/watch?v=WsDTDiwmHVw-Coulometric Titrations									
2	https://www.youtube.com/watch?v=AbemMe19fF4-Polarography Basics									
3	https://www.youtube.com/watch?v=o1jytXWBiUc-Electrogravimetry									
Co	urse Designed By: Dr. Deepa P Nambiar, Dr. P. Prabhu and Dr A. Murugadoss									

Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	L	М	S	L	М	L	L	
CO2	S	S	S	S	М	Μ	S	М	S	S	
CO3	S	S	S	М	L	Μ	S	S	М	S	
CO4	S	S	S	М	S	S	М	М	М	S	
CO5	S	S	S	L	М	М	М	S	S	М	

Course code CHE E005 Core/Elective/Supportive		5	CH	CHR	R(OM		ГО)G	R	AP	H	Y A	DN AN IES	D		RFA	ACI	E	L	Т	Р		С	
Core	e/Elective/S	Supportive	Elect	tive	tive							3	0	0		3									
-			Stude	lents s	s sh	ho	uld	l kr	iov	N a	abo	out	th	e							Syllabus Version			R	2021
Cou	rse Objec	tives:																							
The	main obje	ctives of thi	s cour	rse are	are t	e to):																		
•		ine the prin	ciples	s of va	vari	rio	ous o	chr	on	nat	tog	gra	phi	ic t	ecł	nni	que	es al	ong	g W	ith t	he n	neth	od	ology
	used.		_		_																				
•		erentiate, iso	late an	nd cha	chara	rac	cter	ize	the	e v	var	iou	is ty	ype	es c	of c	com	pou	nds	pre	esen	t in l	iqui	ids	using
	HPLC To stud	y the oxidat	ion sta	oto of	.f +h	ha		rfor	200																
		be the topogi									no	me	tria	c le	-ve	15									
Exp	-	rse Outcon		or the		Bui	muc	005	u	ma						15									
		ful complet		f the c	e co	oui	rse,	, stı	ude	ent	t w	vill	be	e at	ole	to:									
1.		fy the suitabl																s					K	1-I	Κ4
2.	Selection	of procedure	es to sej	eparate	ate c	co	omp	our	nds	s us	sin	g c	hro	ma	atog	graj	phy						K	2-I	Κ4
3.	To separa	ate and estim	ate gas	iseous	us ai	and	d liq	quic	d sa	amj	ple	es u	isin	ıg i	nst	run	nent	S					K	3-I	ζ5
4.	Compare	and contrast	the ins	strum	men	nta	atio	n u	sed	l fo	or (GC	an	d H	IPL	C							K	2-I	Κ5
5.	To obtain technique	the structures	e of at	toms	is ar	nd	l mo	ole	cul	es	as	in	nag	es	usi	ng	sca	nnir	ng p	rot	be		K	4-I	ζ5
6.	To detern	nine the oxid techniques	ation s	states	es o	of e	eler	mer	nts	an	ıd	the	eir c	con	npo	siti	ion	usin	g su	ırfa	ce		K	58	& K6
K1 -		er; K2 - Un	derstar	und; K	K3	3 -	· Ap	ppl	y;]	K4	4 -	Aı	nal	yze	e; I	K5	- E	valı	ıate	; K	- 65	Crea	ate		
		1																							
Unit							Chr			0	/	-	•									5 ha			
mate		chromatog elopment, c alysis																							

Unit:2	GC & HPLC	15 hours										
Gas chromatography – Principle, instrumentation – columns and detectors, applications. High Performance Liquid Chromatography – Theory, columns, detectors and applications												
Unit:3	SPM & XPS	15 hours										
	be Microscopy, XPS, Auger electron spectroscopy – a and general applications, EDS	- Theory, Principle,										

