PERIYAR UNIVERSITY

Re-accredited with 'A++' grade by the NAAC PERIYAR PALKALAI NAGAR SALEM – 636 011

M.Sc. Branch – I (B): Mathematics (SEMESTER PATTERN) (Under Choice Based Credit System) (For University Department & PG Center, Dharmapuri)

REGULATIONS AND SYLLABUS (For candidates admitted from 2022-2023 onwards)

PERIYAR UNIVERSITY, SALEM -11

M.Sc. BRANCH 1(B) - MATHEMATICS - CHOICE BASED CREDIT SYSTEM (CBCS)

REGULATIONS AND SYLLABUS

(For the candidates admitted from 2022-2023)

1. PROGRAMME OBJECTIVES:

- To provide a wide and strong foundation in pure and applied mathematics.
- To enhance the logical and analytical thinking through mathematical proofs.
- To motivate students for independent research in mathematics.
- To apply mathematics in real life situations and solving problems.

2. **PROGRAMME OUTCOMES:** At the time of graduation, students will be able to:

P01	gain knowledge in the fundamental subjects of pure and applied mathematics	
PO2	explain the mathematical concepts with good understanding and clarity	
P03	conduct research independently with strong mathematics background	
P04	crack lectureship/fellowship exams like CSIR – NET/JRF, GATE, NBHM, SET, TRB etc.	
P05	apply the acquired mathematical techniques to solve the socio-economic and industrial problems	
P06	obtain career in the field of education/research/industry/administration	

3. PROGRAMME SPECIFIC OUTCOMES:

PSO1	Formulate, investigate and develop solutions to mathematical problems in a variety of contexts related to science, technology, business and industry.		
PSO2	Knowledge acquired helps to understand the advanced concepts of pure and applied mathematics.		
PSO3	Capable to provide innovative ideas in solving existing/novel problems in mathematics.		
PSO4	Capable of understanding any societal problems in an easy manner and to provide suitable solutions mathematically.		

4. DURATION OF THE PROGRAMME

The two-year postgraduate programme in M.Sc. Mathematics consists of four semesters under **Choice Based Credit System (CBSE)**.

5. <u>ELIGIBILITY</u>

Candidates who have passed B.Sc. Degree Examination in Branch I- Mathematics / Mathematics (CA) of this University or an examination of some other university accepted by the syndicate as equivalent there to are eligible to apply for M.Sc Mathematics programme. They shall be permitted to appear examinations conducted by the University and qualify for the M.Sc. Mathematics (CBCS) Degree of this university after a course of two academic years in the Department of Mathematics of Periyar University / PG centre.

6. DISTRIBUTION OF CREDIT POINTS AND MARKS

The minimum credit requirement for a two year Master's programme shall be **94 credits**. The break-up of credits for the programme is as follows:

4	Core Courses	: 70 credits
4	Elective Courses	: 16 credits
4	Supportive Courses	:04 credits
4	SWAYAM/MOOC/NPTEL	: 02 credits
4	Human Rights	: 02 credits

NON COMPULSORY EXTRA CREDIT COURSE

• Value added course with **2 extra credits** will be offered in any one of the semester.

7. <u>COURSE OF STUDY</u>

The courses of study for the degree shall be in Branch I (B) - Mathematics (Choice Based Credit System) with internal assessment according to syllabi prescribed from time to time.

8. SUMMER INTERNSHIP PROGRAMME

Every student shall undergo summer internship programme during summer vocation at the end of 1st year for a minimum period of 2 weeks. The students should get the attendance certificate from the Head of the training institute / industry. After the training, the student has to submit a report to the department based on the training undergone. The departmental committee shall evaluate & conduct Viva-Voce examination during 3rd semester. The result of the Viva-Voce shall be Commended (or) Highly Commended and the same should be communicated to the COE for printing in the 3rd semester mark sheet. No Credits / No Marks shall be awarded for the internship training but is mandatory to complete the training for the award of M.Sc degree.

9. STRUCTURE OF THE PROGRAMME

S.No	COURSE CODE	TITLE OF THE COURSE	CREDITS	MARKS	
		I SEMESTER		·	
1.	U22MATC01	Linear Algebra	4	100	
2.	U22MATC02	Real Analysis – I	5	100	
3.	U22MATC03	Ordinary Differential Equations	4	100	
4.	U22MATC04	Foundations of Mathematics	4	100	
5.		Elective - I	4	100	
		II SEMESTER			
6.	U22MATC05	Abstract Algebra	5	100	
7.	U22MATC06	Real Analysis – II	5	100	
8.	U22MATC07	Topology	5	100	
9.	U22MATC08	Partial Differential Equations	4	100	
10.		Elective Course – II	4	100	
11.		Supportive – I: Swayam /MOOC/NPTEL	2	100	
12.	22PHR01	Fundamentals of Human Rights	2	100	
III SEMESTER					
13.	U22MATC09	Measure Theory & Integration	5	100	
14.	U22MATC10	Functional Analysis	5	100	
15.	U22MATC11	Numerical Analysis	4	100	
16.	U22MATP01	Practical: Numerical Analysis	2	100	
17.		Elective - III	4	100	
18.		Supportive – II (inter Dept.)	4	100	
IV SEMESTER					
19.	U22MATC12	Theory of Linear Operators	4	100	
20.	U22MATC13	Complex Analysis	5	100	
21.	U22MATC14	Graph Theory	4	100	
22.		Elective – IV	4	100	
23.	U22MATD01	Dissertation	5	100	
	•	Total	94	2300	

• Value added course with **2 extra credits** will be offered in any one of the semester. (Non Compulsory with extra credit)

ELECTIVE COURSES OFFERED

S.No.	COURSE CODE	TITLE OF THE COURSE	CREDITS
1.	U22MATE01	Number Theory	4
2.	U22MATE02	Difference Equations	4
3.	U22MATE03	Mechanics	4
4.	U22MATE04	Fuzzy Sets and their Applications	4
5.	U22MATE05	Differential Geometry	4
6.	U22MATE06	Mathematical Foundations of Data Science	4
7.	U22MATE07	Representation Theory of Finite Groups	4
8.	U22MATE08	Mathematical Biology	4
9.	U22MATE09	Methods of Applied Mathematics	4
10	U22MATE10	Nonlinear Differential Equations	4
11.	U22MATE11	Computing for Artificial Intelligence & Machine Learning.	4
12.	U22MATE12	Non commutative Algebra	4
13.	U22MATE13	Advanced Partial Differential Equations	4
14.	U22MATE14	Fluid Dynamics	4
15.	U22MATE15	Machine Learning	4
16.	U22MATE16	Probability Theory	4
17.	U22MATE17	Combinatorial Mathematics	4
18.	U22MATE18	Algebraic Topology	4
19.	U22MATE19	Commutative Algebra	4
20.	U22MATE20	Stochastic Differential Equations	4
21.	U22MATE21	Optimization Techniques	4
22.	U22MATE22	Control Theory	4
23.	U22MATE23	Mathematical Finance	4

SUPPORTIVE COURSES

S.No	COURSE CODE	TITLE OF THE COURSE	CREDITS
1.	U22MATS01	Applied Mathematics	4
2.	U22MATS02	Numerical and Statistical Methods	4
3.	U22MATS03	Integral Transforms	4
4.	U22MATS04	Mathematical Modeling	4

VALUE ADDED COURSES

S.No.	COURSE CODE	TITLE OF THE COURSE	CREDITS
1.	U22MATV01	Latex	2
2.	U22MATV02	Mathematica	2
3.	U22MATV03	MatLab	2
4.	U22MATV04	Python	2

10. EXAMINATION

For the purpose of uniformity, particularly for interdepartmental transfer of credits, there shall be a uniform pattern of examination to be adopted by all the teachers offering courses. There shall be three tests, one seminar and one assignment for internal evaluation and End semester examination during each semester.

The distribution of marks for internal evaluation and End Semester Examination shall be 25 marks and 75 marks, respectively. Further, distribution of internal marks shall be 10 marks for test, 5 marks for seminar, 5 marks for assignment and 5 marks for attendance, respectively. Best mark out of the first two internal tests for 5 marks and the model examination for 5 marks should be taken for Internal Assessment.

Courses	Marks			No. of	Total	Cradita	
Courses	External	Internal	Total	Courses	Marks	creatts	
Core	75	25	100	14	1500	63	
Elective	75	25	100	04	400	16	
Supportive	75	25	100	01	100	04	
Dissertation + Viva Voce*	25+25	25+25	100	01	100	05	
Practical	40	60	100	01	100	02	
Swayam/Mooc	-	-	100	01	100	02	
Human Rights	75	25	100	01	100	02	
	Grand Total			23	2300	94	

*Dissertation: 100 (Internal Valuation 25 + External Valuation 25)

and Joint Viva Voce 25 + 25 Marks

BLOOM'S TAXONOMY

→ K1
K2
K3
K4
K5
→ K6

Provides a taxonomy of cognitive levels for learning objectives

ACTION VERBS FOR LEARNING OBJECTIVES

K1	Recall – Remember previously learned material			
	cite, label, name, reproduce, define, list, quote, pronounce, identify,			
	match recite, state			
K2	Understand- Grasp meaning			
	alter, explain, rephrase, substitute, convert, give example, restate,			
	translate, describe, illustrate, interpret, paraphrase			
K3	Apply- Use learned material in new and concrete situations			
	apply, relate, solve, classify, predict compute, prepare			
K4	Analyze- break down into component parts to understand			
	structure			
	ascertain, diagnose, distinguish, infer, associate, examine, differentiate,			
	reduce, discriminate, dissect, determine			
K5	Evaluate- judge the value of material for a given purpose			
	appraise, conclude, critique, judge assess, contrast, deduce, weigh			
	compare, criticize, evaluate			
K6	Create- combine parts together to form a new whole			
	combine, devise, compile, expand, plan, compose, extend, synthesize,			
	conceive, modify generalize, revise, integrate, design, invent, rearrange,			
	develop			

11. <u>QUESTION PAPER PATTERN</u>

(a) Question Paper Pattern for Theory Examination

Time: 3	Hours	Maxi	mum Marks: 75	
Sections	Question Types	Marks	Knowledge Levels	
А	Objective (Answer ALL Questions)	20 x 1 = 20 Marks		
В	Analytical (Problems only) (Answer any THREE out of FIVE questions)	3 x 5 = 15 Marks	K1, K2, K3, K4,	
C	Descriptive (Answer ALL Questions) (One question from each unit with internal choice)	5 x 8 = 40 Marks	K5, K6	

(b) Question paper pattern for Practical Examination

Time: 3 Hours Maximum: **100** (Internal: 40 + External: 60) Marks

The components of 40 marks are (Internal)

Periodical assessment	- 20 marks
Test (best 2 out of 3)	- 10 marks
Record	- 10 marks

The components of 60 marks are (External)

Experiments	- 40 marks
Viva-voce	- 10 marks
Record	- 10 marks
Passing Minimum (External)	: 30 Marks (Aggregate of Experiments, Viva-voce and Record) (No passing minimum for records)

There will be one question with or without subsections to be asked for the practical examination. Every question should be chosen from the question bank prepared by the examiner(s). A question may be used for at most three students in a batch.

12. PASSING MINIMUM

There shall be no passing minimum for internal marks. A candidate who has secured a minimum of 50% marks in all the courses (including practical) prescribed in the programme and earned a minimum of **94 credits** will be considered to have passed the Master's programme.

For the Practical paper, a minimum of 30 marks out of 60 marks in the University examination and marks awarded for the record notebook taken together is necessary for a pass. There is no passing minimum for the record notebook. However submission of record notebook is a must.

For the Project work and viva-voce, a candidate should secure 50% of the marks for pass. The candidate should attend viva-voce examination to secure a pass in the Project.

13. COMMENCEMENT OF THIS REGULATION:

These regulations shall take effect from the academic year 2022-2023, that is, for students who are admitted to the first year of the programme during the academic year 2022-2023 and thereafter.

14. PROJECT AND EDUCATIONAL TOUR:

For M.Sc Mathematics students, the project is individual and compulsory. In order to prepare the project, the students may like to visit the Libraries at the Universities/Indian Institute of Technology/Institute of Mathematical Sciences etc for collecting project materials. So, the Department of Mathematics may arrange an Educational Tour during III semester, for the students to visit the Libraries.

(a) Dissertation Topic:

The topic of the dissertation shall be assigned to the candidate at the beginning of third semester and a copy of the same should be submitted to the University for approval.

(b) No. of copies of dissertation:

Students should prepare **three copies** of dissertation and submit the same for the evaluation by Examiners. After evaluation **one copy** is to be retained by the respective guide, **one** in the Department Library and **one** with the student.

(c) Format for the preparation of the dissertation:

- (a) Title page
- (b) Bonafide Certificate
- (c) Acknowledgement
- (d) Table of contents

CONTENTS

Chapter No.	Title	Page No.
1.	Introduction	
2.	Review of Literature	
3.	Summary	
4.	Results	
5.	References	

Format of the Title Page

TITLE OF THE DISSERTATION

Dissertation submitted in partial fulfillment of the requirements for the award of the Degree of

Master of Science in

MATHEMATICS

(Under Choice Based Credit System)

Submitted to

Department of Mathematics

Periyar University, Salem – 636 011.

By

Students Name	:
Register Number	:
Department	:
Year	:

Format of the Certificate

CERTIFICATE

This is to certify that the dissertation entitled submitted in partial fulfillment of the requirements for the award of the Degree of Master of Science in **MATHEMATICS (Under Choice Based Credit System)** to the Periyar University, Periyar Palkalai Nagar, Salem is a record of bonafide research work carried out by under my supervision and guidance and that no part of the dissertation has been submitted for the award of any degree, diploma, fellowship or other similar titles or prizes and that the work has not been submitted in part or full in any scientific or popular journals or magazines.

Date:

Place:

Signature of the Guide

Signature of the Head of the Department

CORE COURSES

11 22MATCO 4	LINEAR ALGEBRA	L	Т	Р	С
UZZMAICUI		4	1	0	4

<u>OBJECTIVE</u>: The objective of this course is to develop a strong foundation in linear algebra that provide a basic for advanced studies not only in mathematics but also in other branches like engineering, physics and computers, etc. Particular attention is given to canonical forms of linear transformations, diagonalizations of linear transformations, matrices and determinants.

UNIT I: Linear transformations

Linear transformations – Isomorphism of vector spaces – Representations of linear transformations by matrices – Linear functional.

UNIT II: Algebra of polynomials

The algebra of polynomials - Polynomial ideals - The prime factorization of a polynomial - Determinant functions.

UNIT III: Determinants

Permutations and the uniqueness of determinants – Classical adjoint of a (square) matrix – Inverse of an invertible matrix using determinants – Characteristic values – Annihilating polynomials.

UNIT IV: Diagonalization

Invariant subspaces – Simultaneous triangulations – Simultaneous diagonalization – Direct-sum decompositions – Invariant direct sums – Primary decomposition theorem.

UNIT V: The Rational and Jordan forms

Cyclic subspaces – Cyclic decompositions theorem (Statement only) – Generalized Cayley – Hamilton theorem - Rational forms – Jordan forms.

TEXT BOOK:

Kenneth M Hoffman and Ray Kunze, Linear Algebra, 2nd Edition, Prentice-Hall of India Pvt. Ltd, New Delhi, 2013.

UNIT	Chapter(s)	Sections
Ι	3	3.1 – 3.5
II	4 & 5	4.1, 4.2, 4.4, 4.5 and 5.1, 5.2
III	5 & 6	5.3, 5.4 and 6.1 – 6.3
IV	6	6.4 - 6.8
V	7	7.1 – 7.3

- 1. **Sheldon Axler,** *"Linear Algebra Done Right"*, Third Edition, UTM, Springer International Publishing, 2015.
- 2. **S.H. Friedberg, A.J. Insel** and **L.E Spence**, *"Linear Algebra"*, 4th Edition, Prentice-Hall of India Pvt. Ltd., 2009.
- 3. I.N. Herstein, "Topics in Algebra", 2nd Edition, Wiley Eastern Ltd, New Delhi, 2013.
- J.J. Rotman, "Advanced Modern Algebra", 2nd Edition, Graduate Studies in Mathematics, Vol. 114, AMS, Providence, Rhode Island, 2010.
- 5. **G. Strang**, *"Introduction to Linear Algebra"*, 2nd Edition, Prentice Hall of India Pvt. Ltd, 2013.

COURSE OUTCOMES: After the successful completion of the course students will be able to

CO	Statements	Knowledge level
C01	Discuss the kernel and image of linear of a linear transformation in terms of nullity and rank of a matrix.	K1
CO2	Compute the eigen values and eigen vectors of a square matrix and determine the dimension of the corresponding eigen spaces.	K3, K4
CO3	Determine whether a square matrix is diagonalizable, and compute its diagonalization.	K2, K4
C04	Find the minimal polynomial and the rational forms of a real square matrix.	К3
C05	Find the numbers of possible Jordan forms are there for a 6x6 complex matrix with the given characteristic polynomial.	K3, K5

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	√	✓	~	√	~	
CO2	√	✓	✓	✓	~	
CO3	√	✓	~	√	~	√
CO4	√	✓	~	~	~	~
CO5	~	~	~		~	~

U22MATC02	RFAL ANALYSIS - I	L	Т	Р	С	
	REAL ANAL ISIS - I	4	1	0	5	

<u>OBJECTIVE</u>: This course aims to provide students with the specialist knowledge necessary for basic concepts in Real Analysis. More precisely, it strives to enable students to learn basic concepts about basic topology, convergence of sequences and series, limit and continuity of functions, Mean value theorem, L-Hospital rule, Taylor's theorem and learn Riemann-Stieltjes integrals.

