PERIYAR UNIVERSITY
PERIYAR PALKALAI NAGAR
SALEM – 636011

DEGREE OF MASTER OF SCIENCE
CHOICE BASED CREDIT SYSTEM

SYLLABUS FOR
M.SC. ANALYTICAL CHEMISTRY
(SEMESTER PATTERN)
(For Candidates admitted in the Colleges affiliated to Periyar University from 2017-2018 onwards)
REGULATIONS

1. OBJECTIVES OF THE COURSE:

 The objectives of this course are the following:

 (a) To impart knowledge in advanced concepts and applications in various fields of Chemistry and to acquire deep knowledge in the study of Analytical Chemistry

 (b) To provide wide choice of elective subjects with updated and new areas in various branches of Chemistry to meet the needs of all students.

2. COMMENCEMENT OF THIS REGULATION:

 These regulations shall take effect from the academic year 2017-2018, that is, for students who are admitted to the first year of the course during the academic year 2017-2018 and thereafter.

3. ELIGIBILITY FOR ADMISSION:

 A candidate who has passed B.Sc., Chemistry degree of this University or any other University accepted by the Syndicate equivalent thereto, subject to such condition as may be prescribed therefore are eligible for admission to M.Sc., Degree Programme and shall be permitted to appear and qualify for the Master of Science (M.Sc.) Degree Examination in Analytical Chemistry of this University.

4. DURATION OF THE COURSE:

 The programme for the degree of Master of Science in Chemistry shall consist of two Academic years divided into four semesters.

5. EXAMINATIONS:

 The examination shall be of three hours duration for each course at the end of each semester. The candidate failing in any subject(s) will be permitted to appear in the subsequent examination.

 The practical / project should be an individual work. The University examination for practical / project work will be conducted by the internal and external examiners jointly at the end of every year.
M.Sc. Analytical Chemistry

Course of Study and Scheme of Examination

<table>
<thead>
<tr>
<th>Course (Paper)</th>
<th>Paper Code</th>
<th>Subject Title</th>
<th>Hours/Week</th>
<th>Work Load per sem (Hours)</th>
<th>Credit</th>
<th>Exam Hours</th>
<th>Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal</td>
<td>External</td>
<td></td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core I</td>
<td></td>
<td>Organic Chemistry - I</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core II</td>
<td></td>
<td>Inorganic Chemistry - I</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core III</td>
<td></td>
<td>Physical Chemistry - I</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>Polymer Chemistry / Conducting Polymers</td>
<td>5</td>
<td>75</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core Practical I</td>
<td></td>
<td>Organic Chemistry Practical - I</td>
<td>4</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Practical III</td>
<td></td>
<td>Inorganic Chemistry Practical - I</td>
<td>3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Paper III</td>
<td></td>
<td>Physical Chemistry Practical - I</td>
<td>3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core IV</td>
<td></td>
<td>Organic Chemistry - II</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core V</td>
<td></td>
<td>Inorganic Chemistry - II</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core VI</td>
<td></td>
<td>Physical Chemistry - II</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>EDC</td>
<td></td>
<td>Extra Disciplinary course</td>
<td>4</td>
<td>60</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Core Practical I</td>
<td></td>
<td>Organic Chemistry Practical - I</td>
<td>3</td>
<td>45</td>
<td>3</td>
<td>6</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Core Practical II</td>
<td></td>
<td>Inorganic Chemistry Practical - I</td>
<td>3</td>
<td>45</td>
<td>3</td>
<td>6</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Core Practical III</td>
<td></td>
<td>Physical Chemistry Practical - I</td>
<td>3</td>
<td>45</td>
<td>3</td>
<td>6</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Common Paper</td>
<td></td>
<td>Human Rights</td>
<td>2</td>
<td>30</td>
<td>2</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Course (Paper)</td>
<td>Paper Code</td>
<td>Course Title</td>
<td>Hours/Week</td>
<td>Work Load per sem (Hours)</td>
<td>Credit</td>
<td>Exam Hours</td>
<td>Marks</td>
<td>Total</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core VII</td>
<td></td>
<td>Analytical Chemistry - I</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Core VIII</td>
<td></td>
<td>Analytical Chemistry - II</td>
<td>5</td>
<td>75</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>Data Treatment & Titrimetric analysis</td>
<td>5</td>
<td>75</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Elective III</td>
<td></td>
<td>Optical methods and Thermal Analysis</td>
<td>5</td>
<td>75</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Core I Practical IV</td>
<td></td>
<td>Analysis Chemistry Practical - I</td>
<td>4</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Practical V</td>
<td></td>
<td>Analysis Chemistry Practical - II</td>
<td>3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Practical VI</td>
<td></td>
<td>Analysis Chemistry Practical - III</td>
<td>3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>30</td>
<td>450</td>
<td>18</td>
<td></td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

SEMESTER IV								
Core IX		Analytical Chemistry - III	5	75	5	3	25	100
Elective IV		Analysis of materials	5	75	4	3	25	100
Core Practical IV		Analysis Chemistry Practical - I	3	45	3	6	40	100
Core Practical V		Analysis Chemistry Practical - II	3	45	3	6	40	100
Core Practical VI		Analysis Chemistry Practical - III	3	45	3	6	40	100
Project		Dissertation / Project work	11	165	7	-	-	200
Total			30	450	25			700
Grand Total			120	1800	92	-	-	2300
NOTE: I

Core Papers : 9
Core Practicals : 6
Elective papers : 4
EDC : 1
Human Rights : 1
Project : 1

NOTE : II

Distribution of Marks

Theory

University Examination (External) : 75 marks
Internal Assessment : 25 marks

Distribution of Internal Assessment mark

Test : 10 marks
Attendance : 5 marks
Assignment : 5 marks
Seminar : 5 marks

Total : 25 marks

Passing Minimum : Internal Assessment : 50% - 12 marks
Passing Minimum : External Assessment : 50% - 38 marks
Total Passing Minimum : 50 marks

PRACTICALS

University Examination (External) : 60 marks
Internal Assessment : 40 marks

Calculation of Internal Assessment mark

Number of Experiments : 10 marks
Experimental skill : 10 marks
Test : 20 marks

--
Total : 40 marks
--

Passing Minimum : Internal Assessment : 50% - 20 marks
Passing Minimum : External Assessment : 50% - 30 marks
Total Passing Minimum : 50 marks

Everything should be supported by proper record
separate passing minimum is necessary for Internal and External
QUESTION PAPER PATTERN

Theory

Time: 3 Hours Max. marks : 75

Part - A : 5X5 = 25
(Answer all questions)
(one question from each unit with internal choice)

Part - B : 5X10 = 50
(Answer all questions)
(one question from each unit with internal choice)

Practical

Distribution of marks for practical
Experiment : 45 marks
Viva-voce in practical : 10 marks
Record : 5 marks
Total : 60 marks
Duration : 6 Hours

Project

Dissertation / Project : 150 marks
Viva - voce : 50 marks
Total : 200 marks
M.Sc. ANALYTICAL CHEMISTRY

SEMESTER I

CORE I - ORGANIC CHEMISTRY – I
(75 Hours)

UNIT I Stereochemistry (15 Hours)

Conformational analysis and stereochemical features of disubstituted cyclohexanes (1,2 ; 1,3 ; 1,4 dialkyl cyclo hexanes), conformation and stereochemistry of cis and trans decalins.

UNIT II Reaction intermediates, Structure and Reactivity (15 Hours)

Reaction intermediates : Formation, stability and structure of carbonium ions, carbanions, carbenes, nitrenes and free radicals.