Contemporary Issues	
Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, or	nline seminars –
webinars for strengthening the subject matters.	
Total Lecture hours	45 hours
Text Book(s)	
1 Principles of Instrumental Analysis – Skoog and Leary, IV Edition, Sa Publishing, 1992.	aunders College
2 Text Book of Quantitative Inorganic Analysis – A.I. Vogel, ELBS, III Edition, 1985	Edition, 1976, and IV
3 Physical and Chemical Methods of Separation – E.W. Berg, McGraw Hil	l Publications, 1963
4. Instrumental Methods of Analysis – Willard, Merit, Dean and Settle, CBS VI Edition, 1986.	S Publ. & Distributors,
Reference Books	
1. Modern Analytical Chemistry – W.F. Pickering, Maroel Dec, 1971.	
2. Gas Analysis and Testing of Gaseous Materials – Alteri, Mmer. Gas Asso	o. 1965.
3. Chromatography –Harry and Calvin, Van Nostrand Reinhold Company, 1	I Edition, 1967
4. Quantitative Analysis Using Chromatographic Techniques – E.Katz, John 1987	1 Wiley & Sons Ltd,
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1. https://www.youtube.com/watch?v=Ia8yrBL2Xwc-HPLC	
2. <u>https://www.youtube.com/watch?v=iHrKsfw827c-Chromatographic</u> Tecl	nniques
Course Designed By: Dr. K. Venkatachalam	

Mapping	Mapping with Programme Outcomes*												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	М	S	М	S	L	М	S	М	М	S			
CO2	S	М	S	М	М	S	S	S	М	S			
CO3	S	М	М	S	М	М	S	L	S	S			
CO4	M	М	М	S	L	L	М	L	S	S			
CO5	М	S	М	S	S	L	М	L	L	S			

UNIVERSITY OF MADRAS DEPARTMENT OF Analytical Chemistry							
Programme:	Ph.D., Analytical Chemistry						
Programme Code:	CHE 001						
Duration:	3-5 years						

Programme Outcomes:	PO 1 To understand the application of the analytical chemistry in today's changing technological world.
	PO 2 To deliver an in-depth information to learners in the area of Analytical Chemistry and to empower them to work independently.
	PO 3 To possess realistic and experimental knowledge across the principles of analytical chemistry.
	PO 4 To learn fundamental tools in analytical chemistry, classical analysis, modern microscopy, thermal, radio analytical, optical and instrumentations tools and their applications to different disciplines of chemical analysis.
	PO 5 To advances the acquaintance on the significance of spectroscopy, electrochemical, chromatography and surface analytical techniques.
	PO 6 To demonstrate competence in solving industrial and scientific research problems through experiments by selection of the relevant international standard protocols.
	PO 7 Professionally skilled towards employment in industries and higher studies in internationally renowned research institutions were they are competent to work as an individual and as a collaborative team member.
	PO 8 Execute and implement the analytical chemistry concepts to critical innovative thinking in the laboratory and problem solving to meet current day challenges.
	PO 9 To develop an appreciation for the problematic mission of adjudicating the accuracy and precision of data collected from the lab experiments and sharpened to them towards using appropriate computational statistical methods.
	PO 10 To apply effectively the concepts of analytical chemistry towards interdisciplinary nature of chemistry, biology, medicine, material science, forensic science and other related fields to meet the ever-growing variety of chemical challenges.

Programme Specific Outcomes:	• 1 Trained to be a responsible analytical chemist and implement safe laboratory practices by handling glassware, equipment and chemical reagents appropriately following international standard operating procedures
	• 2 Comprehensive analytical chemistry proficiency and research experience through methodically delivered courses and a mentored master project.
	• 3 Competent in applying analytical chemistry to analyse complex materials to any substances using classical and modern separation, isolation and identification techniques.
	• 4 Familiarity with spectroscopy, electrochemical, chromatography and surface analytical techniques along with the interpretation of spectra of unknown compounds
	• 5 Highly skilled and knowledgeable to clear competitive exams for higher studies in premier research institutions and industrial sector.

List of Courses:

Course	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
Ι	CHE P 001	Research and Publication Ethics		2
II	CHE P 002	Research Methodology	Core	4
III	CHE P 003	Instrumental Methods of Analysis	Core	6
III	CHE P 004	Analytical Techniques and Instrumentation-I	Core	6
III	CHE P 005	Analytical Techniques and Instrumentation-II	Core	6
IV	CHE P 006	A Course relating to Research Theme	Core	6

Method of Evaluation:

Sessional I	Sessional II	End Semester Examination	Total	Grade
20	20	60	100	*

* Marks with Grade: 90-100 (O) Outstanding; 80-89 (D+) Excellent; 75-79 (D) Distinction; 70-74 (A+) Very Good; 60-69 (A) Good; 50-59 (B) Average