UNIT I: Basic Topology

Ordered sets – The real field (1.19 Theorem statement only) – Euclidean Spaces. Basic Topology: Metric spaces – Compact sets – Perfect sets - Connected sets.

Unit II: Numerical Sequences and Series

Convergent sequences – Subsequences – Cauchy sequences - Upper and lower limits - Some special sequences – Series – Series of nonnegative terms - The number e - The root and ratio tests - Power series - Summation by parts - Absolute convergence - Addition and multiplication of series – rearrangements.

UNIT III: Continuity

Limit of Functions – Continuous functions - Continuity and Compactness – Continuity and Connectedness – Discontinuities – Monotonic functions – Infinite limits and Limits at infinity.

UNIT IV: Differentiation

The derivative of a real function – Mean value theorems – The continuity of the derivative – L' Hospital's rule – Derivatives of higher order – Taylor's theorem – Differentiation of vector-valued functions.

UNIT V: Riemann – Stieltjes Integral

Definition and existence of the Integral – Properties of the integral – Integration and Differentiation – Integration of vector-valued functions – Rectifiable curves.

TEXT BOOK:

Walter Rudin, *"Principles of Mathematical Analysis"*, 3rd Edition, McGraw Hill Book Co., Kogaskusha, 1976.

UNIT	Chapter(s)	Pages
т	1	3 - 5, 8 - 11, 16 - 17
1	2	30 - 46
II	3	47 - 82
III	4	83-102
IV	5	103-119
V	6	120-142

- 1. Tom M. Apostol, *"Mathematical Analysis"*, Narosa Publishers, New Delhi, 2002.
- R. G. Bartle and D.R. Sherbert, "Introduction to Real Analysis", John Wiley & Sons, New York, 1982.
- 3. W.J. Kaczor and M.T. Nowak, "Problems in Mathematical Analysis I Real Numbers, Sequences and Series", American Mathematical Society, 2000.
- 4. W.J. Kaczor and M.T. Nowak, "Problems in Mathematical Analysis II Continuity and Differentiation", American Mathematical Society, 2000.
- 5. Steven G. Krantz, "Real Analysis and Foundations", 4th Edition, CRC Press, 2017.
- 6. H.H.Sohrab, "Basic Real Analysis", Springer International Edition, India, 2006.

<u>COURSE OUTCOMES:</u> On completion of this course, students will be able to

СО	Statements	Knowledge level
C01	Define and recognize the basic properties of the field of real numbers. Describe the concepts of metric spaces and their properties like openness, closedness, completeness, compactness and connectedness.	K1
CO2	Examine the convergence of sequences and series of real numbers.	K3, K4, K5
CO3	Examine and calculate the limit and investigate the continuity of a real function at a point.	К2
CO4	Define and recognize the differentiability of functions and its related theorems.	K3, K4
C05	Determine the Riemann integrability and the Riemann-Stieltjes integrability of a bounded function and prove a selection of theorems concerning integration.	K5, K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	PO5	P06
C01	√	~		✓	~	
C02	√	~		\checkmark	~	~
C03	√	~	√			
C04	~	✓		~		
C05	~	✓	√			

<u>OBJECTIVE</u>: The objective of this course is to equip the students with knowledge of basic concepts of differential equations and to understand the concepts related to the solution of ordinary differential equations.

Unit I:

First order differential equations: Introduction – First order linear differential equations - Separable equations - Orthogonal trajectories – Exact equations - The existence-uniqueness theorem: Picard iteration.

Unit II:

Second order differential equations: Algebraic properties of solutions, Linear equations with constant coefficients – The non-homogeneous equations – The method of variation of parameters – The method of judicious guessing – Series solution.

Unit III:

System of differential equations: Algebraic properties of solutions of linear systems - The eigenvalueeigenvector method of finding solutions – Complex roots – Equal roots – Fundamental matrix solutions – The non-homogeneous system of equations – Variation of parameters

Unit IV:

Qualitative theory of differential equations: Introduction - Stability of linear systems - Stability of equilibrium solutions- The phase-plane

Unit V:

Boundary value problems: Two-Point Boundary-Value Problem - Green's Functions - Construction of Green's Functions - Nonhomogeneous Boundary Conditions

Self-adjoint Eigenvalue problems: Sturm-Liouville Systems – Eigenvalues and Eigenfunctions

TEXT BOOK:

- **1. Martin Braun**, "Differential Equations and Their Applications: An Introduction to Applied Mathematics", Springer, 4th Edition, 1993 (for Units I to IV).
- 2. Tyn Myint-U, "Ordinary Differential Equations", Elsevier Science, 1977 (for Unit V).

- 1. **S. G. Deo, V. Lakshmikantham and V. Raghavendra**, "Textbook of Ordinary Differential Equations", Tata McGraw-Hill, New Delhi, 1997.
- 2. **M.W. Hirsch, S. Smale, R.L. Devaney**, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third edition, Academic Press, 2013.
- 3. A. K. Nandakumaran, P.S. Satti and Raju K. George, "Ordinary Differential Equations: *Principles and Applications*", Cambridge University Press, 2017.
- 4. L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer, 2006.
- 5. **S.L. Ross**, Differential Equation, Fourth Edition, JohnWiley & Sons, 1984.
- 6. **G.F. Simmons & S.G. Krantz**, Differential Equations: Theory, Technique, and Practice, TataMc-Graw Hill, 2012.

<u>COURSE OUTCOMES</u>: At the end of the course, the student will be able to:

СО	Statements	Knowledge level
C01	Understand the basic theory of linear differential equations.	K1, K2
CO2	Learn various methods to solve first and second order differential equations	K1, K2
CO3	Understand the concepts of initial and boundary value problems for differential equations	K1, K2
CO4	Apply the solutions in real world problems.	K2, K3
C05	Analyze the qualitative behaviors of solutions of differential equations	K2, K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	PO2	P03	P04	P05	P06
C01	√	~	~	~	~	~
C02	√	~	✓	~	~	~
CO3	√	~	✓	~	~	~
C04	√	~	✓	~	~	~
C05	~	✓	~	~	~	~

U22MATC04

<u>OBJECTIVE</u>: The objective of this course is to understand the basic of numbers, countable and uncountable sets, ordered sets and relations, lattices and Boolean algebra, Zermelo-Fraenkel axioms, the axiom of choice and ordinal and cardinal numbers.

Preliminary: Numbers

Natural numbers and integers-rational numbers-real numbers-decimal notation.

UNIT I: The size of a set

Finite and countable sets-uncountable sets-cardinal numbers.

UNIT II: Ordered sets

Order relations and ordered sets-lattices and Boolean algebras.

UNIT III: Set theory

What is a set-the Zermelo-Fraenkel axioms-mathematics in ZF-Sets and classes-models of set theory.

UNIT IV: The axiom of choice

The axiom of choice and direct applications-Zorn's lemma and the well-ordering theoremother consequences of the axiom of choice.

UNIT V: Ordinal and cardinal numbers

Well-ordered sets and ordinal numbers-Transfinite recursion and ordinal arithmetic-Cardinal numbers.

TEXT BOOK:

A.G.Hamilton, "Numbers, sets and axioms", Cambridge University Press, Cambridge, 1982

UNIT	Chapter(s)
Ι	2
II	3
III	4
IV	5
V	6

- 1. **E. Beth,** The Foundations of Mathematics, North-Holland, 1968.
- 2. H. B. Enderton, Elements of Set Theory, Academic Press, 1977.
- 3. I. Stewart and D. Tall, The Foundations of Mathematics, Oxford University Press, 1977.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

СО	Statements	Knowledge level
C01	Describe the fundamental properties of the size of a set like a finite and countable-uncountable sets-cardinal numbers.	K1
CO2	Understanding the order relations and ordered sets-lattices and Boolean algebras.	К2
CO3	Understanding the Zermelo-Fraenkel axioms.	K2
C04	Direct applications of the axiom of choice and Zorn's lemma and the well- ordering theorem.	К3
C05	Understanding the ordinal and cardinal numbers.	K2

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	✓	✓	~	~	✓	~
CO2	~	✓	~	✓	~	~
CO3	~	~	~	~	~	~
CO4	~	~	~	~	~	~
C05	~	~	~	~	~	~

<u>OBJECTIVE</u>: The objective of this course is to introduce the basic ideas of fundamental theorems on homomorphisms, counting principle, Sylow subgroups, finite abelian groups, field theory and Galois Theory.

UNIT I:

Homomorphisms – Cauchy's theorem and Sylow's Theorem for abelian groups - Automorphisms – Cayley's Theorem

UNIT I:

Permutation Group - Another Counting Principle – 1st, 2nd and 3rd parts of Sylow's Theorems – Double coset – The normalizer of a group.

UNIT II: Finite Abelian Groups

External and Internal direct Products – structure theorem for finite abelian groups – non iso-morphic abelian groups - polynomial rings.

UNIT III: Splitting Field

Polynomials over rational fields – the Eisenstein criterion - extension fields – roots of polynomials – splitting fields.

UNIT IV: Galois Theory

More about roots – simple extension – separable extension – fixed fields – symmetric rational functions – normal extension - Galois group – fundamental theorem of Galois theory.

TEXT BOOK:

I.N. Herstein, "Topics in Algebra", Second Edition, John Wiley and Sons, New York, 1975.

UNIT	Chapter(s)	Sections
Ι	2	2.7, 2.8, 2.9
II	2	2.10, 2.11 & 2.12
III	2&3	2.13, 2.14, 3.9
IV	3 & 5	3.10, 5.1, 5.3
V	5	5.5 & 5.6

- 1. M. Artin, "Algebra", Prentice-Hall of India, New Delhi, 1991.
- 2. J. B. Fraleigh, "A First Course in Abstract Algebra", Addison Wesley, Mass, 1982.
- 3. V. K. Khanna and S.K. Bhambri, *"A Course in Abstract Algebra"*, Vikas Publishing House Pvt Ltd, 1993.
- 4. **S. Lang**, *"Algebra"*, 3rd Edition, Addison-Wesley, Mass, 1993.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

CO	Statement	Knowledge Level
C01	Find the number of homomorphisms and automorphisms of groups and also find the order of permutations.	K1, K2, K4
CO2	List all conjugate classes in a finite group	K1
CO3	Give examples to determine the number of Sylow subgroups and the number of nonisomorphic abelian groups	K2
C04	Apply Eisenstein criterion to check the irreducibility of a given polynomial	КЗ
C05	Associate a Galois group to the given polynomial through its splitting field	K4, K5

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01	~	~		✓		~
C02	~	\checkmark			~	~
CO3	✓	~		✓		✓
C04	✓	~		✓	~	✓
C05	~	~	~	✓	~	~

1122MATC06	DEAL ANALYSIS II	L	Т	Р	С
022MAIC00	KEAL ANAL I SIS - II	4	1	0	5

<u>OBJECTIVE</u>: The course will develop a deeper and more rigorous understanding of integral calculus in multi-dimensions. Proofs of Green's theorem, Stoke's theorem and Gauss Divergence theorem are included. The course will develop specialized techniques in problem solving.

UNIT I: Sequences and Series of Functions

Discussion of main problem – Uniform Convergence - Uniform Convergence and Continuity - Uniform Convergence and Integration – Uniform Convergence and Differentiation - Equicontinuous families of functions – Stone-Weierstrass Theorems – Algebra of complex valued functions.

Unit II: Functions of Several Variables

Linear transformations – Differentiation – Partial derivatives – The contraction principle - The inverse function theorem – The implicit function theorem.

Unit III: Line Integrals

Introduction – Paths and line integrals – Other notations of line integrals – Basic properties of line integrals – Line integrals with respect to the arc length – Open connected sets & Independence of the path – Second fundamental theorem of calculus for line integrals – The first fundamental theorem of calculus for line integrals – Potential functions on convex sets

Unit IV:

Multiple integrals: Introduction – Partitions of rectangle, Step functions – The double integral of a step function – The definition of the double integral of a function defined and bounded on a rectangle – Upper and lower double rectangles – Evaluation of a double integral by repeated one-dimensional integration – Geometric interpretation of the double integral as a volume – Integrability of continuous functions – Integrability of bounded functions with discontinuities – Double integrals extended over more general regions – Applications to area and volume.

Unit V:

Green's theorem in the plane – Change of variables in a double integral – Extensions to higher dimensions – Worked examples.

Surface Integrals: Definition of surface integral – Change of parametric representation – Stoke's theorem – The divergence theorem – Applications of the divergence theorem.

TEXT BOOK:

- **1.** Walter Rudin, *"Principles of Mathematical Analysis"*, 3rd Edition, McGraw Hill Book Co., Kogakusha, 1976. (Units I & II).
- **2. T.M. Apostol**, *"Calculus Vol.2, Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability"*, Second Edition, John Wiley & Sons, 1969. (Units III to V).

UNIT	Chapter(s)	Pages / Sections
Ι	7 (Book [1])	143-171
II	9 (Book [1])	204 - 228
III	10 (Book [2])	323 - 352
IV	11 (Book [2])	353 - 373
V	11 (Book [2])	11.9, 11.20, 11.26, 11.31 – 11.33
v	12 (Book [2])	12.7, 12.8, 12.11, 12.19,12.20

- 1. S.R. Ghorpade and B.V. Limaye, A Course in Multivariable Calculus and Analysis, Springer, 2010.
- 2. S. Lang, Calculus of Several Variables, Third Edition, Springer, 2012
- 3. P. D. Lax and M.S. Terrall, Multivariable Calculus with Applications, Springer, 2017.
- 4. M. Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, CRC Press, 1965.

<u>COURSE OUTCOMES:</u> At the end of this course, students will be able to

CO	Statement	Knowledge Level
C01	Determine the Riemann integrability and the Riemann-Stieltjes integrability of a bounded function and prove a selection of theorems concerning integration,	K1
CO2	Recognize the difference between pointwise and uniform convergence of a sequence of functions and illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability,	К2
CO3	Determine the limit point of a series of functions	K2
C04	Know the fundamental theorem of calculus, integration by parts, Gamma function	K1, K3 , K5
C05	Understand the concepts of Functions of several variables, inverse function theorem and implicit function theorem.	K4, K5

MAPPING WITH PROGRAMME OUTCOME(S):

PO/CO	P01	P02	P03	P04	P05	P06
C01	✓	~	~	~	~	~
C02	√	✓	~	~	~	~
C03	✓	✓	~			
C04	√	✓				
C05	√	✓	~			

U22MATC07	TOPOLOGY	L	Т	Р	С
	TOPOLOGI	4	1	0	5

<u>OBJECTIVE</u>: Topology is the mathematical study of the properties that are preserved through deformations like bending, twisting and stretchings of objects. The aim of studying this course is

- To define what a topological space is, and to introduce the concepts like open sets, closed sets, limit points and continuous functions of topological spaces as natural generalizations of the corresponding ideas for the real line and Euclidean space
- > To introduce different kinds of topologies
- > To learn the concepts of Connectedness and Compactness for arbitrary topological spaces
- To introduce the countability and separation axioms, and to study the Urysohn Metrization Theorem

UNIT I: Topological Spaces

Topological spaces – Basis for a topology – The order topology – The product topology on $X \times Y$ – The subspace topology – Closed sets and limit points.

UNIT II: Continuous Functions

Continuity of a function – Homeomorphisms – Constructing Continuous Functions – The product topology – The box topology – The metric topology – The sequence lemma – Uniform limit theorem.

UNIT III: Connectedness

Connected spaces –Connected subspaces of the real line – Intermediate value theorem – Path Connectedness – Components and local connectedness.

UNIT IV: Compactness

Compact spaces – Compact subspaces of the real line – Extreme value theorem – The Lebesgue number lemma – Uniform continuity Theorem – Limit point compactness – Sequential compactness – Local compactness.

UNIT V: Countability and Separation Axioms

The countability axioms – The separation axioms – Normal spaces – The Urysohn lemma – The Urysohn metrization theorem - The Tietz extension theorem.

TEXT BOOK:

J. R. Munkres, "Topology", 2nd Edition, Prentice Hall of India Pvt. Ltd., 2009.

UNIT	Chapter	Sections
Ι	2	12 - 17
II	2	18 - 21
III	3	23 - 25
IV	3	26 - 29
V	4	30 - 35

- 1. **J. Dugundji**, *"Topology"*, Prentice Hall of India, New Delhi, 1975.
- 2. **G.F. Simmons,** *"Introduction to Topology and Modern Analysis"*, Tata McGraw-Hill Book Co., New Delhi, 2004.
- 3. J.L. Kelly, "General Topology", Springer-Verlag, New York, 1975.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statement	Knowledge Level
C01	Define what a topological space is, and to identify the concepts like open sets, closed sets, limit points and continuous functions of topological spaces as natural generalizations of the corresponding ideas for the real line and Euclidean space	K1, K2, K4
C02	Explain various properties of continuous functions, construct continuous functions from one topological space to another and to examine the metrizability of various topological spaces	K1, K2, K3, K4, K6
CO3	Form new connected spaces from given ones, give connected subspaces of the real line, understand the concepts of path connectedness and local connectedness	K1, K2, K6
CO4	Construct new compact spaces from existing ones, give compact subspaces of the real line and relate different versions of compactness	K2, K3, K6
C05	Classify the countability and separation axioms, and to determine the conditions under which a topological space is metrizable	K1, K3, K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~		~
CO2	~	~	~	~	~	~
CO3	~	~	~	~		~
C04	~	~	~	~	~	~
CO5	~	~	~	~		~

1122MATCOO		L	Т	Р	С
022MATC00	PARTIAL DIFFERENTIAL EQUATIONS	4	1	0	4

<u>OBJECTIVE</u>: The objective of this course is to enable the students to understand the concepts related to the solution of partial differential equations arising in various fields.

