
International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

ISSN: 2349-6363 306

A Survival Study for Software Test Suite Generation

using Derived Genetic Algorithm

V. Sangeetha

Department of Computer Science

Periyar University College of Arts & Science

Pappireddipatti, Dharmapuri, Tamilnadu, India

T. Ramasundaram

Department of Computer Science

Sri Vijay Vidyalaya College of Arts & Science

Nallampalli, Dharmapuri, Tamilnadu, India

Abstract- Software has evolved as an innovative solution for several applications. Unit test suites are

mainly used for increasing the software quality using the techniques like search-based software test.

Search-based testing generates the unit test suites automatically for object oriented code. Many testing

tools like unit testing, integrity testing, is redesigned to check the correctness of software results and to

produce the test suites with high coverage. However, performing specific test is impractical due to higher

execution time and less coverage capability. In this work, Search based Test Suite Generation using

Derived Genetic Algorithm (STSG-DGA) is designed to increase the coverage and to reduce the

redundancy for test suite generation. Initially, an initial population of randomly produced candidate

solutions is used as search operators. Then, the parent selection is carried out based on fitness function.

After that, reproduction is performed by crossover and mutation operation with probabilities. Finally,

fitness of population gets increased in DGA and the process gets repeated till the optimal solution is

found. Our research work helps to reduce execution time and computational complexity with minimum

redundancy for test suite generation.

Keywords- Software, Coverage, Test Suite Generation, Mutation, Crossover, Fitness, Derived Genetic

Algorithm

1. INTRODUCTION

Search-based software engineering has been applied to different tasks in software development.

Software testing is one of the most successful one. The key task in software testing where search-based

techniques suited is generation of unit tests in automatic manner. In search-based software testing, the testing

problem is taken as a search problem. The main process is to generate the group of test cases where the code

coverage gets increased. A code coverage criterion explains the structural features of system under test (SUT)

by test suite.

High Level Hyper-Heuristic (HHH) strategy (Kamal Z.Zamil, Basem Y. Alkazemi, & Graham Kendall,

2016)applied four low level meta-heuristics with Teaching Learning based Optimization, Global

Neighbourhood Algorithm, Particle Swarm Optimization and Cuckoo Search Algorithm to address t-way test

suite generation issues. An automatic software test data generation gets trapped in local optimal solution

resulting in population aging. Though the strategy reduces GA-based software testing merits, cost gets

increased. Memetic Algorithm for Test Suite Optimization extended Genetic Algorithm (Gordon Fraser,

Andrea, & Phil Mc Minn, 2015) using many local search operators. These operators were designed to optimize

the primitive values that allow the search for test cases to function in effective manner. Memetic Algorithm for

Test Suite Optimization was more beneficial for object-oriented software that handled whole test suites.

However, test suite generation with high coverage lack knowledge about test suite to optimal values during run

time. Parallel Genetic Algorithm based on Spark (PGAS) (Rong-Zhi Qi, CCF, Zhi-Jian Wang, & Shui-Yan Li,

2016) study specific coverage goals for finding better traditional approach. But, PGAS results in the increased

execution cost.

A two-phase parallelization algorithm called Spark (Andrea Arcuri, & Gordon Fraser, 2014) based on

parallel computing platform solved heavy computation challenge with test suite size. The algorithm employed

fitness evaluation and genetic operation for pair wise test suite generation. For providing the validity and

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

307

usefulness of whole test suite approach, search-based test generation was not evolved. Regenerate Genetic

Algorithm (RGA) (Shunkun Yang, Tianlong Man, Jiaqi Xu, Fuping Zeng , & Ke Li, 2016) defined population

aging in software testing with local optimal solution through triggering regeneration. The algorithm proved

more efficient with better search efficiency, test coverage and reduces the test case frequency. Evolutionary

whole test suite generation (EVOSUITE) (Gordon Fraser, & Andrea Arcuri, 2013)used an evolutionary

technique than measuring the test case individually using fitness function. EVOSUITE with randomly generated

test suite is selected as an initial population. Genetic Algorithm was applied for optimizing the selected coverage

criterion in test suite generation. But, coverage optimization capability of test suite remained unsolved.