Cou	rse code	CHE P 00	02	RESEARCH METHODOLOGY	L	Т	Р	С			
Core	e/Elective/S	upportive	CO	RE	5	1	0	6			
	requisite		Stu	dents should know what is research	•	labu rsior		R2021			
	rse Objec										
The	 The main objectives of this course are to: To familiarize scholars with basic concepts of research and the research process. 										
	 Identify appropriate research topics, select and define appropriate research problem and 										
	parameters										
• Paper publication in journals, prepare a project proposal, write a research report and thesis											
•	 Organization of a chemistry laboratory Knowledge about sampling, errors, simple techniques and instruments for research 										
Exp		rse Outcor		sing, errors, simple techniques and instruments i	or re	searc	n				
				of the course, student will be able to:							
1.		1		rch area and carry out a literature survey			K1	-K4			
2.				esearch work as journal papers, books, review arti	cles	and		-K4			
	patents	•									
3.	_	ze and write						-K5			
4.				a in chemical lab following SOPs safely				-K5			
5. To summarize statistical treatment of data obtained from experiments								K4-K5			
6.	•	*	•	hniques and commonly used minor equipments	77	a		& K6			
KI -	Remembe	er; K2 - Un	derst	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	<u> 10 -</u>	Crea	te				
Unit	:1				1	5 ho	urs				
		lem - Ain	n, ot	pjectives, criteria for selecting a research pro				tion of			
resea	arch proble	em. Researd	ch in	fundamental and applied sciences. Research in							
				velopment and testing of hypothesis.		1		c			
	•			cal nomenclature and literature, primary and s reatises and monographs. Literature searching		-					
		-		ence, publons, Data base, internet, world wide	-						
	· •			citation index, rating of journal. Responsibilit							
edito	ors, referee	s. Scientific	c jou	rnals in India and abroad. Patents.							
Unit					1/	5 hou	1100				
		• /	~								
	-			eneral formats, tables, figures, references, foc							
	-	d symposia.		pers, proof reading and final format. Presentation	11 01	sciel	11111	2 papers			
Unit		J I I I I			1	5 hou	ırs				
		anization		origning the laboratory installation of aqui				rac and			
	•	-		esigning the laboratory, installation of equi corage of reagents. Safety in laboratory and we	-						
		on and exhi				op. (8**				
Management of Laboratory - Upgrading the conventional laboratory to microscale chemical											
laboratory, laminar and non-laminar flow laboratory, special instrumentation and facilities for											
microscale laboratory. Automation in the Laboratory – Principles, automatic and semiautomatic instruments, autoanalyser,											
				on analysis, smart instruments		,					
Unit	:4				15 h	ours					

Statistics for analytical chemistry: Significant figures in arithmetic – a	
multiplication, division, logarithms and antilogarithms, significant figures a	
Errors - random and systematic, precision and accuracy, uncertainty and pr	10
Gaussian distribution, Student's t, Q and F tests, simple and multiple linear	
Unit:5	15 hours
Sampling: Theory of sampling, techniques, pitfalls, sampling in static	c and dynamic systems,
sampling from polluted water and from eluates, sampling of air pol	lutants, aerosols, flyash.
Transmission and storage of samples, techniques for handling air and moist	ture sensitive samples.
Microanalysis: Principles and applications of zone refining, fractional	al distillation, molecular
distillation, deep-freeze crystallisation and contamination control in analyti	cal operations.
Contemporary Issues	
Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos,	online seminars –
webinars for strengthening the subject matters.	
Total Lecture hours	75 hours
Text Book(s)	11
1 Quantitative Chemical Analysis, D.C. Harris, W.H. Freeman, New Yo	rk, Fourth Edn. 1995
2 Fundamentals of Analytical Chemistry, D.A. Skoog, D.M. West a	
College Publishing. New York, Sixth Edn. 1992.	,
3 Analytical Chemistry: Principles. J.H. Kennedy, Saunders College	Publishing, New York.
Second Edn. 1990.	,
4. Abstracting Scientific and Technical Literature, R.E. Maizell, J.F. Sm	hith, T.E.R. Singer, Wiley
– Interscience, New York, 1971.	, , , , , , , , , , , , , , , , , , ,
5. Techniques of Technical Report Writing, T.K.S. Iyengar, M.R. Rao	and S.L.V. Chari, Allied
Publishers, Madras, 1978.	
6. Research Paper Smart, L. Buffa, Random House, New York, 1997.	
·	
Reference Books	
1. Statistics for Analytical Chemistry, J.C. Miller and J.N.	Miller. Ellis Harwood.
Chichester, 1984.	
2. Statistics for Analytical Chemists, R.Caulcutt and R. Boddy, Chap	mann and Hall, London,
1982.	, ,
3. Microscale Manipulation in Chemistry, T.S. Ma and V. Herak, Wiley	, 1976.
4. Laboratory Organisation and Administration, K. Guy, Macmillan, Lon	
5. Treatise on Analytical Chemistry, I.M. Kolthoff and P.H. Elving, (Ed.	
	,
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	iquos
 <u>https://www.youtube.com/watch?v=jauhoR7w1YM-Sampling</u> Technik <u>https://www.youtube.com/watch?v=mvMxhNtHB0M-Laboratory</u> Autor 	
3. <u>https://www.youtube.com/watch?v=_uapR0qiN6s-Qualatitative</u> Reset	
Course Designed By: Dr. K. Ravichandran, Dr. T. M. Sridhar, Dr. K.	venkatachalam and Dr.
Deepa P Nambiar	

