PERIYAR UNIVERSITY
SALEM – 11

SYLLABUS
M.Sc., ELECTRONICS

(PRIDE – NON-SEMESTER)

(EFFECTIVE FROM 2007-2008 ONWARDS)
1. CONDITION FOR ADMISSION

A candidate who has passed B.Sc., Electronics and Communication /B.Sc Telecommunication/B.Sc (Electronics) / B.Sc (Physics) / B.Sc (Instrumentation) / B.Sc (Industrial Electronics) / B.Sc (Biomedical Instrumentation) / B.Sc (Computer Science) / B.C.A. degree of this University or any of the above degree of any other university accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc., Electronics degree examination of this university after a course of study of two academic years.

2. DURATION OF THE COURSE:

The course for the degree of Master of Electronics shall consist of two academic years.

3. COURSE OF STUDY

The course of study shall comprises instruction in the following subjects according to the syllabus and books prescribed from time to time.

4. EXAMINATIONS

The examination shall be three hours duration to each paper at the end of the year. The candidate failing in any subject(s) will be permitted to appear for each failed subject(s) in the subsequent examination.

Practical examinations for PG course should be conducted at the end of the year.

At the end of second year viva-voce will be conducted on the basis of the dissertation / project report submitted by the student. The Viva – voce will be conducted by one internal and one external examiners jointly.

5. SCHEME OF EXAMINATIONS

The scheme of examinations as follows.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Title of the paper</th>
<th>Duration</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07PEL01</td>
<td>Electronic Devices and applications of IC’S</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>07PEL02</td>
<td>Advanced microprocessor</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>07PEL03</td>
<td>Digital and Optical Communication Engineering</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>07PEL04</td>
<td>Power Electronics &amp; VLSI Design</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>07PELP01</td>
<td>Practical –I: Electronics Lab</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>I – year</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>07PEL05</td>
<td>Wireless Communication</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>07PEL06</td>
<td>Advanced Networks</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>07PELP07</td>
<td>C++ and Java Programming</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>07PELP02</td>
<td>Practical -II : Microprocessor and Communication lab</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>07PELPR01</td>
<td>Dissertation / Project work &amp; Viva-Voce (Project report (75) + Viva – Voce (25))</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>II – year</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. QUESTION PAPER PATTERN : For theory:

Time: 3 Hours          Max. Marks – 100

PART – A: 5 x 5 = 25
(Answer all questions)
(Two questions from each unit with internal choice)

PART – B : 5 x 15 = 75
(Answer all questions)
(Two questions from each unit with internal choice)

For Practical:

Time : 3 Hours.          Max. Marks – 100:

(One question either or type)

7. DISSERTATION (100 Marks)

a. Topic

The topic of the dissertation shall be assigned to the candidate before the end of first year and a copy of the same should be submitted to the University for approval.

b. Advisory committee

Each guide shall have a maximum of five students in science and maximum of seven for all Arts subjects.

There will be an advisory committee consisting of the guide as chairman and one member from the same department or allied departments of the college and a third member should be from other college preferably from Aided / Government colleges in the case of self financing college and vice – versa.

c. No. of Copies/ Distribution of Dissertation

The students should prepare three copies of dissertation and submit the same for the evaluation by examiners. After evaluation one copy is to be retained in the college library and one copy is to be submitted to the University (Registrar) and one copy can be held by the student.

d. Format to be followed

The formats / certificate for dissertation to be submitted by the students are given below:
Format for the preparation of project work

a. Title page
b. Bonafide certificate
c. Acknowledgement
d. Table of content

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Review of literature</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Materials and methods</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Reference</td>
<td></td>
</tr>
</tbody>
</table>

Format of the title page

TITLE OF THE DISSERTATION

Dissertation submitted in part fulfillment of the requirement for the degree of
Master of Science / Master of Arts in ___________________

to the Periyar University, Salem-636 011.