Free radical reactions : Sandmeyer reaction, Gomberg-Bachmann reaction, Pschorr reaction and Ullmann reaction, Hunsdiecker reaction.

Effect of structure on reactivity – resonance and fields effects, steric effects, quantitative treatment – the Hammett equation and linear free energy relationship, substituent and reaction constant, Taft equation. Thermodynamic and kinetic requirements for reactions, thermodynamically and kinetically controlled reactions, Hammonds postulate, transition states and intermediates, Kinetic & non kinetic methods of determining mechanisms, identification of products and determination of the presence of an intermediate, isotopic labeling, kinetic isotope effects.

UNIT III Aliphatic Nucleophilic Substitution Reactions (15 Hours)

The SN1, SN2 & SNi mechanisms. The neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance. Nucleophilic substitution at an allylic, aliphatic trigonal and vinylic carbon.

Reactivity effects of substrates structure, attacking nucleophile, leaving group and reaction medium, ambident nucleophile, regioselectivity. Williamson reaction, Von-braun reaction, hydrolysis of esters, Claisen and Dieckmann condensation.
UNIT IV

Aromatic electrophilic and nucleophilic substitution reactions (15 Hours)

The arenium ion mechanism, typical reactions like nitration, sulphonation, halogenation, Friedel – Crafts alkylation, acylation and diazonium coupling, electrophilic substitution on monosubstituted benzene, orientation and reactivity – ortho, meta and para directing groups, ortho-para ratio, ipso attack, Gatterman, Gatterman- Koch, Vilsmeir, Houben Hoesch reaction.

Aromatic nucleophilic substitution reactions, the SNAr mechanism, the aryl cation mechanism, the benzyne intermediate mechanism, Ziegler alkylation, Chichibabin reaction.

UNIT – V Alkaloids, Flavones and Isoflavones (15 Hours)

Synthesis and Structural elucidation of Quinine, Papaverine, Morphine and Reserpine.

Synthesis and structural elucidation of flavones, isoflavones and anthocyanins.

TEXT BOOKS

REFERENCE BOOKS

M.Sc. ANALYTICAL CHEMISTRY
SEMESTER I
CORE II - INORGANIC CHEMISTRY-I
(75 Hours)

UNIT I Structure and Bonding (15 Hours)
Van der Waals bonding, Hydrogen bonding; HSAB concept; polyacids - Isopolyacids of V, Cr, Mo and W; Heteropolyacids of Mo and W (only structural aspects). Inorganic polymers - silicates - structure, properties, correlation and application; Molecular sieves; polysulphur nitrogen compounds and polyorganophosphazenes.

UNIT II Boron Compounds and Clusters (15 Hours)
Boron hydrides, polyhedral boranes, hydroborate ions- a general study of preparation, properties and structure; Carboranes - types such as closo and nido, preparation, properties and structure; Metallo carboranes - a general study; Metal clusters-chemistry of low molecularity metal clusters only, multiple metal-metal bonds.

UNIT III Nuclear Chemistry I (15 Hours)
Nuclear structure - stability of nuclei, packing fraction, even-odd nature of nucleons, n/p ratio, nuclear potential, binding energy and exchange forces; shell model and liquid drop model; Decay of radio nuclei - rate of decay; determination of half-life period; Modes of decay - alpha, beta, gamma and orbital electron capture; nuclear isomerism; internal conversions; Q value; nuclear cross section; threshold energy and excitation functions.

UNIT IV Nuclear Chemistry II (15 Hours)
Different type of nuclear reactions with natural and accelerated particles-transmutation, stripping and pick-up, spallation, fragmentation, fission; Characteristic of fission reaction, product distribution and theories of fission; fissile and fertile isotopes - U235, U238, Th232 and Pu239; atom bomb; nuclear fusion - steller energy; Synthesis of new elements; principles underlying the usage of radioisotopes in analysis – agriculture, industry, medicine, mechanism of chemical reactions; uses of radioisotopes in analytical chemistry; isotopic dilution analysis; neutron activation analysis and dating methods.

UNIT V Experimental Methods (15 Hours)
Cloud chamber, nuclear emulsion, bubble chamber, proportional counters, G.M. Counter, Scintillation counters and Cherenkov counters. Particle accelerators - Linear accelerator, Cyclotron, Synchrotron, Betatron and Bevatron.
TEXT BOOKS

REFERENCE BOOKS
M.Sc. ANALYTICAL CHEMISTRY

SEMESTER I

CORE III - PHYSICAL CHEMISTRY – I

(75 Hours)

UNIT I Group theory-I
(15 Hours)
Symmetry elements; symmetry operations; point groups - identification and determination; comparison of molecular and crystallographic symmetry; reducible and irreducible representations; direct product representation; orthogonality theorem and its consequences; character table. Hybrid orbitals in non-linear molecules – Examples: H2O, NH3, BF3, CH4 and XeF4. Determination of representations of vibrational modes in non-linear molecules such as water, ammonia, BF3, CH4 and XeF4.

UNIT II Thermodynamics
(15 Hours)
First law of thermodynamics; temperature dependence of enthalpies; Second law of thermodynamics; Gibbs-Helmholtz equation; Third law of thermodynamics. Free energy and entropy of mixing; chemical potential, partial molar volume and partial molar heat content. Variation of chemical potential with temperature and pressure-Gibbs-Duhem equation. Thermodynamics of ideal and real gases-fugacity, activity and activity coefficient.

UNIT III Statistical thermodynamics
(15 Hours)
Thermodynamic probability and entropy; Boltzman distribution law; Maxwell-Boltzman, Bose-Einstein and Fermi-Dirac statistics; vibrational, rotational and electronic partition functions; calculation of thermodynamic functions and equilibrium constants; Theories of specific heats of solids; postulates and methodologies of non-equilibrium thermodynamics; linear laws; Gibbs equation;

UNIT-IV Non-equilibrium thermodynamics
(15 Hours)
Thermodynamic criteria for non-equilibrium states; entropy production and entropy flow; entropy balance equations for different irreversible processes (heat flow, chemical reaction etc.); Non-equilibrium stationary states; microscopic reversibility; Onsager reciprocal theory.

UNIT V Electrochemistry
(15 Hours)
Mean ionic activity and activity coefficient of electrolytes in solutions; ideal and non-ideal solutions; excess functions; Hydration number; Debye-Huckel treatment of dilute electrolyte solutions; Debye-Huckel limiting law; Electrochemical cell reactions - Electrode-electrolyte interface; electokinetic phenomena; electrode kinetics; Batteries-primary and secondary; fuel cells; corrosion and its prevention.
TEXT BOOKS

REFERENCE BOOKS
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER I
ELECTIVE I
PAPER I - POLYMER CHEMISTRY
(75 Hours)

UNIT I Basic Concepts (15 Hours)

UNIT II Co-ordination Polymerization (15 Hours)

UNIT III Molecular Weight and Properties (15 Hours)
Polydispersion – average molecular weight concept, number, weight and viscosity average molecular weights. Measurement of molecular weights. Viscosity, light scattering, osmotic and ultracentrifugation methods. Polymer structure and physical properties – crystalline melting point Tm. The glass transition temperature. Determination of Tg. Relationship between Tm and Tg.

UNIT IV Polymer Processing (15 Hours)
Plastics, elastomers and fibres. Compounding, processing techniques: calendering, die casting, rotational casting, film casting, injection moulding, blow moulding extrusion, moulding, thermoforming, foaming, reinforcing and fibre spinning.