Mapping	Mapping with Programme Outcomes*													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	S	S	S	S	L	М	S	М	М	S				
CO2	S	М	S	M	S	S	S	S	М	S				
CO3	S	Μ	S	S	М	М	S	L	S	S				
CO4	М	М	S	S	L	L	М	L	S	S				
CO5	М	S	S	S	S	L	М	L	L	S				

Course coo	e CHE P 0	03	INSTRUMENTAL METHODS OF ANALYSIS	L	Т	Р	С
Core/Electi	e/Supportive	COR	E	5	1	0	6
Pre-requis		Stud	ents should know about analytical techniques	•	labu rsior		R2021
Course Ob							
	ojectives of the						
		•	line and thermal properties of materials				
	-	-	of various surface analytical tools.				
			entals and applications of spectroscopic techniqu	es			
			microscopic techniques used in research				
-			of the surfaces at nanometric levels				
-	Course Outcon						
			the course, student will be able to:				
			are and purity of newly synthesized compounds				-K4
		•	nd application of spectroscopic techniques			K2	-K4
3. To pr	edict the therma	al behav	viors of the newly developed compounds and compo	osites		K3	-K4
	termine the ox e analytical te		n states of elements and their composition using	,		K5	-K6
			trumentation used for SEM and TEM			K4	K5
-			atoms and molecules as images using scannin	g nr	obe		& K6
techni				8 F-		110	a 110
K1 - Reme	nber; K2 - Un	dersta	nd; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	X6 -	Crea	te	
Unit:1				1	5 ho	urs	
X-RAY DI	FRACTION						
• 1		0	le crystal diffraction techniques - Determination				e lattice
			rofile analysis - particle size analysis using Sch	nerer	forn	nula	
	ANALYSIS						
-		tation	of TGA, DTA and DSC- application of	therr	nal a	naly	vsis for
nanostructu				1	- 1		
Unit:2	•		E AND QUANTATIVE ANALYSIS		5 ho		
Prir	ciple, instrum	entatio	n and applications for nanomaterials- XPS, Aug	ger a	nd E	DAX	X
Unit:3		SP	ECTROSCOPIC TECHNIQUES	1	5 hou	ırs	
Principle, i Spectrosco		n and	applications for nanomaterials -UV-Vis, FT-	IR a	nd I	Ram	an
Unit:4		Μ	ICROSCOPIC TECHNIQUES	1	5 hou	ırs	

SCANNING ELECTRON MICROSCOPY

Scanning electron microscopy Principle – Modes of operation – Specimen Preparation, application of SEM for nano materials.

TRANSMISSION ELECTRON MICROSCOPY:

Basic principles - Modes of operation – Specimen preparation – Diffraction in imperfect crystals – Dislocations – precipitates – Structure of Grain boundaries and interfaces- HRTEM use in nanostructures.

Unit:5

SPM

15 hours

SPM – types, principle, instrumentation and applications for scanning of surfaces

	Contemporary	Issues
--	--------------	--------

Expert lectures, YouTubes Videos, Animations, NPTEL, MOOC videos, online seminars – webinars for strengthening the subject matters.