By

Students name : 
Register Number : 

College / University Department
Year : 

Format of the certificate

CERTIFICATE

This to certify that the dissertation entitled………………………………………
…………………………. submitted in part fulfillment of the requirement of the
degree of Master of Science / Master of Arts in …………………………. To the Periyar University, Salem is a record of bonafide research work carried out by ………………………. under my supervision and guidance and that no part of the dissertation has been submitted for the award of any degree, diploma, fellowship or other similar titles or prizes and that the work has not been published in part of full in any scientific or popular journals or magazines.

Date:
Place:

Chairman, Advisory Committee,

------------------

Approved by
Chairman:
Members:
  1.
  2.

External Examiner

Guidelines for approval of PG guides for guiding students in their research for submitting dissertation.

   i. The person seeking for recognition as guide should have.
   ii. M.Sc degree with first class / second class
   iii. Should have 3 years of active teaching / research experience.

2. They should have published atleast one research paper in a National journal authored solely or jointly. Procedure for submitting application for approval as guides
   a. The University will on request give prescribed application form.
   b. The filled in applications should be submitted before the close of said date by the University.
c. such applications should be routed through the Principal of their respective institutions with specific recommendations.

d. All relevant proofs should be submitted along with the applications.

3. Approval

The committee constituted for the purpose will scrutinize the applications and recommend for approval / rejection.

Orders will then be passed by the authority of the university and communicated to each member individually through the Principal.

8. Passing Minimum

The candidate shall be declared to have passed the examination if the candidate secure not less than 50 marks in the University examination in each paper.

For the practical paper, a minimum of 50 marks out of 100 marks in the University examination and the record notebook taken together. There is no passing minimum for the record notebook. However submission of a record notebook is a must.

For the project work and viva voce a candidate should secure 50% of the marks for pass. The candidate should compulsory attend viva voce examination to secure pass in that paper.

Candidate who do not obtain the required minimum marks for a pass in a paper/ project report shall be required to appear and pass the same at a subsequent appearance.

9. Classification of successful candidates

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in First Class.

All other successful candidates’ hall be declared to have passed in the Second Class.

Candidates who obtain 75% of the marks in the aggregate shall be deemed to have passed the examination in First Class with Distinction provided they pass all the examinations prescribed for the course at the first appearance.
Candidates who pass all the examinations prescribed for the course in the first instance and within a period two academic years from the years of admission to the course only are eligible for University Ranking.

10. Maximum duration for the completion of the PG Programme

The maximum duration for completion of the PG programme shall not exceed five years.

11. Commencement of this regulation

These regulations shall take effect from the academic year 2007-08, i.e., for students who are to be admitted to the first year of the course during the academic year 2007-08 and thereafter.

12. Transitory provision

Candidates who are admitted to the PG course of study before 2007-2008 shall be permitted to appear for the examinations under those regulations for a period of three years i.e., up to and inclusive of the examination of April / May 2011. Thereafter, they will be permitted to appear for the examination only under the regulations then in force.

13. Regulations of project work

a. Students should do their three months project work in company / institutions.

b. The candidate to the department should submit the format which includes the topic of the dissertation, and the same should be submitted to the University for approval.

c. Each internal guide shall have maximum of FIVE students.

d. Periodically the project should be reviewed minimum three times by the advisory committee consisting of the guide and one member from the same department and the third member (min:5 years experience) should be from other institutions / organization.

e. The students should use OHP/Power Point Presentation during their project Viva Voce examinations.
OBJECTIVES:
The syllabus of M.Sc., Electronics is enriched and necessary changes have been made in the course pattern and papers. This will enable the students to acquire through knowledge both in theory and practical.