Complete controllable test suite for distributed testing (Robert M. Hierons , 2015) performed the

mapping of Finite State Machine (FSM) to partial FMS guaranteeing the distributed testing. The method used

the state counting to test multiport deterministic FSM for distributed testing. However, restricting testing to

controllable test cases remained major concern. Software testing with quality-assurance technique generates

effective test suites but computationally expensive. Automated product-line test-suite generation method

(Johannes Burdek, Malte Lochau, Stefan Bauregger, Andreas Holzer, Alexander von Rhein, Sven Apel, & Dirk

Beyer, 2015) reuses the information for different test goals with multi-goal test coverage assurance. The method

used similarity information with the systematic reuse of information between the test cases for ordering the test

goals. A new strategy (Bestoun S. Ahmed, Taib Sh. Abdulsamad, & Moayad Y. Potrus, 2015) generate the

combinatorial test suite by cuckoo search ideas. Cuckoo Search is employed for the implementation to design

the optimized combinatorial sets. However, the coverage is not at required level.

This paper is organized as follows: Section II discusses related works of software test suite generation,

Section III discusses existing test suite generation techniques, Section IV explains about Search based Test Suite

Generation using Derived Genetic Algorithm, Section V identifies the possible comparison between them,

Section VI discusses the existing techniques limitations and future works and Section VII concludes the paper.

The key area of research is given to increase the coverage capability and to reduce the redundancy by DGA.

2. RELATED WORKS

A search-based EVOSUITE test generation tool (Gordon Fraser, & Andrea Arcuri, 2015) combines

two optimizations. It eliminates the redundant test executions on mutants through observing the state infection

conditions. Test suite generation is used to increase the test suites with higher number of mutants. But, the

computational complexity is higher. A new fitness function of meta-heuristic algorithms is designed (Le Thi My

Hanh, Nguyen Thanh Binh, & Khuat Thanh Tung, 2016) for the test data generation depending on mutation

method using Simulink model. The test suites generated efficiency addresses the criterion with counterexample-

based test generation and random generation approach (Gregory Gay, Matt Staats, Michael Whalen, & Mats P.

E. Heimdahl, 2015). But, the coverage capability is not at required level. An efficient plan is designed (Akram

Kalaee, & Vahid Rafe, 2016) using reduced ordered binary decision diagram (ROBDD) for minimum test suite

generation with high coverage. Particle swarm optimization (PSO) algorithm is used to choose the optimal test

with pair wise combinations. But, the redundancy is not reduced.

A framework for binary search is designed by (Sami Beydeda, & Volker Gruhn, 2003) with path-

oriented test case generation. In addition, it also introduced the binary search-based test case generation

(BINTEST) algorithm. The lack of knowledge is in cost analysis and factors are linked with the maintenance of

GUI-based tests in industrial practice. Visual GUI Testing carried out by (Emil Alegroth, Robert Feldt, & Pirjo

Kolstrom, 2016) obtains the data about the maintenance costs and feasibility. Whole test suite generation (Jose

Miguel Rojas, Mattia Vivanti, Andrea Arcuri, & Gordon Frase, 2016) manages all the test suites with all

objectives simultaneously. The coverage attained in whole test suite generation is higher than targeting

individual coverage objectives. But, the execution time is higher.

ACO algorithm is redefined into the discrete version (Chengying Mao, Lichuan Xiao, Xinxin Yu, &

Jinfu Chen, 2015) for the test data generation in structural testing. The technical roadmap of ACO algorithm and

test process is designed. But, the effectiveness was not increased. A mathematical model for test data generation

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

308

is designed for multiple paths coverage. A multi-population genetic algorithm is introduced (Xiangjuan Yao, &

Dunwei Gong, 2014) with individual sharing for addressing the established model. An on-the-fly algorithm

creates test suite with all feasible coverage items. The algorithm(Anders Hessel, & Paul Pettersson, 2007)

presents the traces with path fulfilling items without redundant paths. However, the redundancy is not reduced.

A Fuzzy Expert System is designed (Chin-Yu Huang, Chung-Sheng Chen, & Chia-En Lai, 2016) into test suite

reduction techniques. But, the execution time is not minimized.

3. EXISTING SOFTWARE TEST SUITE GENERATION TECHNIQUES

Testing is the method of estimating the system functionality to identify the gaps, errors, missing

necessities and other features. Testing is the important one for software development process though it is manual

and costly. Software development process guarantees sound software operation. A test design method chooses

the test cases by sampling mechanism. The process optimizes test cases to attain optimum test suite through

removing the time and cost of testing phase in software development. Software testing is the activity of

executing the system for identifying the failures.