Total Lecture hours

75 hours

Text Book(s)

1 B. D.Cullity, "Elements of X-ray Diffraction", 4th Edition, Addison Wiley, 1978.

- 2 M. H.Loretto, "Electron Beam Analysis of Materials", Chapman and Hall, 1984.
- 3 J.Goldstein, D. E. Newbury, D.C. Joy, and C.E. Lym, "Scanning Electron Microscopy and X-ray Microanalysis", 2003.
- 4. S.L. Flegler, J.W. Heckman and K.L. Klomparens, "Scanning and Transmission Electron Microscopy: An Introduction", WH Freeman & Co, 1993.

Reference Books

- 1. Michael Brown and Patrick Gallagher, "Handbook of Thermal Analysis and Calorimetry Recent Advances, Techniques and Applications" Elsevier 2007.
- 2. Douglass A. Skoog and Donald M.West "Principles of Instrumental Analysis" illustrated edition, 1971
- 3. Daniel C. Haris, "Quantitative Chemical Analysis", Sixth Edition, 2002

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. <u>https://www.youtube.com/watch?v=IeH0lhn7uHY-X</u> Ray Diffraction
- 2. https://www.youtube.com/watch?v=bENSsj4rfJc-TGA
- 3. <u>https://www.youtube.com/watch?v=jRAqhFdwt20-AFM</u>

Course Designed By: Dr. K. Venkatachalam

Mapping with Programme Outcomes*

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	М	S	L	М	S	М	M	S
CO2	S	М	S	M	М	S	S	S	M	S
CO3	S	М	М	S	М	М	S	L	S	S
CO4	M	М	М	S	L	L	М	L	S	S
CO5	M	S	M	S	S	L	М	L	L	S

Course code	CHE P 00)4	ANALYTICAL TECHNIQUES AND INSTRUMENTATION-I	L	Т	Р	С
Core/Elective/S	Supportive	COR	E	3	0	0	3
Pre-requisite			ents should know about the fundamentals of	-	labu		R2021
_	4.	instru	imentation	Ve	rsior	1	
Course Objec							
The main object							
		-	electronic parts and organization of computer actioning of electroanalytical techniques				
			spectral and laser based techniques				
		-	s using atomic absorption and emission technique				
	• •		r hyphenated techniques	-8			
Expected Cou			nyphenated teeninques				
-			the course, student will be able to:				
	1		tal electronics and computer programing			V 1	-K4
1	e	U	alyze compounds using electroanalytical techniques				2-K4
	-				1		
and laser	instruments.		the properties of new materials developed using	•	ral	K3	3-K5
	y and quanti techniques	fy the i	ons present in a given sample using absorption and			K2	2-K5
	A	re of at	oms and molecules using hyphenated techniques			K4	-K5
6. To under	stand the ne	eed an	d principle of hyphenated techniques in analyzir	ıg		K5	5 & K6
complex	molecules			0			
K1 - Remember	er; K2 - Un	derstar	nd; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	X6 -	Crea	te	
Unit:1				1	5 ho		
	norational (mnlif	er – properties and characteristics of opamps				nloving
			surements of signals, application of opamps to				
control and for					lage	anu	current
		-	digital signals, binary numbers, basic digital	circ	mit d	com	ponents.
			mputers, components of computers, comp				
			. Cloud computing and Artificial Intelligence		r	0	
	1						
Unit:2				1	5 ho	urs	
Electroanalytic	al Methods	s: Pote	entiometry - Potentiometric titrations and ion	sele	ctive	e ele	ectrodes.
			oulometry, coulometric titrations and media				
Polarography -	– DME, po	larogra	ms, currents in polarography, maxima, effect	of d	lissol	ved	oxygen
and application	n to chemi	cal an	alysis, amperometric titrations. Pulse polarog	raph	y —	Nor	mal and
differential pu	lse, square	wave	polarography, stripping analysis - cathodic a	and a	anod	ic s	tripping,
-			sweep voltammetry, cyclic voltammetry, Typ	bes c	of ele	ectro	odes and
Chemically mo	odified elect	trodes.					
Unit:3				1	5 ho	urs	
Advanced Spe	ctral Techn	iques:	Principle and brief outline of instrumentation	and	anal	ytic	al
applications of		0	1				
			analytical chemistry. Photoacoustic spectros		-		
	oscopy. Che	emilun	ninescence. Near and far IR. Infrared emission				
Unit:4				1	5 ho	urs	

Atomic absorption and emission techniques – AAS, ICP, Fiber optics spectroscopy. Ion scattering spectroscopy. Secondary ion mass spectrometry.