UNIT I: Partial differential equations of first order

Origin of First-order Partial Differential Equations – Cauchy's Problem for First-Order -Nonlinear partial differential equations of the first order – Cauchy's method of characteristics – Compatible systems of first order equations – Charpit's method- Special types of first order equations – Jacobi's method.

UNIT II: Partial differential equations of second order

Linear partial differential equations with constant coefficients – Equations with variable coefficients – The solution of linear hyperbolic equations – Separation of variables

UNIT III: Laplace's Equation

Elementary solution of Laplace's equation – Families of equipotential surfaces – Boundary value problems – Separation of variables

UNIT IV: The wave equation

Elementary solutions of the one-dimensional wave equation – Vibrating membranes: Applications of the calculus of variations – Three dimensional problems

UNIT V: The Diffusion Equation

Elementary solutions of the diffusion equation – Separation of variables – The use of Green's functions

TEXT BOOK:

I.N. Sneddon, Elements of Partial Differential Equations, Dover, Singapore, 2006.

UNIT	Chapter	Sections
Ι	2	2, 3, 7 - 11, 13
II	3	4, 5, 8, 9
III	4	2 - 5
IV	5	2, 4, 5
V	6	3, 4, 6

- T. Amaranath, An elementary course in partial differential equations, Narosa Publishing House, 2003.
- 2. D. Colton, "Partial Differential Equations: An Introduction", Dover Publishers, New York, 1988.
- 3. H. Hattori, *"Partial Differential Equations: Methods, Applications and Theories"*, World Scientific, Singapore, 2013.
- 4. T. Myint-U, and L. Debnath, *"Linear Partial Differential Equations for Scientists and Engineers"*, Fourth Edition, Birkhauser, 2007.
- 5. M.D. Raisinghania, *"Advanced Differential Equations"*, S. Chand & Company, New Delhi, 2013.
- 6. Y. Pinchover and J. Rubinstein, *"An Introduction to Partial Differential Equations"*, Cambride University Press, 2005.
- 7. K. Sankara Rao, *"Introduction to Partial Differential Equations"*, Second Edition, Prentice Hall of India, New Delhi, 2006.

<u>COURSE OUTCOMES</u>: At the end of the course, the student will be able to:

СО	Statement	Knowledge Level
C01	Understand fundamental concepts of partial differential equations of first order, second order etc.	K1
CO2	Classify second order PDE and solve standard PDE using separation of variable method	К2
CO3	Know surfaces and curves in two dimensional space	К3
CO4	Learn various methods to solve linear and non linear partial differential equations	K4
C05	Solve various real life problems by formulating them into partial differential equations	К5

MAPPING WITH PROGRAMME OUTCOME(S):

P0/C0	P01	PO2	PO3	P04	P05	P06
C01	√	√	✓	~	~	~
CO2	√	√	✓	~	~	~
CO3	√	√	✓	~	~	~
CO4	√	√	✓	✓	~	~
C05	\checkmark	✓	~	~	~	~

U22MATC09

OBJECTIVES: The objectives of this course are

- To gain understanding of the abstract measure theory and main properties of the Lebesgue integral.
- > To make the students acquire basic knowledge of measure theory needed to understand probability theory, statistics and functional analysis.
- > To get ability to differentiate and integrate the Lebesgue integral.

UNIT I: Lebesgue Measure

Introduction – Outer measure - Measurable sets and Lebesgue measure – Measurable functions - Littlewood's three principles.

UNIT II: Lebesgue integral

The Riemann integral - Lebesgue integral of bounded functions over a set of finite measure - The integral of a nonnegative function - The general Lebesgue integral.

UNIT III: Differentiation and Integration

Differentiation of monotone functions - Functions of bounded variation - Differentiation of an integral - Absolute continuity.

UNIT IV: General Measure and Integration

Measure spaces – Measurable functions – Integration - General convergence theorems – Signed Measure – The Radon - Nikodym theorem.

UNIT V: Measure and Outer Measure

Outer measure and measurability – The Extension theorem – Product measures.

TEXT BOOK:

H.L. Royden, "Real Analysis", 3rd Edition, Macmillan Publishing Company, New York, 1988.

UNIT	Chapter	Sections
Ι	3	1 - 3, 5 & 6
II	4	1 - 4
III	5	1 - 4
IV	11	1 - 3, 5, 6
V	12	1, 2, 4

- 1. **Robert G. Bartle**, The Elements of Integration and Lebesgue Measure, 2nd Edition, Wiley-Blackwell, 1995.
- 2. **G. De Barra**, Measure Theory and Integration, 2nd Edition, Horwood, Publishing, 2003.
- 3. **W.Rudin**, Real and Complex Analysis, 3rd Edition, Tata McGraw-Hill Education, New Delhi, 2013.

<u>COURSE OUTCOMES</u>: On the successful completion of the course, students will be able to

CO	Statement	Knowledge Level
C01	Know the meaning of outer and inner measures with their basic properties and know the meaning with examples of algebras, sigma-algebras, measurable sets, measurable space and measure space	K1, K2
C02	Understand the concept of Lebesgue integration both on the general measure space and the real line and know the basic theory of integration and convergence, with the application in evaluating integrals	K2, K3
CO3	Develop the concepts of Differentiation of monotone functions, Functions of bounded variation, Differentiation of an integral, Absolute continuity	K4, K6
CO4	Study the Radon-Nikodym theorem and its applications. Understand the concepts of Convergence in Measure and Lebesgue Integrability	K4, K3
C05	Demonstrate understanding of the statements of the main results on integration on product spaces and an ability to apply these in examples.	K2, K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~		~
CO2	~	~	~	~	~	~
CO3	~	~	~	~		~
CO4	~	~	~	~	√	~
C05	~	\checkmark	~	~		~

U22MATC10

<u>OBJECTIVES</u>: The main aim of this course is to provide basic concepts of functional analysis to facilities the study of advanced mathematical structures arising in the natural sciences and the engineering sciences and to grasp the newest technical and mathematical literature.

UNIT I: Banach Spaces

Definition and some examples – Continuous linear transformations – Equiveant forms of continuity Dual Spaces - The Hahn-Banach theorem – Applications.

UNIT II: Banach Spaces (Cont...)

The natural imbedding of N in N^{**} - Weak^{*} topology - Open mapping theorem – Projections – closed graph theorem – uniform boundedness theorem – properties of conjugate operator.

UNIT III: Hilbert Spaces

Definition and some simple properties – Schware inequality – parallelogram law and its applications -Orthogonal complements – Orthonormal sets – Bassels inequality – Gram-Schmit orthogonalization process - Conjugate space H* - Riesz representation theorem.

UNIT IV: Hilbert spaces (Cont...)

Adjoint of an operator and its properties - Self-adjoint operators – Normal and unitary operators – Projections.

UNIT V: General Preliminaries on Banach Algebras

Definition and some examples – Regular and singular elements – Topological divisors of zero – Spectrum – The formula for the spectral radius – the radical and semi-simplicity.

TEXT BOOK:

G. F. Simmons, "Introduction to Topology and Modern Analysis", Tata McGraw -Hill Publishing Company, New Delhi, 2004.

UNIT	Chapter(s)	Sections	
Ι	9	46 - 48	
II	9 & 10	49 - 51, 52	
III	10	53 - 56	
IV	10	57 – 59	
V	12	64 - 69	

- 1. **G. Bachman** and **L. Narici**, *"Functional Analysis"*, Academic Press, New York, 1966.
- 2. H.C. Goffman and G. Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987.
- 3. **E.Kreyszig**, *"Introductory Functional Analysis with Applications*", John Wiley & Sons, New York, 1978.
- 4. **E.S.Suhubi**, *"Functional Analysis"*, Springer International Edition, India, 2009.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

со	Statement	Knowledge Level
CO1	Explain the concept of Banach spaces with some standard examples, to relate some equivalent conditions for a continuous linear transformation	K1, K2, K3
CO2	Understand the concepts of bounded linear transformations via standard results and to analyze the properties of conjugate of an operator	K1, K2, K4
CO3	Know the concepts in Hilbert spaces, including orthogonal complements, orthonormal sets, complete orthonormal sets, and its natural correspondence with its conjugate space	K1, K3, K4
CO4	Familiar with the theory of linear operators on a Hilbert space, including adjoint operators, self adjoint, normal and unitary operators	K1, K2, K3, K4
CO5	Construct Banach algebras through Banach spaces, to understand the concepts of Spectrum and semi-simplicity	K1, K2, K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	PO5	P06
C01	~	~				√
CO2	~	~	✓	~	~	√
CO3	~	~	~	~		√
CO4	~	~		~	~	~
C05	~	~	✓			~

U22MATC11

OBJECTIVES: The objectives of this course are

- to make the students familiarize with the ways of solving complicated mathematical problems numerically.
- To provide numerical methods for solving the non-linear equations, interpolation, differentiation, integration, ordinary and partial differential equations.
- > Describing and understanding error analysis in numerical methods.

Unit I: Solutions of Equations in One Variable

Newton's Method and its Extensions – Error Analysis for Iterative Methods – interpolation and Polynomial Approximation - Interpolation and the Lagrange Polynomial – Hermite Interpolation – Cubic Spline Interpolation.

Unit II: Numerical Differentiation and Integration

Numerical Differentiation – Elements of Numerical Integration – Romberg Integration.

Unit III: Initial Value Problems for Ordinary Differential Equations

Elementary Theory of Initial Value Problems – Euler's Method – Taylor Method – Runge-Kutta Methods.

Unit IV: Initial Value Problems for Ordinary Differential Equations (Continued)

Multistep Methods – Higher-Order Equations and Systems of Differential Equations – Stability.

Unit V: Numerical Solutions to Partial Differential Equations

Elliptic Partial Differential Equations – Parabolic Partial Differential Equations - Hyperbolic Partial Differential Equations.

TEXT BOOK:

R. L. Burden and **J.D. Faires**, *"Numerical Analysis"*, 9th Edition, Thomson Learning. Inc., Stanford, Connecticut, 2011.

UNIT	Chapter(s)	Sections		
Ι	2&3	2.3, 2.4, 3.1, 3.4, 3.5		
II 4 4.1, 4.3, 4.5		4.1, 4.3, 4.5		
III	5	5.1, 5.2, 5.4		
IV	5	5.6, 5.9, 5.10		
V 12 12.1 – 12.3		12.1 - 12.3		
Algorithms are not included in the syllabus				

List of practical programs will be issued by course teacher.

- 1. **C.F. Gerald and P.O. Wheatley**, *"Applied Numerical Analysis"* Sixth Edition, Addison- Wesley, Reading, 1998.
- 2. **M.K. Jain,** *"Numerical Methods for Scientific and Engineering Computation"* New Age International, 2003.

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

СО	Statements	Knowledge level
C01	Apply numerical methods to obtain approximate solutions to mathematical problems.	K1
CO2	Understand how to approximate the functions using interpolating polynomials	К2
CO3	Perform error analysis for various methods	К3
CO4	Learn numerical solution of ordinary and partial differential equations with an understanding of convergence, stability and consistency.	K4
C05	Analyze and evaluate the accuracy of common numerical methods	K5

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	PO5	P06
C01	~	~	~	~	~	\checkmark
CO2	~	~	~	~	~	√
CO3		~	~	✓	~	~
CO4	~	~	~	~	~	~
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

U22MATP01

<u>OBJECTIVE</u>: At the end of the course learners will be able to understand the basic concepts and techniques of finding numerical solutions of Problems involving root finding, interpolation and system of ordinary & Partial Differential Equations through computer programming algorithms.

This course enables the students to learn

- 1. In-depth understanding of functional, logic, and programming paradigms.
- 2. Method to implement several programs in languages other than the one emphasized in the core curriculum.
- 3. The basic concepts and techniques of numerical solution of algebraic equations through algorithms.
- 4. The appropriate solution to differential equations through numerical methods.
- 5. Obtaining numerical solutions to problems of mathematics.
- 6. Describing and understanding of the several errors and approximation in numerical methods.
- 7. The explaining and understanding of the several available methods to solve the simultaneous equations.
- 8. The studying of Curve Fitting and Interpolation.

OUTCOMES:

The Students will be aware of Programming Knowledge in arriving numerical solutions to the problems related to root finding, interpolation and system of ordinary & Partial Differential Equations.

U22MATC12

L T P C 4 1 0 4

<u>OBJECTIVE</u>: Students will be introduced to some topics of operator theory (with an emphasis on spectral theory) and to the fundamentals of Banach algebra.

UNIT – I:

Spectral theory of normed linear spaces, resolvent set and spectrum, spectral properties of bounded linear operators, properties of resolvent and spectrum.

UNIT – II:

Spectral mapping theorem for polynomials, spectral radius of bounded linear operator on a complex Banach space, elementary theory of Banach Algebras.

UNIT – III:

Basic properties of compact linear operators.

UNIT - IV: Dimensionality Reduction

Behavior of Compact linear operators with respect to solvability of operator equations, Fredholm type theorems, Fredholm alternative theorem, Fredholm alternative for integral equations.

UNIT – VI:

Spectral properties of bounded self-adjoint linear operators on a complex Hilbert space, positive operators, Monotone sequence theorem for bounded self-adjoint operators on a complex Hilbert space, square roots of a positive operator, projection operators.

TEXT BOOK

1. **E.Kreyszig**, Introductory Functional Analysis with applications, John-Wiley &Sons, New York, 1978.

UNIT	Chapter	Section		
Ι	7	7.1 – 7.4.1		
II 7		7.4.2 - 7.7.4		
III 8		8.1 - 8.4.5		
IV 8		8.5 - 8.7.5		
V 9 9.1 – 9.6		9.1 - 9.6		

- 1. N. Dunford & J.T. Schwartz, Linear operators-3 parts, Interscience Wiley, New York, 1958-71.
- 2. P.R. Halmos, Introduction to Hilbert spaces and the theory of spectral multiplicity, second edition, Chelsea Pub. Co., N.Y. 1957.
- 3. P. R. Halmos, A Hilbert space problem book, D. Von Nostrand company Inc., 1967.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statements	Knowledge level
C01	Understand the basic theory of linear operators.	K1, K2
CO2	Describe and use the basic theory of linear operators on Banach and Hilbert spaces.	K2, K3
CO3	Define the spectrum of an operator, describe its properties, and calculate it in some cases.	K1, K3, K4
C04	Describe and use the basic theory of commutative Banach algebras.	K3, K4, K5
C05	Describe and use the spectral theorem for normal operators on Hilbert spaces especially for compact operators.	K3, K5, K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark			\checkmark	~
CO2	✓	✓	✓	✓	√	
CO3	~	~	~		~	
CO4	~	~	~		~	
C05	~	~	~	~		~
1122MATC12	COMDIEV ANALVEIS	L	Т	Р	С	
------------	------------------	---	---	---	---	
UZZMAICIS	COMPLEA ANALISIS	4	1	0	5	

OBJECTIVES: The objectives of this course are

- > To know the algebraic and topological properties of complex numbers.
- > To provide understanding the analytic functions of a complex variable and their role in modern mathematics.
- > To demonstrate ability to think knowledge of integration in complex analysis.

Unit I:

The spherical representation of complex numbers – Introduction to the concept of analytic functions – Limits and Continuity – Lucas's theorem- Elementary theory of power series – Abel's limit theorem - The Exponential and Trigonometric functions.

Unit II:

Conformality – Arcs and closed curve – Conformal Mapping - Linear transformations –The cross ratio – Symmetry – Oriented circle – Families of circle - Elementary conformal mappings.

Unit III:

Fundamental theorems – The line integral – Cauchy theorem for a rectangle - Cauchy's integral formula - Higher order derivative –Local properties of analytic functions – Taylor's theorem – Zeroes and poles – Local mapping – Maximum principle – Schwartz lemma.

Unit IV:

The general form of Cauchy's theorem - Chain and cycles – Homology – General statement of Cauchy's theorem- Calculus of residues – Argument principle – Evaluation of definite integrals.

Unit V:

Harmonic functions – Definite and basic properties – Mean value property - Poisson formula – Schwartz theorem – Power series expansions – Weierstrass theorem – Taylor's and Laurent's series.

TEXT BOOK:

L.V. Ahlfors, "Complex Analysis", 3rd Edition, McGraw-Hill Education, New Delhi, 1979.