UNIT V Properties of Commercial Polymers (15 Hours)
Polyethylene, polyvinyl chloride, polyamides, polyesters, phenolic resins, epoxy resins and silicone polymers. Functional polymers, Fire retarding polymers and electrically conducting polymers. Biomedical polymers – contact lens, dental polymers, artificial heart, kidney, skin and blood cells.
TEXT BOOKS

REFERENCE BOOKS

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER I

ELECTIVE I

PAPER II - CONDUCTING POLYMERS

(75 Hours)

UNIT I Basic Concepts and Synthetic methods (15 Hours)
Basics of conducting polymers - Organic - conjugated unsaturated hydrocarbons -
Chemical Synthesis of conducting polymers – Other synthetic methods

UNIT II Electrochemical Synthesis (15 Hours)
Electrochemical synthesis of conducting polymers – monomers, electrolytic
condition, electrodes and mechanism; Electrochemical synthesis of derivatives of poly
pyrrole, polythiophene, polyazulene, polycarbazole, polyindole, polyaniline and
polyphenylene.

UNIT III Semiconducting and Metallic Polymers (15 Hours)
Structural basis for semiconducting and metallic polymers – introduction; Organic
meta polymers - Synthetic route, isomers and electronic structure (polymers like
polyacetylene, poly(p-phenylene), polypryrrole, polythiophene, etc..).

UNIT IV Doping (15 Hours)
Electrochemical doping; deadline to the development of conducting polymers; role of
reduction and oxidation potential in doping; polyacetylene as electrode materials.

UNIT V Catalytic Conducting Polymers (15 Hours)
Catalytic properties of conducting polymers; catalysis of electron donor-acceptor
complexes; electrocatalysis by semiconducting polymers.

TEXT BOOKS
1) Terje A. Skotheim, Ronald L. Elsenbaumer, John R. Reynolds, Handbook of
2) Hari Singh Nalwa (Edn), Handbook of Organic Conductive Molecules and Polymers,
Four Volumes, Wiley, 1997

REFERENCE BOOKS
1) Jean-Pierre Farges, Organic Conductors, Marcel Dekkar, 1994
2) David B Cotts, Z Reyes, Electrically Conductive Organic Polymers for Advanced
Applications, William Andrew Inc, 1987
4) Raymond B Seymour, New Concepts in Polymer Science, Polymeric Composites, VSP,
1990.
Polymers, CRC Press, 2002
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER II
CORE IV - ORGANIC CHEMISTRY – II
[75 Hours]

UNIT I Elimination Reactions (15 Hours)
E1, E2, E1cB mechanisms, Orientation of the double bond- Hofmann and Saytzeff rule, competition between elimination and substitution, dehydro and dehydrohalogenation reactions, stereochemistry of E2 eliminations in cyclohexane ring systems, mechanism of pyrolytic eliminations, Chugaev reaction and Cope elimination.

UNIT II Aromaticity (15 Hours)
Aromatic character: Five-, six-, seven-, and eight-membered rings - other systems with aromatic sextets - Huckel’s theory of aromaticity, concept of homoaromaticity and antiaromaticity.
Electron occupancy in MO’s and aromaticity - NMR concept of aromaticity and antiaromaticity, systems with 2,4,8 and 10 electrons, systems of more than 10 electrons (annulenes), Mobius aromaticity.
Bonding properties of systems with (4n+2)π-electrons and 4nπ - electrons, alternant and non-alternant hydrocarbons (azulene type) - aromaticity in heteroaromatic molecules, sydnones and fullerenes.

UNIT III Organic Photochemistry (15 Hours)
Photochemical reactions : Fate of excited molecules, Jablonski diagram, Norrish Type I and Norrish Type II reactions, photoreduction of ketone, photoaddition reactions, Paterno Buchi reaction, di –pi methane rearrangement, photochemistry of arenes, Photooxidation (Formation of peroxy compounds), Photoisomerization (Cis – trans isomerization), Photo addition of olefins and amines to aromatic compounds, Photo rearrangements: Photo – Fries rearrangement and Photo rearrangement of 2,5 – Cyclohexadienones.

UNIT IV Pericyclic Reactions (15 Hours)

UNIT V Reagents in Organic Synthesis (15 Hours)
Reagents and their uses: DCC, DDQ, DBU, DIBAL, 9BBN, NBS, 1,3 – dithiane (umpolung), n-Butyl Lithium, trimethyl silyl iodide, trimethyl silyl chloride, Lithium dimethyl cuprate, Baker’s yeast and Gilman’s reagent.
M.SC. ANALYTICAL CHEMISTRY

TEXT BOOKS

REFERENCE BOOKS

M.Sc. ANALYTICAL CHEMISTRY
SEMESTER II
CORE V - INORGANIC CHEMISTRY -II
[75 Hours]

UNIT I Metal-Ligand Bonding (15 Hours)
18 Electron rule; EAN rule, theories of coordination compounds - valence bond theory, crystal field theory - splitting of d-orbitals in different symmetries, crystal field stabilization energy, factors affecting the magnitude of 10 Dq, evidence for crystal field stabilization, spectrochemical series, site selection in spinels, tetragonal distortion from octahedral symmetry, Jahn-Teller distortion; Molecular Orbital Theory - octahedral complexes, tetrahedral and square planar complexes, pi bonding and molecular orbital theory, experimental evidence for pi-bonding.

UNIT II Electronic Spectra and Magnetic Properties (15 Hours)
Term states of dn ions - microstates and their classifications, electronic spectra of coordination compounds - selection rules, band intensities and band widths; energy level diagrams of Orgel and Tanabe - Sugano diagram; spectra of Ti3+, V3+, Ni2+, Cr3+, Co2+, Cr2+ and Fe2+; calculation of 10Dq and B for V3+ (oct) and Ni2+ (oct) complexes.
Magnetic properties of coordination compounds - change in magnetic properties of complexes in terms of spin-orbit coupling; spin only moments of dn systems; temperature independent paramagnetism; spin cross over phenomena.

UNIT III Structure of Coordination Complexes (15 Hours)
Structure of coordination compounds with reference to the existence of various coordination numbers - complexes with coordination number two, complexes with coordination number three, complexes with coordination number four - tetrahedral and square planar complexes, complexes with coordination number five - regular trigonal bipyramidal and square pyramidal; site preference in trigonal bipyramidal complexes, site preference in square planar complexes; coordination number six - distortion from perfect octahedral symmetry, trigonal prism; stereoselectivity and conformation of chelate rings; coordination number seven and eight.

UNIT IV Stability and Stereochemical Aspects (15 Hours)
Stability of complexes - thermodynamic aspects of complex formation, factors affecting stability, stability correlations, statistical and chelate effects; Determination of stability constants - polarographic, photometric and potentiometric methods.
Stereochemical aspects - stereoisomerism in inorganic complexes, isomerism arising out of ligand distribution and ligand conformation, chirality.
Macrocyclic ligand types - porphyrins, corrins, Schiff bases, crown ethers, cryptates and catenands. (simple complexes).
UNIT V Reaction Mechanism of transition metal complexes (15 Hours)

Energy profile of a reaction, reactivity of metal complexes, inert and labile complexes, kinetic application of valence bond and crystal field theories, kinetics of octahedral substitutions, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, direct and indirect evidences in favour of conjugate mechanism, anation reactions, reactions without metal ligand bond cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the substitution reactions. Redox reactions, electron transfer reactions, mechanism of one electron transfer reactions, outer sphere type reactions, cross reactions and Marcus-Hush theory, inner sphere type reactions.

TEXT BOOKS

REFERENCE BOOKS

UNIT I Quantum Chemistry-I (15 Hours)

Planck’s Quantum theory - wave particle duality, Uncertainty principle; Operators and commutation relations- Linear and Hermitian operators. Postulates of quantum mechanics; The Schrodinger equation-Particle in a box (one, two and three dimensional systems).