Uni	it:5									15 hou	ırs	
Hyp	phena	ted tech	niques –	HPLC-N	AS, HPL	C-MS, HI	PLC/LC-	IR.				
Hy	ohena					, GC/LC-I	IR, LC-N	MR, GC	-OES			
			Contemp	orary Is	ssues							
							PTEL, M	OOC vi	deos, onl	ine semir	nars –	
weł	oinars				ject mat	ters.						
		, r	Fotal Le	cture ho	urs						75 hours	
Тех	t Bo	ok(s)										
1	Qu	antitativ	e Chemio	cal Analy	vsis, D.C.	Harris, W	/.H. Free	man, Ne	w York, I	Fourth Edu	n. 1995.	
2	Fundamentals of Analytical Chemistry, D.A. Skoog, D.M. West and F.J. Holler, Saunders College Publishing. New York, Sixth Edn. 1992.											
3	Pri	Principles of Instrumental Analysis, D.A. Skoog and J.J. Leary, Saunders College Publishing, New York, Fourth Edn. 1992.										
4.						, Wiley, N	lew York	, Fourth	Edn. 198	6		
Ref	eren	ce Book	S			-						
1.								oller and	T.A. Nie	eman, Sau	inders	
<u>า</u>		<u> </u>	U,		,	Edn. 1998		ndant C	llage D	h1:	Nov. V. 1	
2.		alytical cond Edi		ry: Prif	cipies. J	.п. Kenn	euy, Sau	nders Co	mege Pu	onsning,	New York	
3.	-			hemistr	י חח י	ood N D	amamoo	thy and	ΔΥΡΟ	eddy Edg	s. IANCAS	
5.		mbay, 1		incinisu.	y, D.D. S	100 u , 1 v. N	amamou	any and A	A. V.IX. IX	cuuy, Lus		
4.		•		n Radio	chemical	Analysis	J. Ruz	icka and	L Stray	y, Pergan	non Press	
••		ndon, 19	•			- 1141 9 515	,	iona ant		, i ergan	1100	
5.				ation in	Chemistr	y, T.S. M	a and V.	Herak, V	Viley, 197	76.		
	1		1			<i>.</i>		,	J '			
Rel	ated	Online	Content	s [MOO	C, SWA	YAM, NF	PTEL, W	ebsites e	etc.]			
1.	http	os://www	<u>w.yo</u> utub	e.com/w	atch?v=k	KjIsEJcC3	r8-Volta	<u>mmetry</u> ,	Potention	netry.		
2.	http	os://www	w.youtub	e.com/w	atch?v=c	lgq2LU0	nM0-GC	-MS.				
3.						<u>35fKP5A</u>	fGk-LC	MS				
					P Nambia	ar						
			ogramm	1	1							
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO		Μ	S	М	S	L	М	S	M	М	S	
CO		S	М	S	М	М	S	S	S	М	S	
CO		S	М	М	S	М	М	S	L	S	S	
CO		M	M	M	S	L	L	M	L	S	S	
CO	5	Μ	S	Μ	S	S	L	Μ	L	L	S	

