B.SC. MATHEMATICS MODEL QUESTION PAPER PATTERN

VECTOR ANALYSIS

Time: 3 Hours

Marks: 75

Section – A

Answer All Questions

- 1. If Ø (x, y, z) = $x^2 y + y^2 x + z^2$ then find $\nabla Ø$ at (1,1,1)
- 2. Find the unit normal to the Surface $xyz^2 = 1$ at (1,1,-1)
- 3. Define irrotational Vector.
- 4. Find the Value ∇ . \overline{r}
- 5. Prove that $\nabla .(\emptyset \ u) = \nabla \emptyset . \ u + \emptyset (\nabla . u)$
- 6. Find the Value of ∇ .(r \overline{r})
- 7. Define line Integral of a vector print Function
- 8. Show that $\int_{C} \nabla \emptyset$.dr=0 for any closed Curve C.
- 9. State Stoke's Theorem
- 10. Prove that $\int_{c} \mathbf{r} \cdot d\mathbf{r} = 0$

Section – B

Answer All Questions

11. a. Prove that i) $\bigtriangledown r^n = nr^{n-2} \overline{r}$ ii) $\bigtriangledown f(r) \propto r = 0$.

Or

b. Find the directional derivative of $\emptyset(x,y,z) = x^3 + y^3 + z^3$ at (1,-1,2) in the Direction of the Vector i+2j+k and find the Maximum directional derivative of the function.

12. a. Provethat

$$\bigtriangledown_{o} \left(\begin{array}{c} \frac{f(r)}{r} \\ \end{array} \right)$$

Or

- b. A field is of the form F = $(6xy+z^3)i + (3x^2-z)j + (3xz^2-y)k$ Show that \overline{F} is conservative field and find Ø such h that $\overline{F} = \nabla \emptyset$
- 13. a. Prove that $\overline{\checkmark}$. ($\overline{\checkmark} x \overline{F} \rightarrow = 0$

- b. Show that $\nabla 4 (e^r) = e^r + \frac{4}{r} e^r$.
- 14. a. Evaluate $\int_c F.dr$ Where F = $xyi+yz^2\,j+y^2\,zk$ from (0,0,0) to (1,1,1) along the curve x = t^2 , y = t^3 , z = t^4 .

Or

- b. Evaluate ∬F.nds Where F = Zi+xj+3y² zk and S is the Surface of the Cylinder x² + y²=16 included in the first octanct between z=0 and z=5.
- 15. a, If n is a unit normal drawn normal to any closed surface area S show that

$$\iint_{s} \overline{r.n}/r^{2} = \iiint dv/r^{2}$$

Or

b. Find the area between the parabola $y^4 = 4x$ and $x^2 = 4y$.

Section – C

- 16. Find the equation of the tangent plave and normal lime to the surface $xz^{2}+x^{2}y = z-1$ at (1,-3,2)
- 17. Find a,b,c such that F = (x+2y+az)I + (bx-3y-z)j + (4x+cy+2z)k is Irrotational, for theses values of a,b,c find its scalar potential function Ø

- 18. Prove that curlcurl $\bar{f} = \text{grad} (\text{div}\bar{F}) \sqrt{2}\bar{F}$
- 19. Evaluate $\int_c \bar{F}xdr$ along the curve x=cost, y=2sint, z=cost form t=0 to t = $\pi/2$; given $\bar{F} = 2x\bar{i}+y\bar{j}+z\bar{k}$.
- 20. Verify Gauss Divergence theorem for F = x²i+y²j+z²k.taken over the cube bounded by the planes x=0. x=1, y=0,y=1,z=0 and z=1

COMPLEX ANALYSIS

Time: 3 Hours

Marks: 75

Section – A

Answers All Questions

(10x2) = 20

- 1. Define limit of a function f(Z)
- 2. Prove that $u = x^3 3xy^2$ is a harmonic function
- 3. Define Bilinear Transformation
- 4. Find the fixed point for the transformation w = z/z-2
- 5. Define contour integral
- 6. Prove that $\int_{c} dz/z a = 2\pi I$ where C is $|z-a| = re^{i\Phi}$
- 7. Define Taylor Series
- 8. Expand $z-1/z^2$ about z=1 in Laurent's Serious
- 9. Find the order of the pole z=0 for $f(Z) = \frac{\sin Z}{z^4}$
- 10. Find the residue of the function $f(Z) = 1/z^3 (z+4)$ at the point z=0.

Section – B

Answer all Questions

11. a, Show that the functions

and not different able at the oligin.

Or

b. Find the analytic Function f(z) if its real part is $u(x,y) = e^x(x\cos y - y\sin y)$

12. a. Find the bilinear transformation which maps the z points –i, 0, i into the w points -1, i,1

Or

- b. Prove that a biliner transformation transform a circle into circle and inverse points into inverse points
- 13. a. State and prove Cauchy's Integral formulab. Verify cauchy's integral theorem for f(Z)=z² along the unit circle.
- 14. a. State and prove fundamental theorem of algebra,

Or

- b. Show that $f(z) = e^{(z-1/z)} = \infty \sum_{n=-\infty} a_n z^n$ where $a_n = 1/2\pi 2\pi \int_0 \cos(n\emptyset \sin\emptyset) d\emptyset$
- 15. a. State and prove residue theorem

or

b. Evaluate $\int_{0}^{2\Pi} d\emptyset/2 + \cos\emptyset$

Section – C

(3x10=30)

Answer any three.

- State and prove the necessary and sufficient condition for the function f(z) to be analytic.
- 17. Find the bilinear transformation which map $\text{Rez} \ge 0$ into $|w| \le 1$.
- 18. State and prove Cauchy's integral theorem
- 19. State and prove Laurent's theorem.
- 20. Evaluate $\infty \int_0 \cos(x^2 + a^2) dx$, m>0, a>0.

Skill Based Elective Course VI

C Programming – Praticals

Time: 3 Hours

Marks :60 Record :15 Practical :45

Part – A

(2x15=30)

Answer any two

- 1. Write a program to find the largest of given three numbers
- 2. Write a program to generate the Fibonacci Sequence
- 3. Write a program to find mean and standard deviation
- 4. Write a Program to find the Simple and compound interest

Part – B

(1x15=15)

- 1. Write a Program to find the roots of the equation by bijection method
- 2. Write a Program to solve the first order differential equation by Euler's method

Allied Mathematics – Practical's

Time: 3 Hours

Marks: 60

Answer any three (3x15=45)

1.a. Find the Characteristic equation of the matrix

b. Verify cayley Hamilton Theorem for the Given matrix

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

- 2.a. Find the nth derivative of 1/ax+b
 - b. If $y = \sin^{-1} x$, Prove that (1-x²) $y_2 xy_1 = 0$ and (1-x²) $y_{n+2} (2n+1) xy_{n+1} n^2 y_n = 0$

3.a. Verify Euler's Theorem for the given function

U= sin⁻¹ (x³ + y³ / \sqrt{x} + \sqrt{y})

- b. Verify that $\delta^2 u / \delta x \delta y = \delta^2 u / \delta x \delta y$, given that $u = \log (x^2 + y^2 / xy)$
- 4.a. Compute the divergent and curl of the vector $x^2i+y^2j+z^2k$ at (1,2-3)
- b. If $\overline{V} = \overline{wxr}$ where \overline{w} is a constants vector, prove that $\overline{W} = \frac{1}{2}$ cure \overline{V} (r is the Position vector)

5.a. Using Laplace Transform, solve

 $d^2y/dt^2 + 6dy/dt + 5y = e^{-2t}$

Given that y=0, dy/dt = 1 When t=0