UNIT II Quantum chemistry –II (15 Hours)

Applications of quantum mechanics - harmonic oscillator, rigid rotator, hydrogen atom; Approximation methods-variation and perturbation methods, application to helium atom.

UNIT III Quantum Chemistry-III (15 Hours)

Born-Oppenheimer approximation- VB and MO treatments of hydrogen molecule; MO for polyatomic molecules; Concept of hybridization-sp, sp2 and sp3; Huckel pi-electron theory and its applications to ethylene, butadiene and benzene; Idea of self consistent fields.

UNIT-IV Surface Chemistry (15 Hours)

Surface tension; solid-liquid interfaces; contact angle and wetting; Solid-gas interface; Adsorption of gases on solids-Freundlich, Gibbs, Langmuir, Temkin and BET adsorption isotherm; Surface area determination; electrical phenomena at interfaces; micelles and reverse micelles - solublization and microemulsion.

UNIT-V Chemical Kinetics (15 Hours)

Methods of determining rate laws; Theories of reaction rates - simple collision theory, ARR theory; treatment of unimolecular reactions (Lindemann-Hinse1wood and Rice-Ramsperger-Kassel-Marcus[RRKM] theories); termolecular reactions; chain reactions; explosive reactions; Arrhenius and Eyring equations; Reaction rates in solution; salt effect and solvent dielectric constant; Homogeneous and heterogeneous catalysis; Enzyme catalysis- Michaelis-Menton kinetics; Fast reactions- study of kinetics by stopped flow technique, relaxation method, flash photolysis and magnetic resonance method.
M.SC. ANALYTICAL CHEMISTRY

TEXT BOOKS

REFERENCE BOOKS

2. M.W. Hanna, Quantum Mechanics in Chemistry, W.A. Benjamin Inc. London 1965
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER II
CORE PRACTICAL I - ORGANIC CHEMISTRY PRACTICAL I

I. Identification of components in a two component mixture and preparation of their derivatives. Determination of boiling point/melting point for components and melting point for their derivatives.

II. Preparation.
1. Beta naphthyl methyl ether from beta naphthol
2. s-Benzyl isothiuronium chloride from benzylchloride
3. Beta glucose penta acetate from glucose
4. ortho-Benzoyl benzoic acid from phthalic anhydride
5. Resacetophenone from resorcinol
6. para-Nitrobenzoic acid from para nitrotoluene
7. meta-Nitroaniline from meta dinitrobenzene
8. Methyl orange from sulphanilic acid
9. Anthraquinone from anthracene
10. Benzhydrol from benzophenone

REFERENCE BOOKS:
Part I

Semimicro qualitative analysis of mixtures containing two common and two rare cations. The following are the cations to be included: W, Tl, Mo, Te, Se, Ce, Th, Be, Zr, V, U and Li.

Part II

a) Colorimetric analysis: Visual and Photometric; determination of iron, nickel, manganese and copper.

b) Preparation of the following:
 a) Potassium trioxalatoaluminate (III) trihydrate
 b) Tristhioureacopper(I) chloride
 c) Potassium trioxalatochromate (III) trihydrate
 d) Sodium bis (thiosulphato) cuprate (I)
 e) Tetramminecopper (II) sulphate
 f) Potassium Tetrachlorocuprate (II)

REFERENCES BOOKS:

M.Sc. ANALYTICAL CHEMISTRY
SEMESTER I
CORE PRACTICAL III
PHYSICAL CHEMISTRY PRACTICAL I

LIST OF EXPERIMENTS

1. Study the kinetics of acid hydrolysis of an ester, determination of the temperature coefficient of the reaction and determination of the activation energy of the hydrolysis of ethylacetate.

2. Study the kinetics of the reaction between acetone and iodine in acidic medium by half life method and determine the order with respect to iodine and acetone.

4. Determination of the rate constant and order of reaction between potassium persulphate and potassium iodide and determine the temperature coefficient and energy of activation of the reaction.

5. Determination of equivalent conductance of a weak acid at different concentrations and verify Ostwald’s dilution law and calculation of the dissociation constant of the acid.

6. Determination of equivalent conductivity of a strong electrolyte at different concentrations and examine the validity of the Onsager’s theory as limiting law at high dilutions.

7. Conductometric titrations of a mixture of HCl and CH3COOH against Sodium hydroxide

8. Determination of the activity coefficient of an electrolyte at different molalities by emf measurements.

9. Determination of the dissociation constant of acetic acid by titrating it with sodium hydroxide using quinhydrone as an indicator electrode and calomel as a reference electrode.

10. Determination of the PH of a given solution by emf method using hydrogen electrode and quinhydrone electrode.

11. Determination of the partial molar volume of glycine/methanol/formic acid/sulphuric acid by graphical method and by determining the densities of the solutions of different compositions.

12. Study the surface tension – concentration relationship of solution (Gibb’s equation)

13. Determination of the viscosities of mixtures of different composition of liquids and find the composition of a given mixture.

REFERENCE BOOKS:

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER II

EXTRA DISCIPLINARY COURSES

LIST OF EXTRA DISCIPLINARY COURSE PAPERS

I. Industrial Chemistry
II. Agricultural Chemistry
III. Food and Medicinal Chemistry
IV. Pharmaceutical Chemistry
V. Dye Chemistry
VI. Water Chemistry
UNIT-I Glass and Ceramics (12 Hours)

1.2 Ceramics: Definition. Manufacture and applications.

UNIT-II Cement (12 Hours)

UNIT-III Dyes and Paints (12 Hours)

3.1 Dyes: Classifications of dyes, application of dyes in other areas-medicine, chemical analysis, cosmetics, colouring agents, Food and beverages.

3.2 Paints: Constituents of paints, Manufacture of paints, Setting of paints, requirement of a good paint, paint failure.

UNIT-IV Synthetic fibres and Plastics (12 Hours)

4.1 Synthetic fibres: Difference between natural and synthetic fibres, Applications of synthetic fibres-Rayon, Terylone, Nylon. Taflon.

4.2 Plastics: Domestic and industrial applications of all types of plastics.

UNIT-V Oils, Fats and Waxes (12 Hours)

Classification of oils, fats and waxes, distinction between oils, fats and waxes, Uses of essential oils and fats. Soap and its manufacture toilet and transparent soaps cleansing action of soap Detergent – classification and uses.
M.S.C. ANALYTICAL CHEMISTRY

TEXT BOOKS

REFERENCE BOOKS

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER II

EXTRA DISCIPLINARY COURSE

PAPER- II- AGRICULTURAL CHEMISTRY

(60 Hours)

UNIT-I Water source for Agriculture (12 hours)

Water treatment and water analysis-acidity, alkalinity, pH, Biological oxygen demand (BOD). Chemical oxygen demand (COD) and their determinations, Recycling of water, water management.

UNIT - II Chemistry of soil, soil classification and soil analysis (12 Hours)

Definition, classification and properties of soil, Soil erosion, Soil fertility, Soil organic matter and their influence on soil properties, Soil reactions- soil pH, acidity, alkalinity, buffering of soils and its effect on the availability of N, P, R. Ca and Mg.

UNIT-III Irrigation (12 Hours)

Crop Seasons-seed, seed development organization, natural seeds projects phase-III, new policy on seed development; Soil- soil reclamation, alkali soil, saline soils, methods for soil reclamation; Irrigation Environmental degradation and Irrigation projects.