1. An emphasis is given more to practicals in advanced experiments.
2. Since, the course is paraprofessional enough practical training is necessary when the student goes to industries. Hence at the end of every semester the practical papers are included in the syllabus to meet out this demand or challenges.
3. After successful completion of this course a student can pursue higher engineering courses like ME / M.Tech in Electronics & Communication with good GATE score.
4. The thrust is given in the curriculum by considering various recent developments in Electronics & Communication, Bio-medical Instruments and Networking. This exposure will make, the students to be eligible for service / Engineering in the field of Electronics industries / Communication Industries / Bio-medical Industries / Networking Companies and Software Industries.

SUGGESTIONS:

1. M.Sc., Electronics covers the basic topics of the field, however the regular updating of the syllabus is necessary according to the recent academic developments in this field.
2. To provide further improvement in the teaching, quality of, the teachers in this university areas should be given short term training programmes in the specialized fields.
PART – A (5x5 = 25)
Answer all the questions:
1a) Discuss About evolution of Microprocessor (or)
   b) Write note on I/O Devices of Microprocessor.
2a) Explain register set of Microprocessor (or)
    b) Discuss about the pin out of 8085.
3 a) What is address decoding, Explain (or)
    b) Define the term RAM refreshing.
4 a) Discuss about 8086 flag register (or)
    b) Explain about Motorola 68000 registers.
5 a) Write note on Segmentation (or)
    b) Discuss Pentium processor pipelining.

PART – B (5X15 = 75)
Answer all the questions
6 a) Explain the block diagram of 8085 Processor (or)
    b) Explain about microcontroller architecture.
7 a) Discuss the various instructions of 8085 in detail (or)
    b) Explain the various addressing modes of Microprocessor.
8 a) Explain 8259 Architecture (or)
    b) Discuss about 8257.
9 a) Explain 8086 Architecture (or)
    b) Explain the addressing modes of 8086 with examples.
10 a) Explain the architecture of Pentium Processor (or)
     b) Explain addressing modes of Pentium processor.
PAPER :1 ELECTRONIC DEVICES AND APPLICATIONS OF IC’S

Unit – I


Unit -II


Unit III


Unit IV


Unit V

Designing of OPAMP circuits: OPAMP as Comparator – OPAMP as zero crossing detector – Constant current source – current to voltage converter – thermocouple – temperature monitor – strain gages –force measurement

Reference Books

1.Electronic Devices and Circuits by G.K.Mithal
2.Electronic devices : Applications and Integrated circuits by Mathur, Kulshreshtha and Chandha
PAPER: 2 ADVANCED MICROPROCESSORS

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
Introduction- register set- internal architecture- addressing modes of 80286- .

Pentium processor
Introduction- register set- block diagram- addressing modes- pipelining- integer pipelining- floating pipelining.
REFERENCE BOOKS:

5. Advanced microprocessor – McGraw Hill-Daniel Tabak

PAPER 3: DIGITAL AND OPTICAL COMMUNICATION ENGINEERING

UINT I: Pulse modulation System:


UINT II: Digital modulation techniques:

Digital carrier systems – Amplitude shift keying – Frequency shift keying – Phase shift keying (PSK) – Binary phase shift keying (BPSK) – Carrier recovery circuits – Differential phase shift keying (DPSK) – Hard and soft decision decoders.

UINT III: Fiber optic cables:

Optical fiber cables – Fiber strength and durability – Stability of the fiber transmission characteristics – Micro bending – Hydrogen absorption – Nuclear radiation exposure – Cable design; fiber buffering – Cable structured and strength members – Cable sheath and water barrier – Example of fiber cables.
UNIT IV: Light sources and light detectors:

Light sources: LED structure-Planar LED, dome LED, Surface emitter LEDs-Edge emitter LEDs-Super luminescent LEDs-LEDs reliability.
Light detectors: mid-Infrared photodiodes-Phototransistors-Photoconductive detectors.

UNIT V: Fiber optical communication components and systems:


Text and reference books:
PAPER 4: POWER ELECTRONICS & VLSI DESIGN

Unit I

Unit II

Unit III

Unit IV:
VLSI FABRICATION TECHNIQUES

UNIT V INTRODUCTION TO VHDL
Overview of VHDL – Capabilities – Hardware device – Basic terminology – Entity declaration.