UNIT	Chapter(s)	Section(s)
Ŧ	1	2, 4
1	2	1 – 3
II	3	2 - 4
III	4	1 – 3
IV	4	4 & 5
	4	6
v	5	1

- 1. **J.B. Conway**, *"Functions of One Complex Variable"*, 2nd Edition, Springer-Verlag, New York, 1978.
- 2. **S. Lang,** "Complex Analysis", 4th Edition, Springer-Verlag, New York, 1999.
- 3. **S. Ponnusamy,** *"Foundations of Complex Analysis"*, 2nd Edition, Alpha Science International, 2005.

COURSE OUTCOMES: On the successful completion of the course, students will be able to

со	Statement	Knowledge
		Level
	Find the harmonic conjugate to a harmonic function;	
CO1	express analytic functions in terms of power series and	K1, K2, K3
	Laurent series	
	Construct conformal mappings between many kinds of	
CO2	domain. Use conformal mapping to solve the Dirichlet	K1, K2, K3
	problem in a region.	
	Find parameterizations of curves, and compute line	
CO3	integrals directly. Use Cauchy's integral theorem or	K1, K2
	formula to compute line integrals.	K3, K4
	Find the number of zeros and poles within a given curve	
004	using the argument principle or Rouche's theorem and	K1, K2
04	determine residues. Use the residue theorem to compute	K3, K4
	several kinds of real integrals.	,
	Find Laurent series about isolated singularities. Determine	K1, K2
CO5	whether a sequence of analytic functions converges	K5, K6
	uniformly on compact sets.	· ·

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	√	√	✓	√	√	
CO2	~	~	✓	~		~
CO3	√	√	✓	√	√	~
CO4	~	~	✓	~	~	~
CO5	~	~	~	~	~	~

U22MATC14

OBJECTIVES:

The objective of the course is to introduce students with the fundamental concepts in graph theory, with a sense to know some of the new developments and its modern applications. They will be able to use these concepts/techniques in subsequent courses in the design and analysis of algorithms, software engineering and computer systems.

UNIT I: Graphs and Digraphs:

Basic concepts – subgraphs – degrees of vertices – paths and connectedness – automorphism of a simple graphs – line graphs – operations on graphs –applications to social psychology - basic concepts in digraphs – tournaments.

UNIT II: Connectivity and trees:

Vertex cuts and edge cuts – connectivity and edge connectivity – Cyclical edge connectivity of a graph -Definition, Characterization and simple properties of trees – centers and centraoids - counting spanning trees – cayley's formula – Applications: Connector Problem – Kruskal's Algorithm.

UNIT III: Independent sets, Matchings and Cycles

Independents sets and coverings (both vertex & edge) – matchings and factors – matchings in bipartite graphs – Eularian graphs and Hamiltonian graphs – Introduction – Eulerian Graphs – Hamiltonian Graphs – 2-Factorable Graphs.

UNIT IV: Graph colorings:

Vertex colorings – applications of graph coloring - critical graphs – Brooks Theorem – other coloring parameters – b-colorings; Edge colorings – the time table problem – Vizings theorem – Kirkman's Schoolgirl Problem – chromatic polynomials.

UNIT V: Planar Graphs.

Planar and non planar graphs – Euler formula and its consequences – K_5 and $K_{3, 3}$ are non planar graphs – dual of a plane graph – The four color theorem and the Heawood five color theorem – Hamiltonian plane graphs – Tait coloring.

TEXT BOOK:

R. Balakrishnan and **K. Ranganathan**, "*A Textbook of Graph Theory*" (2nd edition), Springer, New York, 2012.

UNIT	Chapter	Sections
Ι	1 & 2	1.1 - 1.8, 1.11, 2.1 - 2.3
II	3 & 4	3.1 - 3.3, 3.5, 4.1 - 4.5, 4.7.1 - 4.7.2
III	5	5.1 - 5.5, 6.1 - 6.3, 6.6
IV	7	7.1 - 7.3, 7.6, 7.8, 7.9
V	8	8.1 - 8.6, 8.8, 8.9

- 1. J. Clark and D.A. Holton, A First look at Graph Theory, Allied Publishers, New Delhi, 1995.
- 2. R.J. Wilson and J.J. Watkins, Graphs: An Introductory Approach, John Wiley and Sons, New York, 1989.
- 3. S.A. Choudum, A First Course in Graph Theory, MacMillan India Ltd. 1987.
- 4. J.A. Bondy and U.S.R. Murty, Graph Theory and Applications, Macmillan, London, 1976.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

CO	Statements	Knowledge level
C01	Understand the basic concepts on various types of graphs, trees/cycles/matchings/colorings, directed graphs and able to present a graph as a model to solve many real life problems.	K1
CO2	Understand the properties of bipartite graphs, Hamiltonian/Eularian graphs, maximum/maximal matchings, bounds for chromatic numbers, planarity and able to find a minimal spanning tree for a given weighted graph.	K2
CO3	Understand necessary/sufficient conditions for bipartite graphs, connectedness, relation with minimum/maximum degrees, connection between independent / matchings, Eulerian and Hamiltonian graphs which makes the model for optimal communication systems.	К3
CO4	Apply Known properties to solve simple problems to enhance problem solving skill.	K4
C05	Solve critical problems by applying more than one concepts / properties which creates interest enhance confidence on basic research skill	K5

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	✓	√	~		✓	✓
CO2	✓	√	~		✓	✓
CO3	~	~	~		~	~
CO4	~	√	~		~	~
C05	~	~	~		~	~

ELECTIVE COURSES

11 22M ATE01		L	Т	Р	С
UZZMATEUT	NUMBER THEORY	4	1	0	4

<u>OBJECTIVE</u>: The aim of this course is to teach the students about the basics of elementary number theory starting with primes, congruences, quadratic residues, primitive roots, arithmetic functions and some Diophantine equations.

Unit I: Divisibility and Congruences

Divisibility – Primes – Congruences – Solutions of Congruences.

Unit II: Congruences

The Chinese Remainder Theorem – Prime Power Moduli – Prime Modulus - Primitive Roots and Power Residues – Congruences of Degree Two, Prime Modulus.

Unit III: Quadratic Reciprocity and Quadratic Forms

Quadratic Residues – Quadratic Reciprocity – The Jacobi Symbol – Sums of Two Squares.

Unit IV: Some Functions of Number Theory

Greatest Integer Function – Arithmetic Functions – The Mobius Inversion Formula - Combinatorial Number Theory.

Unit V: Some Diophantine Equations

The Equation ax + by=c – Simultaneous Linear Equations – Pythagorean Triangles – Assorted Examples.

TEXT BOOK:

I. Niven, H. S. Zuckerman and **H. L. Montgomery, An Introduction to the Theory of Numbers**, 5thEdition, John Wiley & Sons, Inc., New York, 2004.

UNIT	Chapter(s)	Sections
Ι	1&2	1.2, 1.3, 2.1, 2.2
II	2	2.3, 2.6 – 2.9
III	3	3.1 - 3.3, 3.6
IV	4	4.1 - 4.3, 4.5
V	5	5.1 – 5.4

- 1. **D.M. Burton**, *"Elementary Number Theory"*, Universal Book, Stall, New Delhi 2001.
- 2. K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory", Springer Verlag, New York, 1972.
- 3. T.M. Apostol, "Introduction to Analytic Number Theory", Narosa Publ. House, Chennai, 1980.

<u>COURSE OUTCOMES</u>: On the successful completion of the course, students will be able to

CO	Statement	Knowledge Level
C01	Find quotients and remainders from integer division. Apply Euclid's algorithm and backwards substitution	K1
CO2	Understand the definitions of congruences, residue classes and least residues. Add and subtract integers, modulo n, multiply integers and calculate powers, modulo n.	К3
CO3	Analyze the Euler's function, applications of Euler's function algebraic structures and its behavior.	К3
C04	Evaluate the quadratic residues, Legendre symbols and solve its problems.	K4
C05	Solve certain types of Diophantine equations.	К3

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	PO5	P06
C01	~	~		~	~	~
CO2	✓	~	~	~		
CO3	√	√			~	
CO4	✓	✓	~			
C05	~	~	~			~

<u>OBJECTIVE</u>: Difference equations usually describe the evolution of certain phenomena over the course of time. The aim of studying this course is

- > To introduce the difference calculus.
- > To study linear difference equations and to know how to solve them.
- > To know the stability theory for homogeneous linear system of difference equations.
- > To study the asymptotic behavior of solutions of homogeneous linear difference equations.

UNIT I: Difference Calculus

Difference operator - Summation – Generating functions and approximate summation.

UNIT II: Linear Difference Equations

First order equations - General results for linear equations - Solving linear equations.

UNIT III: Linear Difference Equations

Equations with variable coefficients – The z -transform.

UNIT IV: Stability Theory

Initial value problems for linear systems – Stability of linear systems.

UNIT V: Asymptotic Methods

Introduction – Asymptotic analysis of sums – Linear equations.

TEXT BOOK:

W.G. Kelley and A.C. Peterson, "Difference Equations", 2nd Edition, Academic Press, New York, 2001.

UNIT	Chapter	Sections
Ι	2	2.1 – 2.3
II	3	3.1 - 3.3
III	3	3.5, 3.7
IV	4	4.1, 4.2
V	5	5.1 – 5.3

- 1. **R.P. Agarwal**, *"Difference Equations and Inequalities"*, 2nd Edition, Marcel Dekker, New York, 2000.
- 2. S.N. Elaydi, "An Introduction to Difference Equations", 3rd Edition, Springer, India, 2008.
- 3. **R. E. Mickens**, *"Difference Equations"*, 3rd Edition, CRC Press, 2015.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statement	Knowledge Level
C01	Define a difference operator and to state the properties of difference operator	K1
CO2	Explain the computation of sums, the concept of generating function and the important Euler summation formula	K2
CO3	Solve linear difference equations by applying different methods, namely, annihilator method, z-transform method, etc.	К3
C04	Examine the stability of linear system of difference equations using eigen value criteria	K4
C05	Analyze the asymptotic behavior of solutions to linear difference equations by the theorems of Poincare and Perron	K4

MAPPING WITH PROGRAMME OUTCOME(S):

C0\P0	P01	P02	P03	P04	PO5	P06
C01	\checkmark	\checkmark	\checkmark	~		\checkmark
CO2	\checkmark	\checkmark	\checkmark			~
CO3	\checkmark	\checkmark	\checkmark		✓	~
CO4	✓	~	~		~	~
CO5	✓	\checkmark	\checkmark		~	~

U22MATE03	

MECHANICS

L	Т	Р	С
4	1	0	4

<u>OBJECTIVE</u>: The objective of this course is to understand the Lagrangian and Hamiltonian equations for dynamical systems.

UNIT I: Mechanical Systems

The Mechanical system – Generalized coordinates – Constraints – Virtual work – Energy and Momentum.

UNIT II : Lagrange's Equations

Derivation of Lagrange's Equations – Examples – Integrals of the motion.

UNIT III: Hamilton's Equations

Hamilton's Principle – Hamilton's Equations – Other variational principles.

UNIT IV: Hamilton – Jacobi Theory

Hamilton Principle Function – Hamilton-Jacobi Equation – Separability.

UNIT V: Canonical Transformation

Differential forms and Generating Functions – Special Transformations – Lagrange and Poisson Brackets.

TEXT BOOK:

D.T. Greenwood, "Classical Dynamics", Prentice Hall of India, New Delhi, 1985.

UNIT	Chapter	Sections
Ι	1	1.1 to 1.5
II	2	2.1 to 2.3
III	4	4.1 to 4.3
IV	5	5.1 to 5.3
V	6	6.1 to 6.3

BOOKS FOR SUPPLEMENTARY READING AND REFERENCES:

- 1. **H. Goldstein**, *"Classical Mechanics"*, 2nd Edition, Narosa Publishing House, New Delhi.
- 2. R.D. Gregory, "Classical Mechanics", Cambridge University Press, 2006
- 3. J.L.Synge and B.A.Griffth, "Principles of Mechanics", 3rd Edition, McGraw Hill Book Co., New York, 1970.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statement	Knowledge level
C01	Define the mechanical system of generalized coordinates, virtual work, energy and momentum	K1
CO2	Explain the Derivation of Lagrange's equation and the concept of the Integrals of the motion	К2
CO3	Classify the Hamilton's equations and Modified Hamilton's principle	К3
CO4	Determine the Hamilton form of the equation of motion and find the solutions of integral of equation by the Hamilton's Jacobi theory	K4
CO5	Analyze the Principle function of the generating function for canonical transformation, namely, Special Transformations, Lagrange and Poisson Brackets.	К5

MAPPING WITH PROGRAMME OUTCOME(S):

CO\PO	P01	P02	PO3	P04	PO5	P06
C01	✓	√	√	✓		~
CO2	✓	√				~
CO3	✓	√	✓	✓		~
CO4	✓	✓			✓	~
C05	✓	√			~	~

<u>OBJECTIVE</u>: The objective of this course is to introduce the basic ideas of Fuzzy Sets, Fuzzy sets versus crisp sets, operation on Fuzzy sets, Fuzzy arithmetic and methods of contracting fuzzy sets.

UNIT I: Fuzzy sets

Fuzzy sets – Basic types – basic concepts – Characteristics- Significance of the paradigm shift - Additional properties of α -cuts.

UNIT II: Fuzzy sets versus crisp sets

Representation of Fuzzy sets- Extension principle of Fuzzy sets – Operation on Fuzzy Sets – Types of operation – Fuzzy complements.

UNIT III: Operations on Fuzzy sets

Fuzzy intersection – t-norms, Fuzzy unions – t conorms-Combinations of operations – Aggregation operations.

UNIT IV: Fuzzy Arithmetic

Fuzzy numbers – Linguistic variables – Arithmetic operation on intervals – Lattice of Fuzzy numbers.

UNIT V: Constructing Fuzzy Sets

Methods of construction: an overview – direct methods with one expert – direct method with multiple experts – indirect method with multiple experts and one expert- Construction from sample data.

TEXT BOOK:

G. J. Klir and **Bo Yuan**, *"Fuzzy Sets and Fuzzy Logic: Theory and Applications"*, Prentice Hall of India Ltd, New Delhi, 2005.

UNIT	Chapter(s)	Sections
Ι	1&2	1.3 – 1.5, 2.1
II	2&3	2.2, 2.3, 3.1, 3.2
III	3	3.3 - 3.6
IV	4	4.1 - 4.4
V	10	10.1 - 10.7

- 1. H.J. Zimmermann, "Fuzzy Set Theory and its Applications", Allied Publishers, Chennai, 1996.
- 2. A. Kaufman, "Introduction to the Theory of Fuzzy Subsets", Academic Press, New York, 1975.
- 3. V. Novak, "Fuzzy Sets and Their Applications", Adam Hilger, Bristol, 1969.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

СО	Statements	Knowledge level
C01	Distinguish between the crisp set and fuzzy set concepts.	K1
CO2	Draw a parallelism between crisp set operations and fuzzy set operations through the use of characteristic and membership functions, respectively.	К2
CO3	Define fuzzy sets using linguistic words and represent these sets by membership functions.	K1
C04	Know how to perform mapping of fuzzy sets by a function and also use α – level sets in such instances.	К3
C05	Become aware of the use of fuzzy inference systems in the design of intelligent or humanistic systems.	K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
CO2	~	~	~		\checkmark	~
CO3	√	√	√		\checkmark	√
C04	~	~	~		~	✓
CO5	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark

<u>OBJECTIVE</u>: This course gives students basic knowledge of classical differential geometry of curves and surfaces such as the catenary, the tractrix, the cycloid and the surfaces of constant Gaussian curvature and minimal surfaces.

UNIT I: Space Curves

Definition of a space curve – Arc length – Tangent – Normal and binormal – Curvature and torsion – Contact between curves and surfaces – Tangent surface – Involutes and evolutes – Intrinsic equations – Fundamental existence theorem for space curves – Helics.

UNIT II: Intrinsic Properties of a Surface

Definition of a surface – Curves on a surface – Surface of revolution – Helicoids – Metric – Direction coefficients – Families of curves – Isometric correspondence – Intrinsic properties.

UNIT III: Geodesics

Geodesics – Canonical geodesic equations – Normal property of geodesics – Existence theorems – Geodesic parallels – Geodesics curvature- Gauss-Bonnet Theorem – Gaussian curvature – Surface of constant curvature.

UNIT IV: Non Intrinsic Properties of a Surface

The second fundamental form – Principal curvature – Lines of curvature – Developable - Developable associated with space curves and with curves on surface – Minimal surfaces – Ruled surfaces.

UNIT V: Differential Geometry of Surfaces

Compact surfaces whose points are umbilicus – Hilbert's lemma – Compact surface of constant curvature –Complete surface and their Characterization – Hilbert's Theorem – Conjugate points on geodesics.