UNIT-IV Fertilizers (12 Hours)

4.1 Fertilizers: Effect of Nitrogen, potassium and phosphorous on plant growth. Secondary nutrients – micronutrients- their functions in plants classification of fertilizers, natural fertilizers, artificial fertilizers, phosphate fertilizers; Manufacture of urea and triple super phosphate

4.2 Manures: Bulky organic manures- Farm yard manure- handling and storage, oil cakes. Blood meal, fish manures.

UNIT-V Pesticides and Insecticides (12 Hours)

5.1 Pesticides; Classification of Insecticides, fungicides herbicides as organic and inorganic, general methods of application and toxicity, safety measures when using pesticides.
M.SC. ANALYTICAL CHEMISTRY

Insecticides: Plant products-Nicotine, pyrethrin, Inorganic pesticides-borates organic pesticides - D.D.T and BMC.

5.2 Fungicide and Herbicides:
Fungicide: Sulphur compounds, copper compounds, Bordeaux mixture,
Herbicides: Acaricides- Rodenticides, Attractants- Repellants, Preservation of seeds.

TEXT BOOKS

REFERENCE BOOKS
3. B.K. Sharma, Industrial Chemistry.
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER II
EXTRA DISCIPLINARY COURSE
PAPER- III- FOOD AND MEDICINAL CHEMISTRY
(60 Hours)

UNIT I -I Food (12 Hours)
1.1 Food Adulteration
Sources of food, types, advantages and disadvantages, constituents of foods, carbohydrates, proteins, fats and oils, colours, flavours, natural toxicants.

1.2 Food poisoning
Sources, causes and remedy- Causes and remedies for acidity, gastritis, indigestion and constipation.

1.3 Food preservation
Food spoilage, causes of food spoilage, types of flood spoilage, food preservation.

UNIT-II Vitamins and minerals (12 Hours)
2.1 Vitamins: Sources, requirement, deficiency diseases of A. B. C. H and K.

2.2 Minerals: Mineral elements in food-principal mineral elements - Source- Function - Deficiency and daily requirements- Na, K. Mg. Fe, S. P and I.

UNIT-III (12 Hours)
3.1 Antibiotics: Definition, Classification as broad and narrow spectrum, mode of action and uses of penicillin, Chloramphenicol, tetracyclines, ciphalosporin, ampicillin and erythromycin.

3.2 Sulphonamides: Mechanism and action of sulpha drugs, preparation and uses of sulphadiazine, sulphathiazole, sulphapyridine and sulphafurazole.

UNIT-IV (12 Hours)
4.1 Antiseptics and disinfectants- definition and distinction- phenol coefficient, phenol as disinfectant, chlorhexidinc, formaldehyde and nitrofurazone- uses.
4.2 Anaesthetics- definition- classification- local and general- volatile, nitrous oxide, ether, chloroform, cyclopropane- uses and disadvantages- nonvolatile-intravenous- thiopental sodium, methohexitone, propanidide, local anaesthetics- cocaine and benzocaine- uses and disadvantages.

UNIT-V (12 Hours)

5.1 Drugs affecting CNS- Definition and one example for tranquilisers, sedatives, hypnotics, psychedelic drugs- chlorpromazine and barbitone- uses

5.2 Hypoglycemic agents- Diabetes- types- causes- symptoms- Insulin- uses. Oral hypoglycemic agents- sulphonyl ureas- action and uses.

5.3 Antineoplastic drugs- Causes for cancer, Antineoplastic agents, cytotoxic. anti-metabolites, plant products, hormones- one example and uses

5.4 AIDS-causes, prevention and control.

5.5 Indian medicinal plants and uses- tulasi, kilanelli, mango, semparuthi, adadodai and thoothuvalai.

TEXT HOOKS

REFERENCE BOOKS

7. G.R. Chatwal, Pharmaceutical Chemistry Organic. Vol-II,

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER II

EXTRA DISCIPLINARY COURSE

PAPER-IV-PHARMACEUTICAL CHEMISTRY

(60 Hours)

UNIT -I

(12 Hours)

Introduction: Importance of Chemistry in pharmacy. Important terminologies used, their meaning- molecular pharmacology, pharmacodynamics, pharmacophore, metabolites, antimetabolites, bacteria, virus, fungi, actinomycetes.

Drug delivery systems, sustained release of drugs. Physiological effects of different functional groups in drugs.

UNIT-II

(12 Hours)

2.1 Indian Medicinal plants and trees- adathoda, tulsi, thoothuvalai, shoeflower, neem. mango, kizhanelli. Ocimum, grass and greens.

2.2 Antibiotics: Definition. Structure- uses of chlorarnphenicol- ampicillin. streptomycin, tetracycline- ritaniycin, Macrolidcs- Erythromycin- properties and uses.

Structural features- SAR- functional group responsible for drug action. Structural modification that changes the potency of the above drugs. Conditions for their use as therapeutic agents. Fields of application.

2.3 Sulphonamides: Substituents in the amide group. General properties and drug action. Preparation and uses of sulphadiazine, sulphapyridine, sulphathiazole, sulphafurazole and prontosil.

UNIT-III

(12 Hours)

3.1 Antineoplastic drugs: Causes for cancer, Antineoplastic agents, cytotoxic. antimetabolites, plant products, harmones.

Synthetic analgesics- pethidine and methadones.

Salicylic acid and its derivaties, indolyl derivatives, aryl-acetic acid derivatives, pyrazole. p-aminophenol derivatives- mechanism of action.
3.3 Antiseptics and disinfectants: Definition. Standardization of disinfectants, Use of phenols, dyes, chloramines, chlorohexadiene, Organomercurials, Dequalinium chloride, formaldehyde. Cationic surface active reagents, chloraminet-nitrofurazone.

Distinction between antiseptics and disinfectants.

UNIT – IV

4.2 Anaesthetics: Definition, Classification. Uses of volatile anaesthetics - nitrous oxide, ethers, cyclopropane, chloroform, halothane, trichloroethylene, ethyl chloride - storage, advantages and disadvantages, intravenous anaesthetics-thiopental sodium, methohexitone, propanidide.

UNIT-V

5.1 Haematological agents: Coagulants and anticoagulants; Coagulants: vitamin K, Protamine sulphate, dried thrombin, Proteins, amino acids, Anticoagulants - Coumarins, indanediols. citric acid, 2-sulphonyl acids, quinoxaline, throm lodyn, Haemostatics - amino caproic acid, transexamic acid, Anaemia: Causes, detection, antianaemic drugs.

5.2 Cardio Vascular drugs: Cardiac glycosides, antiarrhythmic drugs, antihypertension drugs, antianginal agents, vasodilators, lipid lowering agents. One example for each.

TEXT BOOKS
2. Ashutosh Kar, Medicinal Chemistry, Ne\v Age International. 1996.

REFERENCE BOOKS
M.Sc. ANALYTICAL CHEMISTRY

SEMESTER II

EXTRA DISCIPLINARY COURSE

PAPER-V- DYE CHEMISTRY

(60 Hours)

Unit I Introduction (12 Hours)
Colour and chemical constitution - chromophore, auxochrome and resonance, various theories; History of natural and synthetic dyes; Names of commercial dyes; Study of raw materials and dyestuff intermediates; Unit operations - nitration, sulphonation, halogenation, amination, diazotisation and alkali fusion; Colour index and its significance; Classification of dyes based on chemical constitution and method of applications; General properties - linearity, coplanarity and fastness.

Unit II Direct, Acid and Basic Dyes (12 Hours)
Direct cotton dyes (substantive dyes) – Classification, properties, structure and mechanism of dyeing, post treatment of dyeing; Acid dyes and Basic dyes – Classification, Characteristics, trade names, Mechanism of dyeing, Nature of affinity on cellulose and protein fibres.

