DEGREE OF MASTER OF PHILOSOPHY
CHOICE BASED CREDIT SYSTEM

SYLLABUS FOR
M. PHIL. PHYSICS
(SEMESTER PATTERN)
(For Candidates admitted in the Colleges affiliated to Periyar University from 2017-2018 onwards)
REGULATIONS

FULL – TIME

1. ELIGIBILITY

Candidates who have qualified for post graduate degree of this University or any other University recognized by the Syndicate as equivalent thereto shall be eligible to register for the Degree of Master of Philosophy (M.Phil.) in their respective subject and undergo the prescribed course of study in an approved institution or department of this University.

Candidates who have qualified their post graduate degree on or after 1st January 1991 shall be required to have obtained a minimum of 55 % of marks in their respective postgraduate degree to become eligible to register for the Degree of Master of Philosophy (M.Phil.) and undergo the prescribed course of study in an approved institution or department of this University.

In the case of teachers (or) others registering for part-time registration, the minimum percentage of marks for registration is 50 %.

For the candidates belonging to SC/ST community and those who have qualified for the Master’s degree before 01.01.1991 the minimum eligibility marks shall be 50 % in their Master’s Degree.

2. DURATION

The duration of M.Phil., course shall extend over a period of one year from the commencement of the course.

3. COURSE OF STUDY

The course of study for M.Phil., degree shall consist of (a) Part-I comprising three written papers according to the Syllabus prescribed from time to time; and (b) Part-II Dissertation.

Part-I shall consist of Paper-I Research Methodology and Paper-II Advanced paper in the main subject. There shall also be a third paper which shall be the background paper relating to the proposed Dissertation conducted internally by the College/Departments.
COURSE OF STUDY AND SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Part</th>
<th>Title of the Paper</th>
<th>Credits</th>
<th>Internal</th>
<th>External</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Paper I Scientific Research and Methodology</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Paper II Advanced Physics</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>Paper III Guide Paper</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Dissertation and Viva-Voce</td>
<td>12</td>
<td>-</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>30</td>
<td>-</td>
<td>150</td>
<td>500</td>
</tr>
</tbody>
</table>

5. SCHEME OF EXAMINATIONS

Part I – Written Examination

The written examination of papers I, II and III shall be held at the end of the year. The duration for each paper shall be 3 hours carrying a maximum of 75 marks.

Paper III written examination will be conducted by the College/Departments and the marks obtained by the candidate along with the question paper and valued answer scripts shall be sent to the University 15 days before the commencement of the examinations of paper I and II.

The examiners will be appointed from the panel of four names of each paper (I and II) submitted by the College / Departments concerned. If one examiner awards a pass mark and the other fail mark then the paper will be valued by a third examiner whose award of marks will be final.

Part II – Dissertation

The exact title of the Dissertation shall an intimated within one month after the completion of the written examination. Candidates shall submit the Dissertation to the University through the Supervisor and Head of the Department at the end of the year from the commencement of the course which shall be valued by internal examiner (supervisor) and one external examiner appointed by the University from a panel of four names sent by the Supervisor through the Head of the Department / Principal at the time of submitting the dissertation.
The examiners who value the Dissertation shall report on the merit of candidates as “Highly Commended” (75 % and above) or “Commended” (50 % and above and below 75 %) or “Not Commended” (below 50 %).

If one examiner commends the Dissertation and the other examiner, does not commend, the Dissertation will be referred to a third examiner and the third valuation shall be final.

Submission or resubmission of the Dissertation will be allowed twice a year.

6 QUESTION PAPER PATTERN

Question paper pattern for Part-I Examinations:

- **Time**: 3 Hours
- **Maximum**: 75 Marks

Section – A : 5 x 5=25 Marks

(Answer all questions, Either or Type)

Section – B : 5x10=50 Marks

(Answer all questions, Either or Type)

Internal Marks: The internal marks will be awarded based on the following components.