TEXT BOOK:

T.J. Willmore, *"An Introduction to Differential Geometry"*, Oxford University press, (17th Impression), New Delhi, 2002. (Indian Print)

UNIT	Chapter(s)	Sections
Ι	Ι	1 - 9
II	II	1 - 9
III	II	10 - 18
IV	III	1 - 8
V	IV	1 - 8

- 1. D.T. Struik, "Lectures on Classical Differential Geometry", Addition Wesley, Mass, 1950.
- 2. **S. Kobayashi** and **K. Nomizu**, *"Foundations of Differential Geometry"*, Interscience Publishers, 1963.
- 3. **W. Klingenberg**, *"A Course in Differential Geometry"*, Graduate Texts in Mathematics, Springer Verlag 1979.
- 4. **C.E.Weatherburn**, *"Differential Geometry of Three Dimensions"*, University Press, Cambridge, 1930.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

СО	Statements	Knowledge level
C01	Determine and calculate curvature of curves in different coordinate systems.	К2
CO2	Find the Osculating surface and Osculating curve at any point of a given curve.	К3
CO3	Calculate the first and the second fundamental forms of surface.	КЗ
C04	Introduced to geodesics on a surface and their characterization and understand geodesics as distance minimizing curves on surfaces.	K1
C05	Calculate the Gaussian curvature, the man curvature, the curvature lines, the asymptotic lines, the geodesics on various surfaces.	К5

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark				\checkmark
CO2	~	~	~			~
CO3	1	1			~	~
CO4	~	~	~		~	~
CO5	1	1	✓		√	√

<u>OBJECTIVE</u>: This course introduces fundamental mathematical concepts required for getting into the field of data science.

UNIT – I: Data Science Fundamentals

Identifying and framing a data science problem in different fields - Data - Types, Pre-processing; Different types of Analytics - Introduction to Machine Learning, Artificial Intelligence.

UNIT - II: Probability

Probability axioms, Conditional Probability, Bayes' Theorem, Independence, Counting Problems, Discrete and Continuous Random Variables, Expectation, Iterated Expectation, Total Law of Probability, Covariance, Correlation, Entropy, Mutual Information.

UNIT - III: Computational Methods

Calculus for Data Science: Functions, Derivative, Partial derivative, Gradient of vector-valued functions and matrices and automatic differentiation, Second derivative Hessian matrix.

UNIT – IV: Linear Algebra

Vectors, Basis, Linear Dependence and Independence, Tensors, Scalars, Inner Products, Outer product, Norms, Basis, Orthogonal and Orthonormal Vectors, Orthogonalization and Normalization. Matrix: Linear transformation: Frobenius Norm, Matrix Multiplication, Solutions of system of algebraic equations; Matrix Decomposition: QR Factorization; Cholesky Decomposition, Eigenvalue Decomposition, Singular Value Decomposition, Principal Component Analysis.

TEXT BOOK

- 1. Shah, Chirag. *A Hands-On Introduction to Data Science*. Cambridge University Press, 2020.
- 2. Bertsekas, Dimitri P., and John N. Tsitsiklis. *Introduction to Probability*. Vol. 1. Belmont, MA: Athena Scientific, 2002.
- 3. Shaw, Zed A. *Learn python 3 the hard way: A very simple introduction to the terrifyingly beautiful world of computers and code*. Addison-Wesley Professional, 2017.
- 4. Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning. Cambridge University Press, 2020. (<u>https://mml-book.github.io</u>)
- 5. Gibert Strang. *Linear Algebra and Learning from Data*. Wellesley-Cambridge Press, 2019
- 6. Gibert Strang. *Linear Algebra for Everyone*, Wellesley-Cambridge Press, 2020

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statements	Knowledge level
C01	Understand the basic mathematical concepts in data science, related to linear algebra, probability, and calculus	K1, K2
CO2	Employ techniques and methods related to these concepts in a variety of data science applications.	K1, K2
CO3	Apply logical thinking to understand and solve problems	K1, K3
C04	Demonstrate skills in writing mathematics	K1, K2
C05	Adopt a rigorous and mathematical approach to solving problems in machine learning and data science.	K1, K2

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01		~	~		~	~
CO2			~		~	~
CO3			~		~	~
CO4		~	~		~	~
C05		~	~		~	~

REPRESENTATION THEORY OF FINITE GROUPS

L T P C 4 1 0 4

OBJECTIVE: Representation theory, the art of realizing a group in a concrete way, usually as a collection of matrices, is a fundamental tool for studying groups by means of linear algebra. The results of the theory of representations of finite groups play a fundamental role in many recent developments of mathematics and theoretical physics. The study of the representation theory of groups becomes a special case of the study of modules over rings. This course provides the concepts of the characters of groups and the basic properties of irreducible characters and their connection with the ring structure of group algebras.

UNIT I: Group representations

Group representations – FG Modules – FG - submodules and Reducibility- Group algebras.

UNIT II: Group algebra

FG-homomorphisms – Maschke's theorem – Consequences of Maschke's theorem – Schur's lemma – Irreducible modules and the group algebra.

UNIT III: More on the group algebra

More on the group algebra – The spaces of FG-homeomorphisms – Conjugacy classes - Conjugacy class sizes – Characters – The values of a character – The regular character.

UNIT IV: Irreducible characters

Inner product of characters – Applications – Decomposing CG-modules – Class functions – The number of irreducible characters.

UNIT V: Character tables

Character Tables and Orthogonality relations- Normal subgroups and Lifted characters- Some Elementary Character Tables.

TEXT BOOK:

G. James and **M. Liebeck**, *"Representations and Characters of Groups"*, 2nd Edition, Cambridge University Press, London, 2001.

UNIT	Chapter(s)
Ι	3 - 6
II	7 – 10
III	11 - 13
IV	14 – 15
V	16 - 18

- 1. **C.W. Curtis** and **I.Reiner**, *"Methods of Representation Theory with Applications to Finite Groups and Orders"*, Volume 1, Wiley Interscience, New York, 1981.
- 2. J.P. Serre, "Linear Representation of Finite Groups", Springer-Verlag, New York, 1977.
- 3. **W.Fulton** and **J. Harris**, *"Representation Theory A First Course"*, Graduate Texts in Mathematics 129, Springer Verlag, New York, 1991.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

CO	Statements			
C01	Find the number of irreducible representations of a finite group	K2		
CO2	Understand the special role played by the famous Maschke's Theorem	К3		
CO3	Find a finite set of irreducible CG-modules such that every irreducible CG- module is isomorphic to one of them.	K4		
C04	Calculate the dimension of Hom(V,W) over CG.	K5		
C05	Find a method for decomposing a given CG-module as a direct sum of CG-sub modules, using characters.	K6		

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
CO2	\checkmark	\checkmark	\checkmark			~
CO3	√	√	√		\checkmark	~
CO4	√	√	√			~
CO5	~	~	~		\checkmark	~

1122MATE00	ΜΑΤΠΕΜΑΤΙζΑΙ ΒΙΟΙ Οζν	L	Т	Р	С
UZZMA I EUO	MAI NEMAI ICAL DIOLOGY	4	1	0	4

OBJECTIVE: Biology is undergoing a quantitative revolution, generating vast quantities of data that are analysed using bioinformatics techniques and modelled using mathematics to give insight into the underlying biological processes. This module aims to give a flavour of how mathematical modelling can be used in different areas of biology.

UNIT I: Single Species Population Dynamics

Continuous time models – Growth models, Logistic model – Evolutionary Aspects – Delay models.

UNIT II: Two Species Population Dynamics

The Lotka-Volterra Prey-Predator equations – Modelling the predator functional response Competition – Ecosystems modeling.

UNIT III: Infectious Diseases

Simple epidemic and SIS diseases – SIR Epidemics – SIR Endemics.

UNIT IV: Biochemical Kinetics

Transitions between states at the molecular and populations level – Law of mass action – Enzyme kinetics.

UNIT V: Biochemical Kinetics

Simple models for polymer growth dynamics.

TEXT BOOK:

- **1.** N. Britton, "Essential Mathematical Biology", Springer Science & Business Media, 2012.
- L.A. Segel and L. Edelstein-Keshet, "A Primer in Mathematical Models in Biology", SIAM, Vol. 129, 2013.

UNIT	Chapter/ Text Book	Section(s)
Ι	1 of [1]	1.3 – 1.5, 1.7
II	2 of [1]	2.3 - 2.6
III	3 of [1]	3.1 - 3.4
IV	2 of [2]	2.1 - 2.4
V	2 of [2]	2.5

- 1. J.D. Murray, "Mathematical Biology I: An Introduction", Springer-Verlag, New York, 2002.
- 2. A. D. Bazykin, "Nonlinear dynamics of interacting populations", World Scientific, 1998.
- 3. J.N.Kapur, "Mathematical Models in Biology and Medicine", Affiliated East-West, New Delhi, 1985.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO	Statement	Knowledge Level
C01	Identify the concepts of Continuous time models, Growth models, Logistic model, Delay models.	K1
CO2	Understand the concepts of Lotka-Volterra Prey-Predator equations and modelling the predator functional response Competition.	K3
CO3	Develop the epidemic and SIS diseases, SIR Epidemics, SIR Endemics and its behavior.	K4
C04	Analyze the Transitions between states at the molecular and populations level and Law of mass action.	КЗ
C05	Apply the concepts of Simple models for polymer growth dynamics.	КЗ

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	P05	P06
C01	\checkmark		\checkmark		\checkmark	\checkmark
CO2	√	√	~		~	✓
CO3	✓		~		~	✓
CO4	✓		✓		✓	✓
C05	~		~		~	~

<u>OBJECTIVES</u>: This course treats the foundations of calculus of variations and gives example on some applications within physics and engineering science.

UNIT I: Calculus of variations

Maxima and Minima – The simplest case – Examples - Natural and transition boundary conditions – The variational notation – The more general case – Constraints and Lagranges multipliers – Variable end points – Sturm-Liouville problems.

UNIT II: Applications of Calculus of variations

Hamilton's principle – Lagrange's equation – Generalized dynamical entities – Constraints in dynamical systems – Small vibrations about equilibrium – Variational problems for deformable bodies – Rayleih – Ritz method.

UNIT III: Integral Equations

Integral equations – Relations between differential and integral equations – The Green's function – Fredholm equations with separable kernels – Example.

UNIT IV: Integral Equations

Hilbert – Schmidt theory – Iterative method for solving equations of the second kind – The Neumann Series – Fredholm theory – Singular integral equations.

UNIT V: Special Devices

Special devices – Iterative approximation to characteristic functions – Approximation of Fredholm equations by sets of algebraic equations.

TEXT BOOK:

F.B. Hildebrand, "Methods of Applied Mathematics", Prentice-Hall of India Pvt., New Delhi, 1968.

UNIT	Chapter	Sections
Ι	2	2.1 – 2.9
II	2	2.10 - 2.14, 2.16, 2.19
III	3	3.1 - 3 .3, 3.6, 3.7
IV	3	3.8 - 3.12
V	3	3.13 - 3.15

- 1. A.S. Gupta, "Calculus of Variations with Application", Prentice-Hall of India, New Delhi, 2005.
- 2. L. Elsgolts, "Differential Equations and Calculus of Variations", University Press of the Pacific, 2003.
- 3. I.M. Gelfand and S.V. Fomin, "Calculus of Variations", Prentice Hall, New Jersey, 1963.
- 4. **R.P. Kanwal**, *"Linear integral equation: Theory and Techniques"*, 2nd Edition, Birkhäuser, 1996.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

CO	Statements	Knowledge level
C01	Give an account of the foundations of calculus of variations and of its applications in Mathematics and Physics.	K1
CO2	Describe the brachistochrone problem mathematically and solve it.	K2
CO3	Solve isoperimetric problems of standard type.	КЗ
C04	Solve simple initial and boundary value problems by using several variable.	K4
CO5	Use the theory, methods and techniques of the course solve problems.	K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	~	\checkmark	\checkmark	\checkmark	\checkmark	~
CO2	~	\checkmark	~	~	~	~
CO3	~	~	~	✓	✓	~
C04	~	~	~	~	~	~
CO5	~	\checkmark	~	~	~	~

OBJECTIVE: The main objective of this course is

- to discuss nonlinear ordinary differential equations for their different behavior of the solutions.
- to study periodic solutions and averaging methods, perturbation methods and stability.
- to analyze some applications of nonlinear ordinary differential equations studied in the present work to some concrete problem of the other areas of mathematics.

UNIT I: Plane autonomous systems and linearization

The general phase plane - Some population models – Linear approximation at equilibrium points – Linear systems in matrix form.

UNIT II: Periodic Solutions and Averaging Methods

An energy balance method for limit cycles – Amplitude and frequency estimates – Slowly varying amplitudes; Nearly periodic solutions - Periodic solutions: Harmonic balance – Equivalent linear equation by harmonic balance – Accuracy of a period estimate.

UNIT III: Perturbation Methods

Outline of the direct method – Forced oscillations far from resonance- Forced oscillations near resonance with weak excitation – Amplitude equation for undamped pendulum – Amplitude perturbation for the pendulum equation – Lindstedt's method – Forced oscillation of a self – excited equation – The Perturbation method and Fourier series.

UNIT IV: Stability

Poincare stability – Paths and solution curves for general systems - Stability of time solutions: Liapunov stability - Liapunov stability of plane autonomous linear systems

UNIT V: Stability

Structure of the solutions of *n*-dimensional linear systems - Structure of *n*-dimensional inhomogeneous linear systems - Stability and boundedness for linear systems - Stability of linear systems with constant coefficients.

TEXT BOOK:

D.W. Jordan and P. Smith, *"Nonlinear Ordinary Differential Equations"*, 4th Edition, Oxford University Press, New York, 2007.

UNIT	Chapter	Sections
Ι	2	2.1 – 2.5
II	4	4.1 - 4.5
III	5	5.1 – 5.5, 5.8 – 5.11
IV	8	8.1 - 8.4
V	8	8.5 - 8.8

BOOKS FOR SUPPLEMENTARY READING AND REFERENCES:

- 1. **G.F. Simmons,** "Differential Equations", Tata McGraw-Hill, New Delhi, 1995.
- 2. D.A. Sanchez, "Ordinary Differential Equations and Stability Theory", Dover, New York, 1979.
- 3. J.K. Aggarwal, "Notes on Nonlinear Systems", Van Nostrand, 1972.

<u>COURSE OUTCOMES</u>: At the end of the course, students will be able to

СО	Statements	Knowledge level
CO1	Identify the concepts of population model with phase plane.	K1
CO2	derive the limit cycle via energy balance method	K5
CO3	Use perturbation method and Fourier series to solve Forced oscillations and Amplitude equation for undamped pendulum	K2
CO4	understand the stability through Liapunov function and Poincare stability	K2
C05	apply stability theory to n-dimensional linear systems.	К3

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	PO3	P04	P05	P06
C01	~	~	~	✓	√	~
CO2	✓	✓	✓	✓	✓	~
CO3	~	✓	✓		~	~
C04	~	✓	✓		✓	~
C05	~	~	✓		~	~

<u>OBJECTIVE</u>: This course is aimed at building the foundation of computational thinking with applications of Artificial Intelligence and Machine learning (AI & ML). Besides, how to build a neural network and how to train, evaluate and optimize it with TensorFlow will also be covered in this course.

UNIT - I: Programming Foundation

Digital storage of data in computers, memory and data representation, Overflow and Underflow, Round-off errors, the performance of a computer, Caches, Debugging and Profiling, Basic optimization techniques for serial code.

UNIT - II: Introduction to Python

Object and Data Structure Basics, Python Statements, Methods and Functions, Object-oriented programming (OOP): Inheritance, Encapsulation, Abstraction, Polymorphism. OOP concepts in Python.

UNIT - III: Python tools for Data Science

Pandas, NumPy, Matplotlib, Scikit-Learn, Just-in-Time (JIT) compilers, Numba.

UNIT - IV: Computational Thinking

Arrays, Matrix-Vector, Matrix multiplication, Solving dense and sparse systems.

UNIT - V: Deep Learning with Tensor Flow

Tensors, Install TensorFlow, TensorFlow basics, Simple statistics and plotting, Loading and exploring data, learning with TensorFlow and Keras, Mini-project.

TEXT BOOK

- John Hennessy David Patterson. Computer Architecture. A Quantitative Approach. 6th edition, Morgan Kauffman, 2017. https://www.elsevier.com/books/computer-architecture/hennessy/ 978-0-12-811905-1
- 2. Shaw, Zed A. *Learn python 3 the hard way: A very simple introduction to the terrifyingly beautiful world of computers and code*. Addison-Wesley Professional, 2017.
- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media, Inc. 2019

СО	Statements	Knowledge level
C01	Develop the soft skills required for data science career.	K1
C02	To learn basics of data structure and object-oriented programming (OOP)	K1
CO3	To learn basics of python tools	K1
C04	Understanding computational thinking	К2
C05	Application of tensors flow to deep learning	КЗ

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01			~		~	~
CO2			~		~	~
CO3			~		~	~
CO4			~		√	~
CO5			~		\checkmark	\checkmark

<u>OBJECTIVE</u>: The objective of this course is to equip the students with knowledge of some advanced concepts namely decomposition of rings, Artinian rings, Noetherian rings, categories, functors, projective, injective and flat modules and homological dimensions. This course also provides the foundation required for more advanced study in Algebra.

UNIT I: Decompositions of Rings:

Modules and homomorphisms – Classical isomorphism theorems – direct sums and products – free modules – two sided Peirce decomposition of a ring – the Wedderburn – Artin theorem – finitely decomposable rings.

UNIT II: Artinian and Noetherian Rings:

The Jordan-Holder theorem – the Hilbert basis theorem – the radical of a module and a ring – the radical of an Artinian rings – Semiprimary rings.