Unit III Mordant, Azo and Vat Dyes (12 Hours)
Mordant dyes – classification, methods of application; Metal complex dyes – types of bond formation between dye and various fibres; Azo dyes – Azoic coupling components, protective colloids, electrolytes, stabilisation of diazonium salts, principles and application; Vat dyes and solubilised vat dyes – classification, methods of application, trade names, principles and application, Stripping agents and correction of faulty dyeing.

Unit IV Other Dyes (12 Hours)
Chemistry involved in the production of Aniline black; Prussian black; Sulphur colours; phthalocyanines; Disperse dyes - classification based on chemical structure, properties and principles of application; Solvent soluble dyes - Nigrosines and Indulines; Cyanine dyes.

Unit V Colour and Brightening (12 Hours)
Fluorescent brightening agents (FBA) - Theory and applications; Identification and estimation of dyes on fibres; The action of light on dyes and dyed fibres; Mechanism of fading.
TEXT BOOKS:

REFERENCE BOOKS:
M.Sc. ANALYTICAL CHEMISTRY

SEMESTER II

EXTRA DISCIPLINARY COURSE

PAPER-VI- WATER CHEMISTRY

(60 Hours)

Unit I Introduction

Sources of Water; Physical and chemical characteristics of water; Water analysis; Potable water – WTO standard: uses of water

Unit II Water Pollution

Water pollution – wastewater generation - classification of water pollutants; constituents and characteristics of wastewater; measurement techniques – sampling, colour & odour, dissolved oxygen, BOD, COD, TOC, N & P, suspended solids and bacteriological measurements.

Unit III Wastewater Treatment

Wastewater treatment: Pretreatment – screening, grit removal and pre-chlorination; Primary treatment – settling and sedimentation; Secondary treatment – trickling filter process, activated sludge process; Aeration.

Unit IV Industrial Wastewater Treatment

Industrial wastewater treatment: Activated sludge treatment plants – mass balances, with and without recycle plants; Types of plants – single tank, contact stabilization, biosorption plants.

Biofilters: Hydraulic film diffusion, two component diffusion; Types of plants – trickling filters, submerged filters and rotating disc; removal of particulate organic matter.

Unit V Treatment Plants

Treatment plants for nitrification – mass balances, nitrifying plants and types of plants.

Treatment plant for denitrification - mass balances, denitrifying plants and types of plants; redox zones in the biomass.
M.SC. ANALYTICAL CHEMISTRY

TEXT BOOKS

REFERENCE BOOKS
Model question paper
(For the candidates admitted from 2012-2013 onwards) M.Sc/ M.A/ M.Com/
M.C.A Degree Examinations Second Semester

EDC - PAPER-I - INDUSTRIAL CHEMISTRY

Time: 3hrs Maximum: 75 marks

PART-A

Answer all questions, either (a) or (b)

1. a) Write an account of optical glass and photosensitive glass (Or)
 b) Explain the raw materials used in the manufacture of glass

2. a) Explain the theory of setting of cement (Or)
 b) What is Portland cement? Give its rough composition

3. a) How are dyes classified? (Or)
 b) What are paints? Discuss the essential components of a good paint.

4. a) Distinguish between natural fibres and synthetic fibres? (Or)
 b) Write notes on Rayon and Nylon.

5. a) i) What are essential oils? Give an example.
 ii) Give two examples for waxes. (Or)
 b) Explain the cleansing action of soaps.

PART-B (10x5-50 Marks)

Answer all questions, either (a) or (b)

6. a) How is glass manufactured? (Or)
 b) Discuss the manufacture and uses of ceramics.

7. a) How is cement manufactured? (Or)
 b) i) What are the types of cement (4)
 ii) Write an account of the factors affecting the quality of cement(6)

8. a) Give an account of the application of dyes (Or)
 b) i) How is paint manufactured? (6)
 ii) What are the qualities of good paint?-(4)

9. a) Write notes on synthetic fibres (Or)
 b) Describe in detail the applications of plastics.

10. a) i) How are waxes classified?(3)
 ii) Discuss the steps involved in the process of soap making(7) (Or)
 b) i) Distinguish between soups and detergents(6)
 i i) Write briefly about the various types of soaps.(4)
Model Question Paper
(For the candidate admitted from 2017-2018 onwards)
M.Sc. DEGREE Branch - IV (C) - Analytical Chemistry
First Semester- Core Paper - II
Inorganic Chemistry- I

Time : 3 hours Maximum : 75 marks

PART - A (5X5=25 Marks)
Answer all the questions

1) a) Briefly explain any one theory of Hardness - Softness of acid bases. (or)
 b) What are Phosphazenes? Give their formulae and shape.

2) a) Give preparation and structure of carboranes. (or)
 b) Explain the structure and preparation of hydroborate ion.

3) a) Explain mode of decay of radioactive substance. (or)
 b) Write a note on nuclear isomerism and nuclear cross section.

4) a) Discuss a nuclear transmutation and fission. (or)
 b) Write a note on stellar energy.

5) a) Write a note on cloud chamber method. (or)
 b) Explain G.m. counter.

PART - B (5X10=50 Marks)
Answer all the questions

6) a) Draw and explain the various silicate structure in detail. (or)
 b) Write briefly about the heteropoly acids of molybdenum and tungsten.

7) a) Write a note on metallocarboranes and metal clusters. (or)
 b) Give a short account of metal clusters.

8) a) Write a note on factors affecting stability of nuclei (or)
 b) Write a note on threshold energy and excitation functions.

9) a) Explain application of radioactive isotopes in agriculture and medicine (or)
 b) Explain
 i) isotopic dilution analysis
 ii) Neutron activation analysis

10) a) Discuss particle accelerators
 i) linear accelerator
 ii) Cyclotron (or)
 b) Explain synchrotron and Bevatron.
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER III
CORE VII - ANALYTICAL CHEMISTRY – I
[75 Hours]

UNIT I Conductometric Titrations
(15 Hours)

Conductometric titrations – General concept and basis of conductometric titrations, apparatus and measurement of conductivity, Applications of direct conductometric measurements.

High frequency methods – Theory, apparatus, merits of low and high frequency analysis (oscillometry), determination of non-ionic species in process control and zone detector.

Dielectrometry – Theory, methods, equipment and applications.

UNIT II Potentiometric Titrations
(15 Hours)

Bipotentiometry – Principle, instrumentation and applications.

UNIT III D.C. Polarography & Voltammetry
(15 Hours)

Polarography – Theory, apparatus, DME, diffusion and kinetic and catalytic currents, current – voltage curves for reversible and irrevrsible systems, qualitative and quantitative applications of polarography to organic and inorganic systems. Derivative polarography, Test polarography, Pulse polarography – Normal and derivative, square wave polarography and AC polarography.

Linear sweep and cyclic voltammetry, anodic and cathodic stripping voltammetry.

UNIT IV Amperometry
(15 Hours)

UNIT V Coulometric and Electrogravimetric Analysis (15 Hours)

Theory. Faraday’s laws, coulometers – types of macro and micro techniques, coulometric titrations, external and insitu generation, coulogravimetry and applications, Elementary aspects of chronocoulometry.

Electrogravimetry – Theory of electrogravimetry, order of deposition, over potential, polarization curves, constant potential and consecutive deposition, selective deposition, constant current deposition, assembly of electrode and deposition of complex ions.

Microelectrode deposition including radioactive metal ions. Autoelectrogravimetry, Principle and instrumentation, electrography and its applications.

TEXT BOOKS

REFERENCE BOOKS
UNIT I Basic Separation Technique – I (15 Hours)

General aspects of separation techniques – Role of separation technique in analysis, Classification choice of separation method distribution processes, discrete and continuous equilibria, distribution behaviour and chemical structure, errors resulting from separation process.