Course code	CHE P00	5	ANALYTICAL TECHNIQUES AND INSTRUMENTATION-II	L	Т	Р	С					
Core/Elective	/Supportive	COR		5	1	0	6					
Pre-requisit			ents should know about analytical techniques	Syl	labu rsioi		R2021					
Course Obj	ectives:											
The main objectives of this course are to:												
• To ou	tline the prin	ciples	of various chromatographic techniques along v	vith t	he m	etho	odology					
used.												
			d characterize the various types of compounds p	resen	t in g	gases	and					
-	s using GC &											
			of clinical and environmental samples									
			les of radiochemistry and its applications									
			oatings and sensors with electrochemical instrun	ients								
Expected Co			the course, student will be able to:									
	1		natographic technique to separate samples			V1	-K4					
	-											
			strumentation used for GC and HPLC				2-K4					
x			mate the clinical and environmental samples				S-K5					
			applications in evaluating the compounds				2-K5					
	y the electroc tive modes	hemica	l behavior of the samples using destructive and r	on		K 4	-K5					
		velon s	ensors, coatings and study corrosion behavior usi	nσ		K5	& K6					
	hemical techn		ensors, countrys and study corrosion benavior us	ng		K.	a Ku					
			nd; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	K6 -	Crea	te						
Unit:1			Chromatography	1	5 ho	urs						
Principle, in applications			re of stationary and mobile phases and mether here and mether here and mether here and mether and mether and mether here and mether and mether and mether and mether and mether and mether here and mether and meth	nod (of de	etect	ion and					
Unit:2			GC & HPLC	1	5 ho	urs						
Gas Chroma	tography. Hi	gh Pei	formance Liquid Chromatography. High Perf	orma	nce	Thi	1 Laver					
	phy. Ion Chr	-					5					
Unit:3		Cli	nical and Environmental analysis	1	5 ho	urs						
Principle and	 application	of Ki	netic method of analysis – kinetics, catalysis	and a	2071/	me	eatalycic					
			and trace element analysis Environmental ana									
		-	ides of nitrogen) and water (BOD, COD and th	•								
Cr, Pb, Se) a	-											
Unit:4			Radioanalytical Chemistry	15 h	ours	5						
Nuclear che	nistry and ra	dioche	mistry – Nuclear stability and structure, radi	oacti	vity	and	nuclear					
decay, dete	ction and m	leasure	ment of radiation, nuclear reactions, nucl	ear	powe	er i	reactors,					
application of	f radioisotop	es, neu	tron activation analysis, isotopic dilution analysis	ysis, I	healt	h ar	d safety					
aspects.												
Unit:5			<u> </u>	15 h								
			ectrochemical Impedance Spectroscopy, Scar	ning	elec	troc	hemical					
microscopy,			tings, corrosion and sensors									
F	Contemp	-		•								
-			eos, Animations, NPTEL, MOOC videos, onl	ine s	semi	nars	-					
webinars for	strengthenin	g the si	ibject matters.									

	Total Lecture hours 60 hours												
Tex	Text Book(s) 1 Treatise on Analytical Chemistry, I.M. Kolthoff and P.H. Elving, (Eds.) Part I & III.												
1	Tre	atise on	Analytic	al Chemi	stry, I.M	. Kolthoff	and P.H	. Elving,	(Eds.) Pa	urt I & III.			
2	Modern Polarographic Methods in Analytical Chemistry, A.M. Bond, Marcel Decker, New												
	York, 1980												
3	Radioactivity Applied to Chemistry, Arthur C.Wahl, Wiley, New York, 1951.												
4.	Radiotracer Techniques and Applications, A. Evans and M. Muiamatsu, Marcel Decker, New												
	York, 1977, Vol I & II.												
5.	Electrochemical Methods, A. Bard and L.R. Faulkner, Wiley, New York, 1980.												
Reference Books													
1.	Ad	vances in	n Electro	analytica	l Method	ds – Series	s. Ed. A.	Bard.					
2.	•					eparation,		-		1963.			
3.					-	. Dean, V							
4.	Sep	paration a	and Purif	fication N	Aethods,	E.S. Perry	y, Marcel	Dekker,	New Yo	ork, 1975.			
			~		~ ~ ~ ~								
				L	/	YAM, NP	,		-				
1.						<u> iseJcC3</u>			Potentior	netry.			
2.	_		-			lgq2LU0r							
3.						35fKP5A	<u>fGk-LC</u> I	MS					
3.	-			DR0c-jo									
		0		T.M. Sr									
Map COs			-	e Outcom		PO5	DOC	DO7	DOQ	DOO			
CO3		PO1	PO2 S	PO3 S	PO4 S	L	PO6 M	PO7	PO8 M	PO9 M	PO10 S		
CO1		<u>M</u> S	M	S S	M	L S	S	S S	S	M	S S		
CO2		<u> </u>	M	S S	S	M	M	S S	L L	S NI	S S		
CO3		<u> </u>	M	S	S	L	L	M	M	S S	S		
CO		M	S	S	S	S L	L	M	L	L	S		
	,	141	5	5	5	C C		141	L		5		