3.1. Memetic Algorithm for Whole Test Suite Generation

Search-based testing uses optimization methods like Genetic Algorithms for test case generation. The

test case generation issues are complicated than procedural code. For generating the tests with all branches in

class, the class is instantiated and method call sequence is not generated for placing the object in particular state.

The method needs objects as parameters or primitive values like integers and strings. EVOSUITE tool utilizes

Genetic Algorithms to generate whole test suite with number of test cases.

A Memetic Algorithm (MA) combines both the global and local search where the individuals of

population in global search algorithm have chance for local search development. With Lamarckian-style

learning, local development by individuals is determined in genotype and sends to next generation. Local search

uses the values in one particular test case of test suite. When local search is used in particular test case,

EVOSUITE iterates over statement series from last to first. Every statement uses local search based on

statement types like primitive statements, method statements, constructor statements, field statements and array

statements. Fitness value evaluation after local search operator needs the partial fitness evaluation. EVOSUITE

collects last execution trace with every test case through which the fitness value are computed. When a test case

is changed in search process by regular mutation or by local search, the cached execution trace is removed.

Fitness calculation for local search needs one test from test suite to execute. With Baldwinian learning, the

development is determined with fitness value while genotype was unchanged. Baldwin effect explains the

individuals with more potential for improvement during evolution and smoothes the fitness landscape. MAs for

test generation were determined for procedural code test generation in different areas like combinatorial testing.

3.2. Tabu Search Hyper-Heuristic Strategy for t-way Test Suite Generation

T-way testing is a method to generate test suite for identifying the interaction faults. The generation of

t-way test suite is NP hard problem. The t-way plans are fast and generate optimal solutions with the restrictions

on configurations and interaction strength. Computational t-way plans remove the restrictions for arbitrary

configurations at cost of non-optimal solution. The hyper-heuristic based strategy called High Level Hyper-

Heuristic (HHH) is designed for combinatorial t-way test suite generation. HHH uses Tabu Search (TS) as high

level meta-heuristic (HLH) and controls with four low level meta-heuristics (LLH) namely, Comprising

Teaching Learning Based Optimization (TLBO), Global Neighbourhood Algorithm (GNA), Particle Swarm

Optimization (PSO), and Cuckoo Search Algorithm (CS) as described in the Figure 1.

 HHH is hyper-heuristic based strategy used for solving the t-way test suite generation issues. A new

hyper-heuristic approach for the meta-heuristic selection and acceptance mechanism are based on three

operators (i.e. improvement, diversification and intensification) that integrated into the Tabu Search HLH. The

improvement operator checks for the improvements in objective function. Diversification operator measures

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

309

how diverse the current and the previously generated solution are against the population of potential candidate

solutions. An intensification operator evaluates the current and earlier generated solution against the population.

Figure 1. High Level Hyper-Heuristic (HHH) Strategy

3.3. Parallel Genetic Algorithm Based on Spark (PGAS) for Pairwise Test Suite Generation

Pairwise testing reduces the combination explosion exhaustive testing issues. Pairwise testing is an

efficient testing plan for systems. A parallel genetic algorithm depending on Spark termed PGAS increases the

pairwise test suite generation process. Parallelism increases the performance and quality of solutions. GA is

parallelizable as the fitness evaluation and evolution process contains the genetic operation iteration in parallel.

Spark is a fast cluster computing platform for managing the GA parallelization.

Figure 2. RDD Lineage Graph for Phase 1 and Phase 2

Domain Barrier

N
o

n
-d

o
m

ai
n

fe
ed

b
ac

k
 o

n
 q

u
al

it
y

o
f

so
lu

ti
o

n

Meta-Heuristic Selection

and Acceptance

Mechanism

LLH- LowLevel Meta-Heuristic

Tabu Search

Algorithm

 Teaching Learning based Optimization

 Global Neighbourhood Optimization

 Particle Swarm Optimization

 Cuckoo Search Algorithm

Potential Solutions

HLH- High Level Meta-Heuristic

Initial Population

PopulationRDD

FitnessRDD

Result

Parallelize ()

Collect ()

Map

(assessFitness())

Population with Fitness

PopulationRDD

EvolutionRDD

BestIndividualRDD

Result

Parallelize ()

mapPartitions(_evolut

ion())

mapget(best())

Map (_getBest())

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

310

Spark explained about two phase parallelization, namely fitness evaluation parallelization and genetic

operation parallelization. The former one estimates the individual’s fitness value in parallel. The latter one

divides the population into different slices that developed independently.