Extraction – Distribution law and derivation, solvents and their choice, techniques – batch and continuous, multiple extraction, column and their choice, extraction of solids and their applications.

Precipitation and crystallization – Theory and mechanism of fractional precipitation and crystallization, Variables and control of variables, type of precipitation, organic precipitation and their application.

UNIT II Chromatographic Techniques -I (15 Hours)

Thin Layer chromatography – Techniques and applications, Modified stationary phases. Ion – exchange chromatography – Techniques and applications Gas chromatography – Types and nature of stationary and mobile phase, solid supports and their choice, columns – packed, open and capillary, sampling methods instrumentation, detectors – types sensitivity, limits of detection operative principles of TCD, FID and ECD, Comparison of detectors temperature programming, derivative chromatography, hyphenated techniques with GSGC qualitative and quantitative applications.

UNIT III Chromatographic Techniques -II (15 Hours)

Gel permeation chromatography – Instrumentation, heterogeneity factor, determination of molecular weights - weight average and number average, analytical and industrial applications.

Liquid chromatography – High pressure liquid chromatography. Theory and equipment, type of pumps and their choice, types of columns, large scale separation, application in analytical chemistry and in industry.

New development in chromatography – Plasma chromatography, super critical fluid chromatography.
UNIT IV UV-Visible and Microwave Spectroscopy (15 Hours)

Absorption spectrometry – Beer Lambert's law, filter photometry, spectrophotometry – UV visible, photometric titrations, reaction rates, complex studies, Fluorometry, turbidimetry and nephelometry.

Microwave spectroscopy – Theory, instrumentation – source, monochromators, detectors, sample handling, qualitative analysis and quantitative applications

c) Green solvents: water, ionic liquids, supercritical carbon dioxide.
d) Solid state reactions: solid phase synthesis, solid supported synthesis

UNIT V Infra Red and Raman Spectroscopy (15 Hours)

Infra – red spectroscopy – Theory, instrumentation – source of monochromators, detectors, dispersive and non dispersive instruments, sample handling techniques, internal reflection spectroscopy, qualitative analysis and quantitative applications.

Raman spectroscopy – Theory, Instrumentation – source of radical detectors, application of Raman spectra to inorganic, organic and biological species, quantitative applications, Resonance Raman spectroscopy.

TEXT BOOKS

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER III

ELECTIVE PAPER - II

DATA TREATMENT & TITRIMETRIC ANALYSIS

(75 Hours)

UNIT I Treatment of Analytical Data (15 Hours)

Nature of quantitative measurements and treatment of data. Basic statistical concept-Frequency distribution, Average and measure of dispersion, Significance of Gaussian distribution curves, Null hypothesis, confidential interval of mean, Rejection data, student’s t, Q and F tests, Regression and correlation, quality control and control chart.

Objectives, sampling-size of sample handling, transfer and storage samples.

UNIT II Small Scale Manipulation and Chemical Equilibria (15 Hours)

Microchemical laboratory-Design, safety screen, fume chamber, heating, water supply, dry box/glove box, microbalance, quartz balance, fiber microgram balance.

Trace analysis in solution, Nature of trace analysis, scale of working sensitivity, sources of errors, Contamination control in trace analysis.

Activity concept, equilibrium constant and applications. Ionization constants of acids and bases.

Concept of pH, hydrolysis of salts, hydrolysis constant and degree of hydrolysis. Buffers-types, range and capacity. Dissociation of polyprotic acids, commonion effects, salt effect.

UNIT III Titrimetric Analysis I (15 Hours)

Homogeneous precipitation – Theory and applications of a few common gravimetric determinations (sulphate, chromate, oxalate and phosphate).

UNIT IV Titrimetric Analysis II (15 Hours)

Redox titrations – Redox potentials, theory and feasibility of redox titrations, calculation of potentials at different stages of titrations, redox indicators, their choice and application.

Complexometric titrations – Theory, stepwise and overall formation constants, titrations involving monodendate (Cl-, CN-) and multidendate ligands (EDTA). Metallochromic indicators – theory and choice. Masking and demasking and extractive methods. Direct, indirect (including substitution) titrations and applications.

UNIT V Computer Applications in Chemistry (15 Hours)

Input and Output statements, Transfer and control statements, programming in BASIC only for calculation of equilibrium constants, pH of a buffer, potentiometric titrations and standard deviation.

MS-Word, MS-Excel, MS-Power Point and Internet usage.

TEXT BOOKS
5. T.S.Ma and V. Horak, Microscale-Manipulations, John, Wiley and Sons, 1976.

REFERENCE BOOKS:
M.Sc. ANALYTICAL CHEMISTRY

SEMESTER III

ELECTIVE PAPER - III

OPTICAL METHODS AND THERMAL ANALYSIS

[75 Hours]

UNIT I Thermal and Magnetic Methods of Analysis (15 Hours)

DTA / DSC – Principle and instrumentation, Different techniques. Application to organic and inorganic compounds.

TGA – Principle, instrumentation of TGA curves, Application to organic and inorganic compounds.

Magneto chemical Analysis – Magnetic susceptibility and its measurements, Guoy’s, Quink’s, Curie’s and Ranking’s balances. Application to simple compounds, ranking’s transition metal complexes, Lanthanides and Actinides.

UNIT II Electron Spectroscopy (15 Hours)

Introduction, ESCA, X- ray photoelectron and electron impact spectroscopy – instrumentation, sample preparation and application.

X – ray Theory of generation, secondary fluorescence and X- ray spectroscopy, instrumentation and application to analysis of alloys, minerals and antiques.

Comparison with optical spectroscopy, X- ray absorption – theory and measurements, microradiology and its application to the analysis of alloys.

Auger electron spectroscopy – Theory, instrumentation and general applications.

UNIT III Optical and Reasonance Techniques (15 Hours)

Emission Techniques – Theory, techniques of excitation, electrodes and their shapes, flame emission and plasma emission spectrometry – instrumentation and applications.

Ion cyclotron resonance – Introduction, theory and techniques – analytical applications – analysis of gases and neutral compounds.

ORD and CD – Cotton effect – axial haloketone rule and Octant rule – conformation and configuration determination.
UNIT IV Microscopy (15 Hours)
Chemical microscopy – Microscope – Parts and optical path: Numerical aperture and significance. Techniques – Kofler’s hot stage microscope, fluorescence, polarizing, interference and phase microscopy, application and qualitative and quantitative study.

UNIT V Polarimetry & Refractometry (15 Hours)
Polarimetry – Theory and instrumentation, specific and molecular rotations, applications, spectropolarimetry.
Refractometry – Theory, instrumentation, specific and molecular refraction, Abbe, Pulfrich and immersion types, applications.
Light scattering – Theory of inter and intraparticular interferences, description of a simple scatterometer, determination of molecular weights.

TEXT BOOKS

REFERENCE BOOKS:
UNIT I 1H NMR Spectroscopy

UNIT II 13C NMR Spectroscopy

13C NMR spectroscopy – Comparison of 1H and 13C NMR, factors affecting intensity of signals, chemical shifts, Factors affecting the chemical shift. Broadband and off resonance decoupling MRI spectra. Hetero nuclear NMR basic (ideas). Applications of 13C NMR in qualitative and quantitative analysis.

UNIT III Electron Spin Resonance Spectroscopy

ESR : Line shapes and line width. The ‘g’ values – shift in g values. Factors affecting the magnitudes of g and A tensors in metal species – zero field splitting and Kramer's degeneracy – spectra of V(II), Mn(II), Be(II), Co(II), Ni(II) and Cu(II) complexes – applications of EPR to a few biological molecules containing Cu(II), Fe(II) and Fe(III) – John-Teller distortions in Cu (II) complexes.