UNIT III: Categories and Functors:

Exact sequences – direct sums and direct products – the Hom functors – tensor product functor – direct and inverse limits.

UNIT IV: Projectives, Injectives and Flats:

Projective modules – injective modules – essential extensions and injective hulls – flat modules – right hereditary and right semihereditary rings – Herstein-Small rings.

UNIT V: Homological Dimensions:

Complexes and homology, free solutions – Projective and Injective resolutions, Derived functors – the functors Tor, EXT_, projective and injective dimensions – global dimensions.

TEXT BOOK:

M. Hazewinkel, N. Gubareni and **V.V. Kirichenko,** *"Algebras, Rings and Modules", Volume I*, Springer International Edition, New Delhi, 2011.

UNIT	Chapter(s)	Sections
Ι	1 & 2	1.1 - 1.5, 2.1 - 2.4
II	3	3.1 - 3.7
III	4	4.1 - 4.7
IV	5	5.1 - 5.6
V	6	6.1 - 6.6

- 1. **T.Y. Lam**, *"Lectures on Modules and Rings"*, Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, Berlin-Heidelberg, New York, 1999.
- 2. **J. Lambek**, *"Lectures on Rings and Modules"*, 3rd Edition, AMS Chelsea Publishing, AMS, Providence, Rhode Island, 2009.
- 3. **D.S. Passman**, *"A Course in Ring Theory"*, AMS Chelsea Publishing, AMS, Providence, Rhode Island, 2004.
- L.R. Vermani, "An Elementary Approach to Homological Algebra", Chapman & Hall / CRC Monographs and Surveys in Pure and Applied Mathematics. Vol. 130, CRS Press, LLC, Florida, 2003.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

СО	Statements	Knowledge level
C01	Find whether the given ring is decomposable or not? by using centrally primitive orthogonal idempotents,	К2
CO2	Know the properties of the radical of a module and a ring.	K2
CO3	Understand the role of the Hom and tensor product functors.	К3
CO4	Find whether the given module is injective or not? by using many structure theorems for injective modules.	К5
C05	Calculate the homological dimensions of modules.	K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark	\checkmark			\checkmark
CO2	\checkmark	\checkmark	\checkmark			~
CO3	√	√	√			~
C04	√	√	√		√	~
CO5	~	~	~		~	~

OBJECTIVE: The objective is to

- develop an understanding of the theory and methods of solution for partial differential equations.
- provide an introduction to the study and solution methods for partial differential equations of first and second order.
- make the students to understand the characteristics of heat, wave, and Laplace's equations.
- provide the students a better understanding to the diffusion and wave equations and their applications.

Unit-I: Laplace Equation

Partial Differential Equations – Classifications – Examples - Fundamental solution – Mean-value formulas – Properties of harmonic functions – Green's functions – Energy methods.

UNIT II: Heat Equation

Fundamental solution – Mean-value formula – Properties of solutions – Energy methods.

UNIT III: Wave Equation

Solution by spherical means – Nonhomogeneous problem – Energy methods.

UNIT IV: Other ways to represent solutions

Separation of variables - Similarity solutions.

UNIT V: Other ways to represent solutions

Transform methods - Converting nonlinear into linear PDE.

TEXTBOOK:

L. C. EVANS, "Partial Differential Equations", American Mathematical Society, Indian Edition, 2009.

UNIT	Chapter(s)	Sections
Ι	1 & 2	1.1, 1.2, 2.2
II	2	2.3
III	2	2.4
IV	4	4.1, 4.2
V	4	4.3, 4.4

- 1. **D. Colton**, "Partial Differential Equations: An Introduction", Dover Publishers, New York, 1988.
- 2. F. John, "Partial Differential Equations", Applied Mathematical Science (Vol. 1), Springer, 1982.
- 3. M. Renardy and R.C.Rogers, "An Introduction to Partial Differential Equations", Springer, 2004.
- 4. **R. McOwen**, *"Partial Differential Equations: Methods and Applications"*, 2nd Edition, Pearson Education, 2005.

<u>COURSE OUTCOMES</u>: At the end of the course, students will be able to

СО	Statements	Knowledge level
C01	Obtain the fundamental solutions of Laplace's, Heat and Wave equations	K1
CO2	Derive the mean-value formula of Laplace's, Heat and Wave equations	K5
CO3	Enhance their mathematical understanding in representing solutions of partial differential equations.	К2
CO4	Understand the fundamental theory to take a research career in the area of partial differential equations	К2
C05	Apply different methods to obtain solutions	К3

MAPPING WITH PROGRAMME OUTCOME(S):

P0/C0	P01	PO2	PO3	P04	P05	P06
C01	✓					
CO2	✓				√	~
CO3	~	✓	√			
C04	✓		√			~
CO5	~		√		~	~

1177MATE1 <i>1</i>		L	Т	Р	С
UZZMAIE14	FLUID DYNAMICS	4	1	0	4

OBJECTIVE: The objective of this course is

- To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.
- To understand basic laws and equations used for analysis of static and dynamic fluids.
- To develop an appreciation for the properties of Newtonian fluids.
- To understand the dynamics of fluid flows and the governing non-dimensional parameters

Unit I: Inviscid Theory

Introductory Notions, velocity: Streamlines and paths of the particles-stream tubes and filaments-fluid body- Density – Pressure – Bernoulli's theorem. Differentiation with respect to time- Equation of continuity- Boundary conditions: kinematical and physical – Rate of change of linear momentum – The equation of motion of an inviscid fluid.

Unit II: Inviscid Theory (contd...)

Euler's momentum theorem- conservative forces – Lagrangian form of the equation of motion – Steady motion – The energy equation – Rate of change of circulation – Vortex motion – Permanence of vorticity.

Unit III: Two Dimensional Motion

Two dimensional functions: Stream function – Velocity potential – Complex potential – Indirect approach – Inverse function. Basic singularities: Source – Doublet – Vortex – Mixed flow – Method of images: Circle theorem – Flow past circular cylinder with circulation. The aerofoil: Blasius's theorem – Lift force.

Unit IV: Viscous Theory

The equations of motion for viscous flow: The stress tensor – The Navier-Stokes equations – Vorticity and circulation in a viscous fluid. Flow between parallel flat plates: Couette flow, Plane Poiseuille flow. Steady flow in pipes: Hagen-Poiseuille flow.

Unit V: Boundary Layer Theory

Boundary layer concept- Boundary layer equations in two dimensional flow- Boundary layer along a flat plate: Blasius solution – Shearing stress and boundary layer thickness – Momentum integral theorem for the boundary layer: The von Karman integral relation – von Karman integral relation by momentum law.

TEXT BOOKS:

- 1. L.M. Milne Thomson, "Theoretical Hydrodynamics", Dover, 1996.
- N. Curle and H.J. Davies, "Modern Fluid Dynamics Vol-1" by, D Van Nostrand Company Ltd., London, 1968.

UNIT	Chapter(s)	Sections			
Ι	I & III of [1]	1.0 - 1.4, 3.10 - 3.31, 3.40, 3.41			
II	III of [1]	3.42 - 3.45, 3.50 - 3.53			
III	3 of [2]	3.2, 3.3, 3.5 - 3.5.1, 3.5.2, 3.7.4, 3.7.5			
117	5 of [2]	5.2.1- 5.2.3			
IV	8 of [3]	8.3 – a,b, 8.4 – a			
V	9 of [3]	9.1, 9.2, 9.3 – a,b, 9.5 – a,b			

3. S.W. Yuan, "Foundations of Fluid Mechanics" by Prentice- Hall of India, New Delhi, 1988.

BOOKS FOR SUPPLEMENTARY READING AND REFERENCES:

- **1. R.K. Bansal**, *"An Introduction to Fluid Dynamics"*, Firewall Media, 2005.
- 2. G.K. Batchelor, "An Introduction to Fluid Dynamics", Cambridge University Press, 2000.
- 3. F. Chorlton, "Text Book of Fluid Dynamics", CBS Publications, Delhi, 1985.
- 4. D.E. Rutherford, "Fluid Dynamics", Oliver and Boyd, 1959.

<u>COURSE OUTCOMES</u>: On the successful completion of the course, students will be able to

СО	Statement	Knowledge Level
C01	Recognize and find the values of fluid properties	K1
CO2	The relationship between them and understand the principles of continuity, momentum, and energy as applied to fluid motions.	К2
CO3	Identify these principles written in form of mathematical equations.	K1
C04	Application of The Navier-Stokes equations	К3
C05	Apply dimensional analysis to predict physical parameters that influence the flow in fluid mechanics.	К3

MAPPING WITH PROGRAMME OUTCOME(S):

CO\ PO	P01	P02	P03	P04	P05	P06
C01	\checkmark		\checkmark		\checkmark	~
CO2	✓	~	✓		✓	✓
CO3	✓		~		✓	✓
CO4	√		✓		√	✓
CO5	√		✓		√	✓

	MACHINE LEADNINC	L	Т	Р	С
UZZMATEIS	MACHINE LEARNING	4	1	0	4

<u>OBJECTIVE</u>: The course introduces and trains students in different data-driven modelingapproaches and machine learning techniques to succeed in industry and research. At the end of the course, students would be able to use machine learning to model and solve data scienceproblems.

UNIT - I: Data-Driven Modelling Concepts

Computational Thinking; Software for Machine Learning: Introduction to Scikit-Learn, Keras and Tensorflow - Fundamentals of Supervised Learning.

UNIT - II: Linear Models

Least Squares, Regularization (Elastic Net, Ridge, Lasso), Bias-Variance trade-off, Logistic Regression.

UNIT - III: Support Vector Machines

Linear SVM, Nonlinear SVM -Decision Trees and Ensemble Methods: Training and visualizing a Decision Tree, Interpretation, CART Algorithm, Voting Classifiers, Bagging and Pasting, Random Forests, Boosting, Stacking.

UNIT – IV: Dimensionality Reduction

Projection (PCA, kernel PCA), and Manifold Learning(LLE, t-SNE).

UNIT – V: Unsupervised Learning

Clustering with K-means, DBSCAN, Gaussian Mixture Models, Anomaly Detection.

UNIT - VI: Basics of Reinforcement Learning

Markov Decision Process, Dynamic Programming, Q-Learning.

UNIT – VII: Bayesian Learning

Bayesian methods in Machine Learning; Basics of Neural Networks and Deep Learning.

TEXT BOOK

- 1. Aurelien Geron (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor Flow. O'Reilly Media Inc.
- 2. Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

CO	Statements	Knowledge level
C01	understand the basic theory underlying machine learning	K1, K2
C02	formulate machine learning problems corresponding to different applications.	K2, K3
CO3	Discover patterns in the user data and then make predictions based on these	K2, K3
CO4	To apply machine learning algorithms to solve problems of moderate complexity	K2, K3
C05	Find complex patterns for answering business questions and solving business problems	K3, K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01			~		~	~
CO2			~		1	~
CO3			1		1	~
CO4			1		1	1
CO5			~		~	~

PROBABILITY THEORY

L	Т	Р	С
4	1	0	4

OBJECTIVE:

This course aim to provide an understanding of the basic concepts in probability, conditional probability and independent events. It will also focus on the random variable, mathematical expectation, and different types of distributions.

UNIT I: Probability

Introduction - Sample space - Probability axioms - Combinatorics: Probability on finite sample spaces – Conditional probability and Bayes theorem - Independence of events

UNIT II: Random Variables and their Probability Distributions

Introduction - Random variables - Probability distribution of a random variable - Discrete and continuous random variables - Functions of a random variable

UNIT III: Moments and Generating Functions

Introduction - Moments of a distribution function - Generating functions - Some moment inequalities

UNIT IV: Multiple Random Variables

Introduction - Multiple random variables - Independent random variables - Functions of several random variables - Covariance, correlation and moments - Conditional expectation

Unit V: Basic Asymptotics: Large Sample Theory

Introduction - Modes of convergence - Weak law of large numbers - Strong law of large numbers -Limiting moment generating functions - Central limit theorem

TEXT BOOK:

V. K. Rohatgi and **A. K. Md. Ehsanes Saleh**, An Introduction to Probability and Statistics, John Wiley and Sons, New Jersey, 2015.

UNIT	Chapter	Sections		
Ι	1	1.1 – 1.6		
II	2	2.1 – 2.5		
III	4	4.1 - 4.7		
IV	5	5.1 – 5.10		
V	6	6.2 - 6.4, 6.6 - 6.9, 6.11, 6.12		

- 1. R. Ash, Probability and Measure Theory, Academic Press, 1999
- 2. B.R. Bhat, Modern Probability Theory, 3rd Edition, New Age International (P)Ltd, New Delhi, 1999.
- 3. W. Feller, An Introduction to Probability Theory and its Applications, Volume 1, 2nd Edition, Wiley, 1969.
- 4. R. Durrett, Probability: Theory and Examples, 2nd Edition, Duxbury Press, New York, 1996.
- 5. S. Ross, A First Course in Probability, 6th Edition, Pearson Education, 2006.

<u>COURSE OUTCOMES</u>: At the end of the course, students will be able to

CO	Statement	Knowledge Level
C01	Calculate probabilities by applying probability laws and theoretical results.	K1
CO2	Understand the notion of convergence of random variables in the sense of probability and distribution	K2
CO3	Apply methods from algebra and calculus to derive the mean and variance for a range of probability distributions	К3
C04	Apply the basic rules and theorems in probability including Baye's theorem and the central limit theorem	К3
C05	Develop the techniques to accurately calculate probabilities.	K6

MAPPING WITH PROGRAMME OUTCOME(S):

P0/C0	P01	P02	P03	P04	P05	P06
C01	✓			\checkmark		
CO2		\checkmark		√		
CO3				√	~	
CO4					√	
C05			~			
U22MATE17

OBJECTIVE: Combinatorial mathematics is the study of the arrangements of objects, according to prescribed rules, to count the number of possible arrangements or patterns, to determine whether a pattern of a specified kind exists and to find methods of constructing arrangements of a given type. The objective of this course is to acquaint the students with the concepts of permutations and combinatorics, generating functions, recurrence relations, the principle of inclusion and exclusion and Polya's theory of counting.

UNIT I: Permutations and Combinatorics

The Rules of sum and product – Permutations – Combinations – Distributions of distinct objects – Distribution of nondistinct objects.

UNIT II: Generating Functions

Generating functions for combinations – Enumerators for permutations- Distributions of distinct objects into nondistinct cells – Partitions of integers – The Ferrers graph – Elementary relations.

UNIT III: Recurrence relations

Linear recurrence relations with constant coefficients – Solution by the technique of generating functions – A special class of nonlinear difference equations – Recurrence relations with two indices.

UNIT IV: The Principle of inclusion and exclusion

The Principle of inclusion and exclusion – The general formula – Derangements – Permutations with restrictions on relative positions – The rook polynomials – Permutations with forbidden positions.

UNIT V: Polya's theory of counting

Sets, relations and groups – Equivalence classes under a permutation group – Equivalence classes of functions – Polya's fundamental theorem.

TEXT BOOK

C.L. Liu, "Introduction to Combinatorial Mathematics", McGraw Hill Book Company, New York, 1968.

UNIT	Chapter(s)	Sections
Ι	1	1.1 – 1.7
II	2	2.1 – 2.7
III	3	3.1 - 3.5
IV	4	4.1 - 4.7
V	5	5.1 – 5.7

- 1. **Murray Edelberg** and **C. L. Liu**, *"Solutions to Problems in Introduction to Combinatorial Mathematics"*, MC Grow-Hill Book & Co., New York, 1968.
- 2. **R.P. Stanley**, *"Enumerative Combinatorics"*, Volume I, 2nd Edition, Cambridge Studies in Advanced Mathematics (Book 49)s, Cambridge University Press, 1997.
- 3. **P.J. Cameron**, *"Combinatorics: Topics, Techniques, Algorithms"*, Cambridge University Press, Cambridge, 1998.
- 4. Miklos Bona, "A Walk through Combinatorics", World Scientific Publishing Company, 2002.
- 5. **M. Aigner**, *"A Course in Enumeration"*, Springer-Verlag, Heidelberg, 2007.
- 6. J.H. Van Lint and R.M. Wilson, *"A Course in Combinatorics"*, 2nd Edition, Cambridge University Press, Cambridge, 2001.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

СО	Statements	Knowledge level
C01	Use formulas for counting basic combinatorial outcomes to construct solutions to complete combinatorial enumeration problems:	K1
	permutation with and without repetitions;combination with and without repetitions.	
CO2	Apply counting strategies to solve discrete probability problems.	K2
CO3	Use specialized techniques to solve combinatorial enumeration problems: generating functions; recurrence relations; Inclusion-exclusion principle.	K4
C04	Understand the concepts of permutations with restrictions on relative positions and the rook polynomials.	К5
C05	Enumerate configuration using Polya's theory.	КЗ

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	PO2	PO3	P04	P05	P06
C01	√	~	~	√	~	~
CO2	√	✓	~	~	~	~
CO3	√	✓	~	~	~	~
CO4	√	~	~		~	~
C05	√	~	~		~	~

U22MATE18

ALGEBRAIC TOPOLOGY

L T P C 4 1 0 4

OBJECTIVE: This is a basic course in algebraic topology where we introduce the notion of fundamental groups, covering spaces, methods for computing fundamental groups using Seifert Van Kampen theorem and some applications such as the Brouwer's fixed point theorem, Borsuk Ulam theorem, fundamental theorem of algebra. We discuss some classical groups and their fundamental groups. The second part of the course concerns singular homology theory and would cover all the standard machinery such as homotopy invariance of homology, relationship with the fundamental group, excision and the Mayer Vietoris sequence.