- **Test**: 10 Marks
- **Term Paper**: 5 Marks
- **Seminar**: 5 Marks
- **Attendance**: 5 Marks

25 Marks

7. PASSING MINIMUM

A candidate shall be declared to have passed Part - I of the examination if he/she secured not less than 50 % of the marks in each paper including Paper III for which examination is conducted internally.
A candidate shall be declared to have passed Part – II of the examination if his / her dissertation is commended.

All other candidates shall be declared to have failed in the examination.

8. RESTRICTION IN NUMBER OF CHANCES

No candidate shall be permitted to reappear for the written examination in any paper on more than two occasions or to resubmit a Dissertation more than once. Candidates shall have to qualify for the degree passing all the written papers and dissertation within a period of three years from the date of commencement of the course.

9. CONFERMENT OF THE DEGREE

Candidates shall be eligible for the conferment of the M.Phil. Degree only after he/she is declared to have passed both the parts of the examinations as per the Regulations.

10. QUALIFICATIONS FOR RESEARCH GUIDE

Every candidate admitted into the M.Phil. degree shall be registered under a qualified and recognized guide in affiliated colleges / departments. The research guide shall guide the candidate throughout the research programme.

No teacher shall be recognized as a Supervisor unless he possesses Ph.D. degree or two years of PG teaching experience after qualifying for M.Phil. or M.Litt. Degree.

Only the postgraduate departments of affiliated colleges and departments of the University will be recognized for guiding the M.Phil. course, provided however, the Syndicate shall have the power to decide any other institutions of higher learning/research within the University area for conducting the M.Phil. course on merits.
REGULATIONS

PART – TIME

1. ELIGIBILITY

 i. Teacher candidates working in the affiliated colleges and whose qualifications are approved by the University.

 ii. Teacher candidates working in Polytechnics approved by the Director of Technical Education or in Higher Secondary Schools and High Schools approved by State Board or Central Board of Secondary Education or Educational Institutions of IAF (within Periyar University area) who possess a Master’s Degree. For the Master’s Degree qualified prior to 01.01.1991, no minimum marks is prescribed; but on or after 01.01.1991, a minimum of 55% of the marks is prescribed, provided that for the candidates belonging to SC/ST community a concession of 5% marks will be given in the minimum eligibility marks prescribed.

2. DURATION

 The course of study shall extend over a period of two years from the commencement of the course. The examinations for Part-I shall be taken at the end of the first year and Part-II Dissertation at the end of the second year.

3. REGULATION

 The Regulation governing the full-time M.Phil. course with regard to course of study, scheme of examinations, passing minimum and qualifications of research guide for conducting the M.Phil. course shall apply to part-time candidates also.

4. RESTRICTION IN NUMBER OF CHANCES

 No candidate shall be permitted to reappear for the written examination in any paper on more than two occasions or to resubmit a Dissertation more than once. Candidates shall have to qualify for the degree passing all the written papers and dissertation within a period of four years from the date of commencement of the course.
M.Phil. PHYSICS

PART I

PAPER I - SCIENTIFIC RESEARCH AND METHODOLOGY

UNIT I Method of Research

UNIT II Research Process

UNIT III Numerical Methods

UNIT IV Statistical Methods

UNIT V Programming in C

REFERENCE BOOKS:

M.Phil. PHYSICS
PART - I
PAPER-II- ADVANCED PHYSICS

UNIT I : Energy Sources

UNIT II : X-ray Diffraction

UNIT III : Lasers and Non Linear Optics

UNIT IV : Vibrational Spectroscopy

UNIT V : Crystal Growth and Thin Film Physics

M.Phil. Physics

REFERENCE BOOKS:

M.Phil. PHYSICS

PAPER III : GUIDE PAPER

OPTIONAL :

(a) Material Science
(b) Crystallography and Molecular Biophysics
(c) Crystal Physics
(d) Laser Physics
(e) Spectroscopy
(f) Non Linear Optics
(g) Thin Film Physics
(h) Energy Physics
(i) Nano Physics
SECTION – A (5x5=25)
Answer ALL questions

1. (a). Discuss briefly about synopsis writing. (Or)
 (b). Briefly discuss the multimedia techniques in paper presentations.