While generating the test suite with pairwise testing, input SUT is modelled as parameters with one or

more assumption values. Pairwise testing selects a subset from complete set of parameter value mixture where

all parameter value pairs are in a subset. The selected parameter value mixture generates test case for SUT.

Spark depends on master slave distributed computing model suitable for global and distributed model of GA

parallelization. Spark is used to parallelize GA and execute two-phase parallelization algorithms, namely fitness

evaluation and genetic operation for increasing the GA effectiveness in searching near-minimum test suite.

From Figure 2, fitness evaluation parallelization is used to parallelize the initial population into

resilient distributed dataset (RDD) and calculate individual’s fitness value on many workers. Initial population is

parallelized into population RDD by parallelize() technique of Spark. After that, a map(_assessFitness())

transformation changes the population RDD into fitness RDD with individual and fitness value pairs. The

function assessFitness() calculates the individual’s fitness value with driver program to run on the cluster. The

collect() gathers the pairs and send to the driver.

4. SEARCH BASED TEST SUITE GENERATION USING DERIVED GENETIC

ALGORITHM (STSG-DGA)

Search based Test Suite Generation using Derived Genetic Algorithm (STSG-DGA) is designed to

increase the coverage and to reduce the redundancy for test suite generation. In STSG-DGA, Derived Genetic

algorithm (DGA) is used for finding the optimal solution with minimum redundancy and higher coverage. The

derived genetic algorithm is a method for randomized search by addressing the optimization issues. Initially, an

initial population of randomly produced candidate solutions is used as search operators in DGA. Then, the

parent selection is carried out based on fitness function. After that, reproduction is performed by crossover and

mutation operation with probabilities. Finally, fitness of population gets increased in DGA and the process gets

repeated till the optimal solution is found. Figure 3 explained the flow process of derived genetic algorithm.

3.1. Population Initialization

 In Initialization process, many candidate solutions are created arbitrarily and generation starts with

iteration ‘0’.

3.2. Fitness function

The fitness function is used for increasing the coverage. Fitness function to generate the tests for

branch coverage combines the approach-level and the branch distance.

3.3. Crossover and Mutation

The new candidate solutions end the global search through the equivalent crossover operator. Two

chromosomes are taken for finding the two offspring. Mutation helps in restoring lost candidate solution in the

population. In mutation, a candidate is chosen from the chromosome attained in past generation and gene value

is varied for creating the new offspring.

< 𝑎1 , 𝑎2 , 𝑎3,… . . 𝑎𝑝 … . . 𝑎𝑛 >

Randomly chosen value

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

311

If the new offspring is not an optimal solution, it is removed and the iterations get repeated till it

obtains the optimal solution. The mutation operation comes out from local optima findings and search for the

global optima.

5. COMPARISON OF SOFTWARE TEST SUITE GENERATION USING ACO

AND GENETIC ALGORITHM USING DIFFERENT TECHNIQUES

In order to compare the software test suite generation using different techniques, number of test cases is

taken to perform this experiment. Various parameters are employed to increase the coverage capability with

minimal execution time for software test suite generation.

Figure 3. Flowchart for Derived Genetic Algorithm Process

3.1. Coverage

 Coverage is a measure of test suite quality that denotes how much of program’s behaviour is used by

execution sets. Coverage is used in testing process to evaluate test suites and to generate test suites. It is

measured in terms of percentage (%).

Table 1 explains the coverage for different number of test cases in the range of 10 to 100.The coverage

comparison takes place on existing Memetic Algorithm, HHH strategy, PGAS and proposed STSG-DGA.

Figure 4measures the coverage of proposed STSG-DGA and existing techniques. Coverage of proposed STSG-

DGA is comparatively higher than that of HHH strategy, Memetic Algorithm and PGAS. Research in proposed

STSG-DGA has 8.13% higher coverage than Memetic Algorithm, 20.32% higher coverage than HHH strategy

and 34.30%higher coverage than PGAS.