After discussing the relative versions, the course closes with the proof of the famous Jordan Brouwer separation theorem.

UNIT - I: Basic Topological Notions

Homotopy – convexity, contractibility and cones – paths and path connectedness – affine spaces - affine maps.

UNIT - II: The fundamental group

The fundamental groupoid – the functor $\pi_1 - \pi_1$ (S¹) – Holes and Green's theorem – free abelian groups – the singular complex and homology functors.

UNIT - III: Singular Homology

Dimension axiom and compact supports – the homotopy axiom – the Hurewicz theorem – the category **Comp**.

UNIT - IV: Long Exact Sequence

Exact homology sequences – reduced homology – simplicial complexes: definitions-simplicial approximation – abstract simplicial complexes – simplicial homology.

UNIT – V: Simplicial Complexes

Comparison with singular homology – calculations – fundamental groups of polyhedra – the Seifert – van Kampen theorem.

TEXT BOOK

J.J. Rotman, *"An Introduction to Algebraic Topology"*, GTM Vol.119, Springer International Edition, 1998.

UNIT	Chapter	Pages		
Ι	1 and 2	14 - 38		
II	3 and 4	39 - 68		
III	4 and 5	68 - 93		
IV	5 and 7	93 - 105, 131 - 147		
V	7	147 - 179		

- 1. J.F. Adams, Algebraic Topology: A Students Guide, Cambridge University Press, Cambridge, 1972.
- 2. E. Artin and H. Brawn, Introduction to Algebraic Topology, Merril, Westerville, OH, 1969.
- 3. J.R. Munkress, Elements of Algebraic Topology, Addison-Wesley, Reading, MA, 1984.
- 4. **A. Hatcher**, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

CO	Statements	Knowledge level
C01	Compute algebraic invariants associated to topological spaces and maps between them.	К2
CO2	Know about the fundamental group and covering spaces.	КЗ
CO3	Understand the basic algebraic and geometric ideas that underpin homology and cohomology theory. These include the cup product and Poincare Duality for manifolds.	K4
CO4	Give the definition of simplicial complexes and their homology groups and a geometric understanding of what these groups measure.	К5
CO5	Give the extension to singular homology and develop a geometric understanding of how to use these groups in practice.	K6

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	P05	P06
C01	~	~	~		~	~
CO2	~	~	~		~	~
CO3	~	~	~		~	~
CO4	~	~	~		~	~
CO5	~	~	~		~	~

U22MATE19

<u>OBJECTIVE</u>: The objective of this course is to study modules, exact sequences, tensor product of modules, local properties, primary decomposition, Noetherian rings and Artinian rings. Also, another important class of Dedekind domain is studied.

Unit I: Rings and Ideals

Rings and ring homomorphism's – ideals – Extension and Contraction, modules and module homomorphism – exact sequences.

Unit II: Rings and Modules of Fractions

Tensor product of modules – Tensor product of algebra – Local properties – extended and contracted ideals in rings of fractions.

Unit III: Primary Decomposition

Primary Decomposition – Integral dependence – The going-up theorem – The going-down theorem – Valuation rings.

Unit IV: Noethorian rings

Chain conditions – Primary decomposition in Noetherian rings.

Unit V: Artin local rings

Artin rings – Discrete valuation rings – Dedekind domains – Fractional ideals.

TEXT BOOK:

S.M. Atiyah and **I.G. Macdonald**, "*Introduction to Commutative Algebra*", Addison – Wesley Publication Company, Inc, 1969.

UNIT	Chapter(s)	Pages
Ι	1, 2	1 - 24
II	2, 3	24 - 49
III	4, 5	50 - 73
IV	6, 7	74 - 88
V	8, 9	89 – 99

- 1. N.S. Gopalakrishnan, "Commutative Algebra", Oxonian Press Pvt. Ltd, New Delhi, 2015.
- 2. I. Kaplansky, "Commutative Rings", University of Chicago Press, Chicago, 1974.
- 3. H. Matsumura, "Commutative Ring Theory", Cambridge University Press, 1986.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

CO	Statements	Knowledge level
C01	Know the definition of commutative rings, local rings, prime and maximal ideals and modules over commutative rings.	K1
CO2	Understand the important properties and applications of exact sequences.	K2
CO3	Understand how to define tensor products of modules and the concept of flatness.	K2
C04	Analyze about localize rings and modules, and the important applications of localization.	K1
C05	Apply the notions of Noetherian and Artinian rings and modules, Hilbert basis theorem and the structure theorem for Artinian rings.	КЗ

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~	~	~
CO2	1	1	1			~
CO3	1	1	1			~
CO4	~	~	~			~
CO5	~	~	~		~	~

<u>OBJECTIVE</u>: Stochastic differential equations have been used extensively in many areas of application, including finance and social science as well as in physics, chemistry. This course develops the theory of Itô's calculus and stochastic differential equations.

Unit I: A Crash Course in Probability Theory

Basic definitions - Expected value, variance - Independence - Some probabilistic methods -- Law of Large Numbers - Central Limit Theorem - Conditional expectation - Martingales

Unit II: Brownian Motion and "White Noise"

Motivation - Definition, elementary properties - Construction of Brownian motion - Sample path properties - Markov property

Unit III: Stochastic Integrals

Preliminaries - Ito's integral - Ito's chain and product rules - Ito's integral in higher dimensions

Unit IV: Stochastic Differential Equations

Definitions, examples - Existence and uniqueness of solutions - Properties of solutions - Linear stochastic differential equations

Unit V: Applications

Stopping times - Applications to PDE, Feynman–Kac formula - Optimal stopping - Options pricing - The Stratonovich integral

TEXT BOOK:

Lawrence C. Evans, "An Introduction to Stochastic Differential Equations", AMS, 2013.

BOOKS FOR SUPPLEMENTARY READING AND REFERENCES:

- 1. L. Arnold, "Stochastic Differential Equations: Theory and Applications", Dover Publications, 2011.
- 2. A. Friedman, "Stochastic Differential Equations and Applications", Dover Publications, 2006.

- **3. D. Henderson** and **P. Plaschko**, *"Stochastic Differential Equations in Science and Engineering"*, World Scientific, 2006.
- 4. **B. Oksendal**, *"Stochastic Differential Equations: An Introduction with Applications"*, 6th Edition, Springer Verlag, Heidelberg, 2003.

СО	Statements	Knowledge level
C01	Understand the basics of Ito calculus	K1, K2
CO2	obtain solution to stochastic differential equations	K1, K2
CO3	learn about general existence and uniqueness results for stochastic differential equations	K2,K3
CO4	Apply Ito's Lemma to find SDEs arising in real-world applications	K2, K3
CO5	take a research career in the area of stochastic differential equations	K2, K3

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01	~				~	~
CO2			~		~	~
CO3		✓	✓		✓	✓
CO4		~	~		~	~
C05			1		1	1

U22MATE21

OBJECTIVES:

- > To introduce the methods of optimization techniques.
- To understand the theory of optimization techniques for solving various types of optimization problems.
- > To provide with basic skills and knowledge of optimization techniques and their applications.
- > To make the students familiar in solving techniques, analysing the results and propose recommendations to the decision-making processes.

UNIT I: Linear Programming Problems

Dual Simplex – Revised Simplex - Illustrative Applications - Integer Programming Algorithms.

UNIT II: Decision Analysis and Games

Decision making under certainty – Decision Making under Risk – Decision under uncertainty – Game Theory.

UNIT III: Inventory Models - Deterministic Models

Inventory Models - Probabilistic Models.

UNIT IV: Queuing Theory

Elements of a Queuing model – Role of Exponential Distribution – Pure Birth and Death Models – Generalized Poisson Queuing Model – Specialized Poisson Queues – (M/G/1): $(GD/\infty/\infty)$ – Pollaczek - Khintchine (P-K) Formula.

UNIT V: Optimization Theory

Classical Optimization Theory – Unconstrained Problems – Constrained Problems.

TEXT BOOK:

Hamdy A. Taha, "Operations Research: An Introduction", 7th Edition, Prentice – Hall of India, New Delhi, 2003.

UNIT	Chapter(s)	Sections
Ι	4 & 7	4.4, 7.2, 9.1, 9.2
II	14	14.1 – 14. 4
III	11 & 16	11.1 - 11.3, 16.1
IV	17	17.2 – 17.7 (Omit 17.6.4)
V	20	20.1, 20.2

- 1. **F.S. Hillier** and **G.J. Lieberman**, *"Introduction to Operations Research*, 4th Edition, Mc Graw Hill Book Company, New York, 1989.
- 2. **D.T. Philips, A. Ravindra** and **J. Solberg,** *"Operations Research, Principles and Practice",* John Wiley and Sons, New York, 1991.
- 3. **B.E. Gillett,** "Operations Research A Computer Oriented Algorithmic Approach", TMH Edition, New Delhi, 1976.

<u>COURSE OUTCOMES:</u> At the end of the course, students will be able to:

СО	Statements	Knowledge level
C01	More knowledge on this topic in higher studies will help students to deal industrial models	K1
CO2	Understand the characteristics of different types of decision-making environments and the appropriate decision making approaches and tools to be used in each type.	К2
CO3	Apply the process of Stock Items-All inventory models	К3
CO4	Formulate Queuing models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these Queuing problems.	K4
C05	Solve various constrained and unconstrained problems in single variable as well as multivariable.	К5

MAPPING WITH PROGRAMME OUTCOME(S):

CO \ PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~	~	~
CO2	~	~	~	~		~
CO3	~	~	✓	~	~	✓
C04	~	~	~	~		✓
CO5	~	~	~	~	~	~

1100MATE00	CONTROL THEORY	L	Т	Р	С
UZZMA I EZZ		4	1	0	4

OBJECTIVE: This is an introductory course in mathematical systems theory. The subject provides the mathematical foundation of modern control theory. The aim of the course is to acquire a systematic understanding of linear dynamical systems. The acquirement of such knowledge is useful in preparation for work on system analysis and design problems that appear in many engineering fields.

Unit-I: Observability

Linear Systems – Nonlinear Systems.

Unit-II: Controllability

Linear systems – Nonlinear systems.

Unit-III: Stability

Stability – Perturbed linear systems – Nonlinear systems.

Unit IV: Stabilizability

Stabilization via linear feedback control – The controllable subspace – Stabilization with restricted feedback.

Unit V: Optimal Control

Linear time varying systems – Linear time invariant systems – Nonlinear Systems.

TEXT BOOK

K. Balachandran and **J.P. Dauer**, *"Elements of Control Theory"*, 2nd Edition (revised), Alpha Science International Ltd, 2011.

UNIT	Chapter(s)	Sections
Ι	2	2.1 – 2.3
II	3	3.1, 3.2
III	4	4.1 - 4.3, 4.5
IV	5	5.1 – 5.4
V	6	6.1 - 6.3

Books for Supplementary Reading and References:

- 1. R. Conti, "Linear Differential Equations and Control", Academic Press, London, 1976.
- 2. **R.F. Curtain** and **A.J. Pritchard**, *"Functional Analysis and Modern Applied Mathematics"*, Academic Press, New York, 1977.
- 3. J. Klamka, "Controllability of Dynamical Systems", Kluwer Academic Publisher, Dordrecht, 1991.

<u>COURSE OUTCOMES</u>: At the end of the course, students will be able to

CO	Statements	Knowledge level
C01	understand the building blocks of basic and modern control systems	K2
CO2	get an understanding of the basic ingredients of linear systems theory	K2
CO3	select appropriate methodologies for the analysis or design of feedback and open-loop control systems	K4
C04	learn some basic notions and results in control theory, which are very useful for applied mathematicians	K1
C05	take a research career in the area of differential equations and control theory	K6

MAPPING WITH PROGRAMME OUTCOME(S):

P0/C0	P01	P02	P03	P04	P05	P06
C01	\checkmark	√				
CO2	\checkmark	√				
CO3	~	√	~			
C04	✓	√	~		~	~
C05	\checkmark	~			√	~

U22MATE23

MATHEMATICAL FINANCE

L	Т	Р	С
4	1	0	4

UNIT - I: Portfolio Management and the Capital Asset Pricing Model

Portfolios, returns and risk – two-asset portfolios – Multi asset portfolios – stock options – the purpose of options – profit and Payoff curves – selling short.

UNIT - II: An Aperitif on Arbitage and more Discrete Probability

Background on forward contacts – the pricing of forward contracts – the put-call option parity formula – option prices – conditional probability – partitions and measurability – algebras – conditional expectation stochastic – processes – filtrations and martingales.

UNIT - III: Discrete - Time Pricing Models

Assumptions – positive random variables – the basic model by example – the basic model – portfolios and trading strategies – the pricing problem – arbitrage trading strategies – admissible – characterizing arbitrage – computing Martingale measures – the model – Martingale measures in the CRR model – pricing in the CRR model.

UNIT – IV: Continuous Probability

General probability spaces – probability measures on \mathbb{R} - distribution functions –density functions – types of probability measures on \mathbb{R} - random variables – the normal distribution – convergence in distribution – the central limit theorem – stock prices and Brownian motion – the CRR model in the limit – taking the limit as $\Delta t \rightarrow 0$.

UNIT - V: The Black - Scholes Option Pricing Formula and Optional Stopping

The natural CRR Model – the Martingale measure CRR model – more on the model from a different perspective – the Black – Scholes option pricing formula – how dividends affect the use of black – schools – the model – the payoffs – stopping times – stopping the payoff process – optimal stopping times and the Snell envelope – existence of optimal stopping times – optimal stopping times and the Doob decomposition – the smallest and the largest optimal stopping time.

TEXT BOOK

Steven Roman, "Introduction to the Mathematics of Finance from Risk Management to Options Pricing", Springer International edition, India, 2010.

UNIT	Chapter	Section
Ι	2&3	2.1 - 2.3 & 3.1 - 3.4
II	4 & 5	4.1 - 4.4 & 5.1 - 5.6
III	6&7	6.1 - 6.10 & 7.1 - 7.4
IV	8&9	8.1 - 8.9 & 9.1 - 9.3
V	9&10	9.4 - 9.10 & 10.1 10.16

- 1. **A. Etheridge**, A Course in Financial Calculus, Cambridge university press, Cambridge, 2002.
- 2. **H. Föllmer**, Stochastic Finance: An Introduction to Discrete Time, Walter de Gruyter, 2002.
- 3. **G. Kallianpur** and **R. Karamdikar**, Introduction to Option pricing Theory, Birkhouser, 1997.
- 4. **S. Ross**, An Introduction to Mathematical Finance: Options and Other Topics, Cambridge University Press, 1999.
- 5. **S. Ross**, An Elementary Introduction to Mathematical Finance, Cambridge University press, 2002.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statements	Knowledge level
C01	Describe the main investment and risk characteristics of the standard asset classes available for investment purpose.	K2
C02	Calculate the discounted mean term or volatility of an asset or liability and analyse whether an asset-liability position is matched or immunized.	К3
C03	Demonstrate an understanding of the nature and use of simple stochastic interest rate models.	K4
C04	Calculate the forward price and value of a forwarded contract using no-arbitrage pricing.	К5
C05	Know about basic probability, random walks, central limit theorem, Brownian motion, Block schools theory of options.	К3

MAPPING WITH PROGRAMME OUTCOME(S):

CO /PO	P01	P02	P03	P04	P05	P06
C01	\checkmark	\checkmark	\checkmark		\checkmark	~
CO2	~	~	\checkmark		\checkmark	
CO3	~	~	\checkmark		\checkmark	~
C04	~	~	\checkmark		\checkmark	
C05	~	~	\checkmark		\checkmark	~

SUPPORTIVE COURSES

1122MATS01	APPLIED MATHEMATICS	L	Т	Р	С
022MA1301		2	1	0	4

<u>OBJECTIVE</u>: The objective of this course is to provide a strong foundation for differential equation and obtaining its solutions using classical and numerical methods.

Basic Calculus to be included

UNIT I: Ordinary Differential Equations

Basic Definitions - Solution of a differential equation – Equations of first order and first degree - Differential equations of first order – Applications of differential equations of first order.

UNIT II: Partial Differential Equations

Introduction – Formation of Partial Differential equation (PDEs) – Solutions of PDEs – Linear PDEs of first order – Non-linear PDEs of first order – Second order PDEs - Classification

UNIT III: Numerical Differential and Integration

Numerical Differentiation – Formula for Derivatives - Forward difference formula - Backward difference formula - Central difference formula – Trapezoidal rule – Simpson's one-third rule – Simpson's three-eight rule.

UNIT IV: Numerical Solutions of ODEs

Methods of First order ODEs – Euler method – Improved Euler method - Multistep Methods – Adams Bash forth methods – Adams Moulton methods – Runge-Kutta Methods.

UNIT-V: Numerical Solutions of PDEs

Methods for Elliptic – Difference equations for the Laplace and Poisson equations – Methods for Parabolic – Heat equations - Methods for Hyperbolic – Wave equations.