Reference Books:

PAPER 5:
PRACTICAL –I:ELECTRONICS LAB
(any 15)

1. Full wave and bridge rectifiers.
2. Clipping and clamping circuits.
3. CE amplifier design.
4. CS FET amplifiers design.
5. UJT Relaxation oscillator.
6. Colpitts oscillators.
8. Wien bridge oscillator.
9. Phase shift oscillator.
10. Multivibrators using transistors.
11. Verification of Demorgan’s theorem
12. Half and Full Adder,
13. Half and Full subtractor
14. Multiplexer
15. De-multiplexer
16. Encoder and Decoder
17. Shift Register
18. Decade and UP/DOWN counter
19. Analog to Digital Counter
20. Single phase inverter
PAPER 6: WIRELESS COMMUNICATION

Unit-I
Telecommunication system:
GSM-mobile services – system architecture – radio interfaces – protocols – localization and calling – hand over and security-new date services.

Unit –II
GEO- LEO-MEO –routing localization- hand over.
Wireless LAN: Infrared and radio transmission-infrastructure and ad-hoc network-IEEE802.11- HIPERLAN – blue tooth.

Unit –III

Unit – IV
Mobile transport layer ;
Traditional: congestion control – slow start- fast retransmit/ fast recovery- implication of mobility. Classification of TCP improvements : indirect-snooping- mobile TCP-fast transmission /receiving- transmission/time out frequency-selective retransmission

Unit-V

Reference books
3. wireless and mobile circuits – JACKM HOLTZMAN, DAVIDJ.GOODMAN – Allied publication.
PAPER 7: ADVANCED NETWORKS

Unit I

**Internet working**: principles of internet working – concatenated virtual circuits – connection less internetworking – tunneling- internetwork routing- fragmentations- firewall.

Unit II

**The www**: the client side – the server side – writing a web page in HTML – locating information on the web.


Unit III

**ISDN**: the integrated digital network- overview of ISDN-transmission structure-user access-ISDN protocols.

**BROAD BAND ISDN**: NTI,-NTI plus and voice communication basis: terminating ISDN connections via NTI- Basis OF NTI and NTI plus- the ISDN voice communication primer.

Unit IV

**B-ISDN**: Introduction- the current situation- the idea of the ISDN-B-ISDN- ATM based service and applications- B-ISDN- service and applications initial ATM network services

Unit V

**Desktop video conference**: The down sizing of video conference-desk top video conferencing systems- video conferencing requirements-leading desktop video conferencing systems- elements of video conferencing style.

**Reference books:**

PAPER 8: C++ & JAVA PROGRAMMING

UNIT I
Basic Concepts of OOP – Structure of C++ - Data types - Variables – Control Structures – Functions – Classes and Objects – Constructors and Destructors.

UNIT II

UNIT III

UNIT IV
Introduction to Java – Features of Java – Methods and Classes – Array, Strings and Vector – Inheritance – Packages and Interfaces.

UNIT V

REFERENCE BOOKS:
PAPER 9: MICROPROCESSOR AND COMMUNICATION LAB
(Any 15)

Using 8085:
1. 8-bit addition, subtraction
2. 8-bit Multiplication and division
3. 16-bit addition, subtraction
4. 16-bit Multiplication and division
5. Stepper motor interfacing
6. ADC
7. DAC
8. Traffic light controller

Communication:
1. AM modulation
2. FM modulation and detection
3. Automatic gain control
4. Voltage gain control
5. Pulse amplitude modulation
6. Pulse width modulation
7. Pulse position modulation
8. Study of PLL characteristics
9. Digital phase detector
10. Pulse code modulation
11. Study of cable TV system
12. Microwave experiments – Klystron

Paper 10: Project viva-voce