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

312

Table : 1 Tabulation of Coverage

Number of test

cases (Number)

Coverage (%)

STSG-DGA Memetic Algorithm HHH Strategy PGAS

10 80 Memetic Algorithm 65 55

20 81 72 66 57

30 83 75 68 59

40 85 76 69 61

50 86 78 71 64

60 87 80 73 67

70 89 81 75 69

80 91 83 77 71

90 93 85 79 73

100 95 86 81 75

Figure 4. Measurement of Coverage

3.2. Execution time

 Execution time is defined as the time taken for the software test suite generation process. Execution time

is the difference of ending time and starting time of software test suite generation as formulated in equation 1. It

is measured in terms of milliseconds (ms). When lower the execution time, the method is said to be more

efficient.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑚𝑒 = 𝐸𝑛𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (1)

Table 2 explains the execution time for different number of test cases in the range of 10 to 100. The

execution time comparison takes place on existing Memetic Algorithm, HHH strategy, PGAS and proposed

STSG-DGA.Figure5 measures the execution time of proposed STSG-DGA and existing techniques. Execution

time of proposed STSG-DGA is comparatively lesser than that of Memetic Algorithm, HHH strategy and

PGAS. The current research in proposed STSG-DGA takes 22.10% lesser execution time than Memetic

Algorithm, 38.74% lesser execution time than HHH strategy and 44.01% lesser execution time than PGAS.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

C
o

v
er

a
g

e
(%

)

Number of test cases (Number))

STSG-

DGA

Memetic

Algorithm

HHH

Strategy

PGAS

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

313

Table : 2 Tabulation of Execution Time

Number of test

cases (Number)

Execution Time (ms)

STSG-DGA Memetic Algorithm HHH Strategy PGAS

10 10 15 21 25

20 12 18 24 27

30 15 20 27 30

40 17 22 29 32

50 19 25 32 35

60 22 28 35 38

70 25 31 38 41

80 28 33 41 43

90 31 36 43 46

100 34 39 47 51

Figure 5. Measurement of Execution Time

3.3. Computational complexity

 Computational complexity is defined as the time taken to collect the number of test cases for forming

the test suites as given below in the equation 2. It is measured in terms of milliseconds (ms).

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑇𝑖𝑚𝑒(𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡) (2)

Table : 3 Tabulation of Computational Complexity

Number of test

cases (Number)

Computational Complexity (ms)

STSG-DGA Memetic Algorithm HHH Strategy PGAS

10 9 12 19 23

20 11 15 21 26

30 13 19 24 29

40 16 23 27 31

50 18 26 30 34

60 21 28 31 36

70 23 29 33 38

80 24 32 35 41

90 26 35 37 43

100 29 38 41 45

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Number of test cases (Number)

STSG-DGA

Memetic

Algorithm

HHH

Strategy

PGAS

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

314

Figure 6. Measurement of Computational complexity

When lower the computational complexity, the method is said to be more efficient. Table 3 explains

the computational complexity for different number of test cases in the range of 10 to 100. The computational

complexity comparison takes place on existing Memetic Algorithm, HHH strategy, PGAS and proposed STSG-

DGA.Figure6 measures the computational complexity of proposed STSG-DGA and existing techniques.

Computational complexity of proposed STSG-DGA is comparatively lesser than that of HHH strategy, PGAS

and Memetic Algorithm. Research in proposed STSG-DGA has 26.45 % lesser computational complexity than

Memetic Algorithm, 37.98% lesser complexity than HHH strategy and 46.68% lesser computational complexity

than PGAS.

6. DISCUSSION AND LIMITATION OF SOFTWARE TEST SUITE

GENERATION USING DIFFERENT TECHNIQUES

HHH strategy manages the deficiency of each individual algorithm. HHH strategy increases the

diversification and intensification of searching process by LLHs depending on their earlier performances. Meta-

heuristic based strategies explain the effective solution for attaining good quality solutions.The set of LLHs

failed to implement for each problem area. The complete statistical analysis with all the strategies is not

performed. An in-depth analysis using PGAS was carried out to learn whether the specific coverage goals. But,

redundancy problem in PGAS results in higher execution cost.

Memetic Algorithms combines the local search on test cases and primitive values in global search for

test suite. Local search is carried out on numerical inputs to string inputs, arrays, and objects. Memetic

algorithm designed the comprehensive approach for object oriented software for managing the test data like

strings and arrays. However, local search on test suites is not enhanced and it is unable to achieve higher

coverage.