LEARNING OUTCOMES: At the end of the course, students will be able to solve simple ordinary and partial differential equations.

TEXT BOOK:

- 1. **B.S. Grewal,** *"Higher Engineering Mathematics"*, 30th Eighth Edition, Khanna Publishers, Delhi, 2004.
- 2. **E. Kreyszig,** *"Advanced Engineering Mathematics"*, 8th Edition, John Wiley and Sons, (Asia), Singapore, 2000.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statement	Knowledge level
C01	Define the differential equations and Equations of the first order and first degree	K1
CO2	Explain the numerical solution of ODE and concepts of Taylor's series method ,Runge – Kutta method and Eulers method	К2
CO3	Solve the Linear equations and Non linear equation in different methods by PDEs	К3
CO4	Examine the clarity of linear systems of difference equations using linear difference equation and simultaneous difference method	K4
CO5	Analyze the numerical solution of PDE , namely, Elliptic equations, Laplace equations and Poisson's equations	К5

MAPPING WITH PROGRAMME OUTCOME(S):

C0\P0	P01	P02	P03	P04	P05	P06
C01	~	~	~	~		~
CO2	~	~		1	~	~
CO3	~	✓	1	1	✓	1
CO4	~	~	~	~		~
CO5	~	~	1	1	~	~

<u>OBJECTIVE</u>: The objective of this course is to provide the foundation for numerical methods and statistics.

UNIT I: Algebraic and Transcendental Equations

Bisection Method - Iteration Method - The Method of False Position - Newton- Raphson - Method

UNIT II: System of Linear Equation

Gauss Elimination, Gauss Jordon elimination – Triangularization method –Iterative Methods, Jacobi, Gauss-Seidal iteration, Iterative method for A⁻¹

UNIT III: Interpolation

Interpolation with equal intervals – Newton forward and backward formula – Central Difference Interpolation formula – Gauss forward and backward formula – Stirling's formula – Bessel's Formula -Numerical differentiation: Maximum and minimum values of a tabulated function. Numerical Integration: Trapezoidal Rule – Simpson's Rule – Numerical double Integration.

UNIT IV: Basic Distribution

Binominal distribution – Poisson distribution – Normal distribution – Properties and Applications.

UNIT V: Correlation and Regression

Correlation Coefficient – Rank correlation coefficient of determination – Linear regression – Method of least squares – Fitting of the curve of the form ax+b, ax²+bx+c, ab^x and ax^b – Multiple and partial correlation (3-variable only).

TEXT BOOK:

- P. Kandasamy, K. Thilagavathy and K. Gunavathi, "Numerical Methods", 3rd Edition, S. Chand, 2006.
- S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, 1994.

UNIT	Chapter(s)	Sections
Ι	3 <i>of</i> [1]	3.1 to 3.4
II	4 of [1]	4.1 to 4.4, 4.8
III	8, 9 of [1]	8.1 to 8.8, 9.1 to 9.16
IV	7 of [2]	7.1 to 7.4
V	10 of [2]	10.1 to 10.7

- 1. S. Kalavathy, "Numerical Methods", Vijay Nicole, Chennai, 2004.
- 2. S.S. Sastry, "Introductory Methods of Numerical Analysis", Prentice Hall of India, Pvt Ltd., 1995.

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

СО	Statement	Knowledge level
C01	Apply numerical methods to obtain approximate solutions to algebraic equations.	К3
CO2	Understand how to solve system of linear equation	K2
CO3	Application of numerical integration and differentation.	К3
CO4	Basic concepts of distribution	K1
C05	Computation of correlation and regression	K5

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~	~	~
CO2	~	~	~	~	~	~
CO3	~	~	~	~	~	~
CO4	1	1	1	~	1	~
C05	~	~	~	~	~	~

<u>OBJECTIVE</u>: An integral transform maps the problem from its original domain into a new domain in which solution is easier. The solution is then mapped back to the original domain with the inverse of the integral transform. This module will provide a systematic mathematical treatment of the theory of integral transforms and its varied applications in applied mathematics and engineering.

Pre-requisite: Differential and Integral Calculus

UNIT I: Laplace Transforms

Laplace Transform – Transform of some elementary functions – Properties – Transforms of Periodic functions – Transforms of special functions – Evaluation of integrals by Laplace transform

UNIT II: Laplace Transform (Contd...)

Inverse Transforms – Method of partial fraction – Other methods for inverse transforms – Convolution theorem – Applications to differential equations – Unit step function – Unit impulse function

UNIT III: Fourier Transforms

Definition - Fourier integral theorem – Fourier transforms – Properties – Convolution – Parseval's identity – Fourier transforms of the derivatives of a function –

UNIT IV: Fourier Transforms (Contd...)

Application of transforms to boundary value problems – Discrete and Fast Fourier transform

UNIT V – Z-Transform

Definition - Some standard Z-transforms - Linearity property - Damping rule – Some standard results - Shifting u_n to the right and to the left - Multiplication by n - Two Basic theorems - Some useful Z-transforms - Some useful inverse Z-transforms - Convolution theorems – Evaluation of inverse Z-transforms - Application to Difference equations.

UNIT V:

Fourier series - Arbitrary period, Even and odd functions, Half range expansions

TEXT BOOK:

- **1. B.S. Grewal**, *"Higher Engineering Mathematics"*, 42nd Edition, Khanna Publishers, Delhi 2012.
- **2.** E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons, Singapore, 2010.

<u>COURSE OUTCOMES</u>: After the successful completion of the course students will be able to

CO	Statement	Knowledge level
C01	Basic concepts of Laplace Transform and properties of	K1
	Laplace transform.	
CO2	Applications of Laplace Transform to differential equations	КЗ
CO3	Basic concepts of Fourier transforms and Properties	K1
C04	Application of Fourier transforms to boundary value	КЗ
	problems	
C05	Basic concepts of Z-transforms and Properties	K1, K3 & K5
	Evaluation of inverse Z-transforms - Application of Z-	
	transformation to Difference equations	

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01	~	~	~	~		~
CO2	~	~	~	~		~
CO3	~	~	~			
C04	~	~	~		~	
C05	~	~	~	~	~	

U22MATS04

<u>OBJECTIVE:</u> The main objective of this course is to develop techniques of computational and differential equation modeling in ecology. This course begins with a detailed examination of the dynamics of individual populations and go on to consider how inter specific interactions impact populations. This course also introduces various modeling approaches that are widely used in applications to infectious diseases dynamics and biochemical kinetics.

UNIT I: Single Species Population Dynamics

Continuous time models – Growth models, Logistic model.

UNIT II: Two Species Population Dynamics

The Lotka-Volterra Prey-Predator equations –Modelling the predator functional response Competition –Ecosystem modeling.

UNIT III: Infectious Diseases

Simple epidemic and SIS diseases –SIR Epidemics –SIR Endemics.

UNIT IV: Biochemical Kinetics

Transitions between states at the molecular and populations level – Law of mass action – Enzyme kinetics. Simple models for polymer growth dynamics.

UNIT V: Qualitative behavior of simple differential equation models

Revisiting the simple linear ODEs - Stability of steady states - Qualitative analysis of models with bifurcations.

TEXT BOOK:

- 1. N. Britton, "Essential Mathematical Biology", Springer Science & Business Media, 2012.
- L.A. Segel and L. Edelstein-Keshet, A Primer in Mathematical Models in Biology, SIAM, Vol. 129, 2013.

UNIT	Chapter/ Text Book	Section(s)
Ι	1(1)	1.3
II	1(2)	2.3-2.6
III	1(3)	3.1-3.4
IV	2(2)	
V	2(5)	

- 1. J.D. Murray, "Mathematical Biology I: An Introduction", Springer-Verlag, New York, 2002.
- 2. A. D. Bazykin, "Nonlinear dynamics of interacting populations", World Scientific, 1998.
- 3. J.N.Kapur, "Mathematical Models in Biology and Medicine", Affiliated East-West, New Delhi, 1985.

COURSE OUTCOMES:

After the successful completion of the course, students will be able to

СО	Statement	Knowledge Level
C01	Identify the logic behind the mathematical modelling	K1
CO2	Comprehend the straightforward ideas of dynamic behaviors	К2
	Analyze single-species and two-species interaction modelling	
CO3	concepts	K4
	Apply in applications to infectious diseases dynamics and biochemical	
CO4	kinetics	КЗ
C05	Develop the qualitative behavior and computational study on non- linear systems	К6

MAPPING WITH PROGRAMME OUTCOME(S):

CO\PO	P01	P02	P03	P04	P05	P06
C01						
CO2			~			
CO3		✓			✓	
C04		√			√	
C05					✓	✓

VALUE ADDED COURSES

1122MATV01	І АТЕУ (І АД)	L	Т	Р	С
UZZMATVUT	LATEX (LAB)			2	2

OBJECTIVE:

Typeset mathematical formulae using LaTeX. Use the preamble of LaTeX file to define document class and layout options. Use tabular and array environments within LaTeX document. Use various methods to either create or import graphics into a LaTeX document. Use Theorem, Corollary, and other environments. Use BibTeX to maintain bibliographic information and to generate a bibliography for a particular document.

Unit I:

Text formatting, TEX and its offspring, What's different in LATEX 2 ϵ , Distinguishing LATEX 2 ϵ , Basics of a LATEX file.

Unit II:

Commands and environments–Command names and arguments, Environments, Declarations, Lengths, Special Characters, Fragile Commands, Exercises.

Unit III:

Document layout and organization – Document class, Page style, Parts of the document, Table of contents, Fine – tuning text, Word division. Displayed text - Changing font, Centering and indenting, Lists, Generalized lists, Theorem–like declarations, Tabulator stops, Boxes.

Unit IV:

Tables, Printing literal text, Footnotes and marginal notes. Drawing pictures with LATEX.

Unit V:

Mathematical formulas – Mathematical environments, Main elements of math mode, Mathematical symbols, Additional elements, Fine-tuning mathematics.

Text Book:

"A Guide to LATEX" by H. Kopka and P.W. Daly, Third Edition, Addison – Wesley, London, 1999.

UNIT	Chapter(s)	Sections
Ι	1	1.1 - 1.3, 1.4.1, 1.5.
II	2	2.1 - 2.7.
III	3 & 4	3.1 - 3.6, 4.1 - 4.7
IV	4& 6	4.8 - 4.10, 6.1.
V	5	5.1 -5.5.

List of practical programs will be issued by course teacher.

C01	Basic of LATEX and LATEX 2ϵ , LATEX file creation Tex formatting	K1
CO2	Discus the command, environments and creating special characters	K2
CO3	Formatting the document layout, page style part of document and Table of contents	К3
CO4	Creating the table and drawing pictures in LATEX	K2
C05	Drive the mathematical environments mathematical symbol for typing thesis project and report	К5

<u>COURSE OUTCOMES</u>: After the successful completion of the course, students will be able to

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01						~
CO2						~
CO3						~
CO4						~
CO5						~

U22MATV0	2

OBJECTIVE:

Numerical calculation, Compile notes, equations, sample calculations, graphics, references, and hyperlinks in a single document. Visualize data or functions with 2D/3D graphics and charts. Analyze real-world data with ready-to-use data sets. Mathematical functions – Algebraic manipulation – Numerical calculations of differential and integral Calculus.

Unit – I:

Running Mathematica - Numerical calculations – Building up calculations – Using the Mathematica system – Algebraic calculations - Symbolic mathematics – Numerical mathematics.

Unit – II:

Graphics and Sound - Files and External Operations

Unit – III:

Textual Input and Output - The Structure of Graphics and Sound

Unit – IV:

Numbers - Mathematical functions – Algebraic manipulation – Manipulating equations - Calculus.

Unit – V:

Series, limits and residues - Linear algebra.

Text Book:

"The Mathematica Book" by S. Wolfram, Fourth Edition, Cambridge University Press, Cambridge, 1999.

UNIT	Chapter(s)	Sections
Ι	1	1.0- 1.6
II	1	1.9- 1.11
III	2	2.9- 2.10
IV	3	3.1-3.5
V	3	3.6- 3.7

List of practical programs will be issued by course teacher.

C01	Start with Running mathematical- Basic Mathematical calculation with symbolic	K1
CO2	Understanding the graphics & sound in 2D and 3D	K2
CO3	Learning the output and input formation in mathematica	K1
CO4	Evaluate the mathematical functions and calculus in mathematica	K5
CO5	Applications to mathematical calculation like a series, limits, residue at Linear Algebra	К3

<u>COURSE OUTCOMES</u>: After the completion of successful of the course, students will be able to

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01					~	~
CO2					~	~
CO3						✓
CO4	~	1	1		✓	√
CO5	~	~	~		\checkmark	\checkmark

OBJECTIVE:

This course provides basic fundamentals on MATLAB, primarily for numerical computing. To learn the characteristics of script files, functions and function files, two-dimensional plots and threedimensional plots. To enhance the programming skills with the help of MATLAB and its features which allow learning and applying specialized technologies.

Unit – I:

Starting with Matlab - Creating arrays - Mathematical operations with arrays.

Unit – II:

Script files - Functions and function files.

Unit – III:

Two-dimensional plots - Three-dimensional plots.

Unit – IV:

Programming in MATLAB. (Keywords to be included)

Unit – V:

Polynomials, Curve fitting and interpolation - Applications in numerical analysis.

Text Book:

"MATLAB - An Introduction with Application" by A. Gilat, John Wiley & Sons, Singapore, 2004.

UNIT	Chapter(s)	Sections
Ι	1,2&3	-
II	4 & 6	-
III	5&9	-
IV	7	-
V	8&9	-

List of practical programs will be issued by course teacher.

C01	Learning the basic windows in MATLAB and mathematical operations with arrays	K1
CO2	Creating scripts e functions file in MATLAB	K5
CO3	Understanding the various type of 2D&3D plots and animations	K2
CO4	Study the various type of loops in MATLAB	К3
CO5	Applications to numerical analysis like solving algebraic equation, curve fitting and interpolation	K5

<u>COURSE OUTCOMES</u>: After the completion of successful of the course, students will be able to

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01					~	~
CO2					1	1
CO3					1	~
CO4					1	1
CO5	\checkmark	~	~		~	~

U22MATV04

<u>COURSE OBJECTIVE</u>: To provide the mathematical foundations related to the machine learning to understand fundamental principles upon which machine learning systems are built. In particular, we will focus on topics from matrix algebra, calculus, optimization, and probability theory.

Unit I:

Python Introduction, History of Python, Python features , Python interpreter, Overview of programming in Python, Basic data types Python built in types, Arithmetic in Python, Program input and Program output, Variables and assignment. Global and local variables. Modules: Importing module, Math module Random module, Packages, Composition. Exception Handling.

Unit II:

Python Strings and string manipulation [Assigning values in strings, String manipulations, String special operators, String formatting operators, Triple Quotes, Raw String, Unicode String, Building - String methods], Python List : Introduction, Accessing values in list, List manipulations, List Operations, Indexing, slicing & matrices. Python Dictionary - Introduction, Accessing values, Properties, Functions in Dictionary. Python Tuples: Introduction, Operation, Accessing, Function and methods in tuples and Data Type Conversion.

Unit III:

Arithmetic Operators, Comparison Operators, Logical (or Relational) Operators, Assignment Operators, Conditional (or ternary) Operators Conditional Statement: Branching (if, else-if, nested), Looping: while statement, for statements, Control Statements: break, continue and pass Statements.

Unit IV:

Functions: Defining a function, Calling a function, Types of functions, Function Arguments Anonymous functions, Regular expressions: Match function, Search function, Modifiers. OOPs concept NumPy [Arrays and matrices]: N-dimensional data structure, Creating array, Indexing array, Reshaping, Vectorized operations.

Unit V:

Columns selection, Rows selection (basic), Rows selection (filtering), Sorting, Descriptive statistics, Rename values, Dealing with outliers SciPy Introduction, Basic functions, Special functions(scipy.special), Integration(scipy.integrate), Optimization (scipy.optimize), Visualization libraries : matplotlib,

Textbook:

W. J. Chun, Core python programming, Second Edition, Prentice-Hall of India, New Delhi, 2007.

Books for References:

- 1. M. Summerfield, Programming in Python 3: A Complete Introduction to Python Language, Second Edition, Pearson Education, Boston, 2010.
- 2. H. Fangohr, Introduction to Python for Computational Science and Engineering, 2015.
- 3. A. B. Downey, Think Python: How to Think Like a Computer Scientist, Second Edition, Shroff Publishers, Bengaluru, 2016.
- 4. E. Duchesnay, T. Lofstedt and F. Younes, Statistics and Machine Learning in Python, 2020.
- 5. John V Guttag, Introduction to Computation and Programming Using Python, Prentice Hall of India, New Delhi, 2013.

<u>COURSE OUTCOMES</u>: After the completion of successful of the course, students will be able to

C01	construct and execute basic programs in Python	K2
CO2	apply python library	К3
CO3	implement numerical programming, data handling through NumPy, Pandas, SciPy modules	K4
CO4	implement visualization through matplotlib	K5
CO5	analyze the significance of python program development environment by working on real world problems	K4

MAPPING WITH PROGRAMME OUTCOME(S):

CO/PO	P01	P02	P03	P04	P05	P06
C01			~		~	~
CO2			~		1	1
CO3			~		1	1
C04			~		~	~
CO5			~		~	~