UNIT IV Mass Spectra

Principles of mass spectrometry – cyclotron resonance analyzer and Fourier transform mass spectrometers.

UNIT V Mossbauer and NQR Spectroscopy

Principle – Doppler effect – isomer shift – electron – neutron hyperfine interactions, Quadrupole interactions and magnetic interactions, simple applications to Iron and Tin compounds.

M.Sc. Analytical Chemistry

TEXT BOOKS

REFERENCE BOOKS:
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER IV
ELECTIVE PAPER - IV - ANALYSIS OF MATERIALS
[75 Hours]

UNIT I Sampling (15 Hours)
Preparing the sample for analysis: The effect of sampling uncertainties, gross sample, determination of the size of the sample, analytical sample.
Sampling of solids – Preparation of laboratory sample from gross sample, moisture in the sample, sampling of gases and liquids.
Decomposition and dissolving the sample – Decomposition of sample by fluxes, wet digestion, dry ashing, combustion with oxygen, microwave decomposition.

UNIT II Biological Sample (15 Hours)
Composition of blood – collection and presentation of samples. Clinical analysis – Serum electrolytes, blood glucose, blood urea, nitrogen, uric acid, albumin, globulins, barbiturates, acid and alkaline phosphatases.
Drug analysis – Narcotics and dangerous drugs. Classification of drugs – screening by gas and thin layer chromatography and spectrophotometric measurements.

UNIT III Fertilizers, Pesticides, Soil and Water (15 Hours)
Fertilizer analysis : Analysis of nitrogen and mixed fertilizers.
Pesticides – Analysis of organophosphorous pesticides and their degradation products.
Soil moisture, pH, total nitrogen, phosphorous, silica, sulphur, manganese and other metals in soil.
Water and sewage analysis.

UNIT IV Industrial Samples (15 Hours)
Fuel and Gaseous fuels – sampling procedure, ultimate and proximate analysis, specific volatile index, ash content, caloricific value by bomb calorimeter, and junker's calorimeter.
Liquid fuels – Flash point, viscosity, carbon residue, aniline point, pour point etc.,
Gaseous fuels – Analysis of producer gas, water gas and industrial gases. Chemical and physical methods of analysis.
Ore and cement analysis – Oxides, sulphides and carbonate ores, one/examples of each cement, silicate and glass.

UNIT V Food and Food Additives (15 Hours)
Food analysis – Moisture, ash, crude, protein, fat crude, fibre, carbohydrates calcium, potassium, sodium and phosphate. Food adulteration, common adulterants in food, contamination of foodstuffs. Microscopic examination of foods for adulterants.
Chemical and instrumental analysis of food additives – Preservatives, Food colorants, antioxidants, sweeteners, stabilizers, thickeners, clarifying and bleaching agents.
M.SC. ANALYTICAL CHEMISTRY

TEXT BOOKS
2. G.D. Christan, Analytical Chemistry, J. Willey,

REFERENCE BOOKS:
1. J.H. Kennedy, Analytical Chemistry Principles and Techniques,
 W.B. Saunders.
M.Sc. ANALYTICAL CHEMISTRY
SEMESTER IV
CORE PRACTICAL - IV
ANALYTICAL CHEMISTRY PRACTICAL – I
(CONDUCTOMETRIC EXPERIMENTS)

1. Determination of equivalent conductance of a weak acid at different concentrations and verify Ostwald's dilution law and calculation of the dissociation constant of the acid.
2. Determination of equivalent conductivity of a strong electrolyte at different concentrations and examine the validity of the Onsager's theory as limiting law at high dilutions.
3. Conductometric titrations of a mixture of HCl and CH₃COOH against Sodium hydroxide.
4. Compare the relative strength of acetic acid and monochloroacetic acid by conductivity method.
5. Determination of the activity coefficient of an electrolyte at different molalities by emf measurements.
6. Determination of the dissociation constant of acetic acid by titrating it with sodium hydroxide using quinhydrone as an indicator electrode and calomel as a reference electrode.
7. Determination of the strength of a given solution of KCl using differential potentiometric titration technique.
8. Determination of the PH of the given solutions with the help of the indicators using buffer solutions and by colorimetric method.
9. Determination of the PH of a given solution by emf method using hydrogen electrode and quinhydrone electrode.
10. Determination of the formation constant of silver ammonia complex and stoichiometry of the complex potentiometrically.
11. Solubility and solubility products by emf method.
12. Determination of the activity coefficient of Zinc ions in the solution of 0.002M Zinc sulphate using Debye –Huckel Limiting law.
13. Determination of solubility product of Silver bromide and calculate its solubility in water and 0.1 M and 0.01 M KBrO₃ using Debye–Huckel limiting law.
14. Determination of the electrode potentials of Zn and Ag electrodes in 0.1 M and 0.001M solutions at 298 K and find the standard potentials for these electrodes and test the validity of Nernst equations.
15. Determination of Hardness of water by titrimetric method.
16. Determination of COD and BOD.
17. Determination of pH – pk₁ and pk₂ of dibasic acids (Oxalic acid)
18. Determination of E ½ potentials of metal ions by polarography.
I ORGANIC ESTIMATION
Estimation of the following organic compounds:
1. Phenol
2. Aniline
3. Methyl Ketone
4. Glucose
5. Iodine value of an oil
6. Saponification value of an oil

II EXTRACTION OF NATURAL PRODUCTS
1. Caffeine from tea leaves.
2. Citric acid from lemon.

III CHROMATOGRAPHIC SEPARATIONS
1. Column chromatography: separation of a mixture of ortho and para-Nitroanilines.
2. Thin layer – Chromatography: separation of a mixture of ortho and para – Nitroanilines.

IV Quantitative analysis of complex materials
A) Quantitative analysis:
Quantitative analysis of the following mixture
1. Iron and magnesium
2. Iron and nickel
3. Copper and nickel
4. Copper and Zinc

B) Analysis of Ores
1. Determination of percentage of calcium and magnesium in dolomite.
2. Determination of percentage of MnO2 in pyrolusite
3. Determination of percentage of lead in galena.

C) Analysis of Alloys
1. Determination of tin and lead in solder
2. Determination of copper and zinc in brass.
3. Determination of Chromium and nickel in stainless steel.
REFERENCE BOOKS:

M.Sc. ANALYTICAL CHEMISTRY

SEMESTER IV
CORE PRACTICAL - VI

ANALYTICAL CHEMISTRY PRACTICAL – III

I. CHROMATOGRAPHIC TECHNIQUES
1. Column chromatography – Separation of chlorophyll
2. Thin layer chromatography – Separation of cation and anions, dyes in ink.
3. Paper chromatography – Separation of cations
4. Ion-exchange chromatography – Separation of Zn and Mg Separation of Cd and Zn.
5. Ring – oven Technique – Separation of cations and inorganic complex.

II. FLAME PHOTOMETRY
1. Determination of sodium, potassium and calcium.
2. Determination of potassium in combined fertilizer.
3. Determination of calcium in wine.

III. NEPHELOMETRY
1. Determination of sulphate.
2. Determination of halides

IV. BIAMPEROMETRY & BIPOTENTIOMETRY
1. Iodine – hypot titration
2. Fe(II) vs. Ce (IV) titration
3. Estimation of nitrite
4. Determination of copper.

V POLARIMETRY
1. Study the inversion of cane sugar in presence of acid.

VI. SPECTROPHOTOMETRY
1. Determination of Iron/Cobalt.
2. Determination of dissociation constant of an indicator
3. Determination of binary mixture