2. (a). Describe the Jacobian method for matrix diagonalisation. (Or)
 (b). State the formula and explain procedure for Runge Kutta method of fourth order.

3. (a). Explain briefly about Lagrangian interpolation formula. (Or)
 (b). Find the best fit values of 'a' and 'b' so that \(y=ax+b \) fits the data given below.

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
<td>1.8</td>
<td>3.3</td>
<td>4.5</td>
<td>6.3</td>
</tr>
</tbody>
</table>

4. (a). Differentiate between the constants and variables in C programming with suitable examples. (Or)
 (b). Write a simple program using logical operator.

5. (a). Describe string declaration and initialization with suitable example. (Or)
 (b). Write briefly about functions in C programming.

SECTION – B (5x10=50)
Answer ALL questions

6. (a). Explain the various steps involved in presenting a scientific seminar. (Or)
 (b). Explain in detail the steps involved in research methodology.

7. (a). Using Simpson's one third rule evaluate \(\int_1^x \exp(x) \, dx \) taking 4 interval.
 Compare the results with actual integral value. (Or)

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y = x \exp(x)</td>
<td>0</td>
<td>0.321</td>
<td>0.824</td>
<td>1.588</td>
<td>2.71</td>
</tr>
</tbody>
</table>

(b). State the procedure of Gauss – Jordan method and solve the following equations by the same method.
 \[10x + y + z =12; \quad 2x +10y + z =13; \quad x + y + 5z = 7 \]
8. (a). Using Newton’s forward interpolation formula, find the polynomial satisfying the following data. Hence evaluate y at x = 0.7 (Or)

<table>
<thead>
<tr>
<th>X</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

(b). Fit a second degree parabola to the following data taking 'x' as the independent variable.

9. (a). Discuss in detail the different operators in C programming. (Or)
(b). Brief the following with examples.
 i. Basic structure of a C program
 ii. Declaration of variables
 iii. Assigning values to the variable.

10. (a). What is an array? Explain in detail about declaring the initializing of two dimensional arrays with suitable example. (Or)
(b). Write a C - program for solving the following simultaneous equations \(ax + by = c \) and \(px + qy = r \).
1. (a). Write about the prospects of renewable energy sources. (Or)
 (b). Describe the principle of working of solar furnace.
2. (a). What are Miller indices? Explain the uses. (Or)
 (b). Write a note on X-ray sources.
3. (a). Give the basic principle of Lasers. (Or)
 (b). Write short notes on optical mixing.
4. (a). How would you determine the bond length of diatomic molecule. (Or)
 (b). Explain the significance of fluorescence spectroscopy.
5. (a). Describe the phenomenon of nucleation in crystal growth. (Or)
 (b). Explain the reactive sputtering method in thin film preparation.

SECTION – B (5x10=50)
Answer ALL questions
6. (a). Explain the photovoltaic principle. Discuss a basic photovoltaic system for power generation. (Or)
 (b). Write a note on:
 (i). Solar Pumping
 (ii). Solar Cooking.
7. (a). Discuss a rotating anode X-ray generator. (Or)
 (b). Describe the X-ray powder diffraction method.
8. (a). Explain:
 (i). He – Ne laser
 (b). Discuss second and higher order harmonic generations.
9. (a) Discuss the vibration spectra of a polyatomic molecule. Obtain the energy levels. (Or)
 (b). Explain how NMR finds applications in the structural determination. Illustrate your answer with specific examples.
10. (a). Describe in detail the Czochralski method to grow single crystal with a neat diagram. (Or)
 (b). Explain the preparation of thin films by chemical bath deposition method.