3.1. Future Direction

The future direction of software test suite generation is to further increase the coverage capability and

reduce the redundancy using ant colony optimization algorithm.

7. CONCLUSION

The comparison of different techniques for software test suite generation is carried out. The execution

time of test suite generation gets minimized using Memetic Algorithm. In Memetic Algorithm, local search on

test suites is not enhanced and so it is not able to achieve higher coverage. PGAS studies whether there were

specific coverage goals. But, the PGAS results in the increased execution time. A Search based Test Suite

Generation using Derived Genetic Algorithm (STSG-DGA) is designed to increase the coverage and to reduce

the redundancy for test suite generation. Initial population of randomly produced candidate solutions is used as

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
a

l
C

o
m

p
le

x
it

y

(m
s)

Number of test cases (Number)

STSG-DGA

Memetic

Algorithm

HHH

Strategy

PGAS

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

315

search operators and the parent selection is carried out based on fitness function. The reproduction is performed

by crossover and mutation operation with probabilities. Fitness of population gets increased and the process gets

repeated till the optimal solution is identified. Finally from the result, the research work mainly focus on

improving the coverage capability and reducing the redundancy for software test suite generation. The

simulation is carried out for different parameters such as computational complexity, coverage and execution

time. The results show that STSG-DGA offers better performance with an improvement of coverage by 20 %

and reduces the execution time by 34 % compared to existing methods.

REFERENCES

Akram Kalaee, & Vahid Rafe. (2016). An Optimal Solution for Test Case Generation using ROBDD Graph and

PSO Algorithm. Wiley Online Publications, 32 (7), 2263–2279.

Anders Hessel, & Paul Pettersson. (2007). A Global Algorithm for Model-Based Test Suite Generation.

Electronic Notes in Theoretical Computer Science, Elsevier, 190 (2), 47-59.

Andrea Arcuri, & Gordon Fraser. (2014). On the Effectiveness of Whole Test Suite Generation. Search-Based

Software Engineering,Springer, 8636, 1-15.

Bestoun S. Ahmed, Taib Sh. Abdulsamad, & Moayad Y. Potrus. (2015). Achievement of Minimized

Combinatorial Test Suite for Configuration-Aware Software Functional Testing Using the Cuckoo Search

Algorithm. Information and Software Technology, Elsevier, 66, 13-29.

Chengying Mao, Lichuan Xiao, Xinxin Yu, & Jinfu Chen. (2015). Adapting ant colony optimization to generate

test data for software structural testing. Swarm and Evolutionary Computation, Elsevier, 20, 23–36.

Chin-Yu Huang, Chung-Sheng Chen, & Chia-En Lai. (2016). Evaluation and analysis of incorporating Fuzzy

Expert System approach into test suite reduction. Information and Software Technology, Elsevier, 79, 79–

105.

Emil Alegroth, Robert Feldt, & Pirjo Kolstrom. (2016). Maintenance of automated test suites in industry: An

empirical study on Visual GUI Testing. Information and Software Technology, Elsevier, 73, 66–80.

Gordon Fraser, & Andrea Arcuri. (2015). Achieving scalable mutation-based generation of whole test suites.

Empirical Software Engineering, Springer, 20 (3), 783–812.

Gordon Fraser, & Andrea Arcuri. (2013). Whole Test Suite Generation. IEEE Transactions on Software

Engineering, 39 (2), 276 – 291.

Gordon Fraser, Andrea, & Phil Mc Minn. (2015). A MemeticAlgorithm for whole test suite generation. Journal

of Systems and Software, Elsevier, 103, 311-327.

Gregory Gay, Matt Staats, Michael Whalen, & Mats P. E. Heimdahl. (2015). The Risks of Coverage-Directed

Test Case Generation. IEEE Transactions on Software Engineering, 41 (8), 803-819.

Johannes Burdek, Malte Lochau, Stefan Bauregger, Andreas Holzer, Alexander von Rhein, Sven Apel, & Dirk

Beyer. (2015). Facilitating Reuse in Multi-goal Test-Suite Generation for Software Product Lines.

Fundamental Approaches to Software Engineering, 9033, 84-99.

Jose Miguel Rojas, Mattia Vivanti, Andrea Arcuri, & Gordon Frase. (2016). A detailed investigation of the

effectiveness of whole test suite generation. Empirical Software Engineering, Springer , 1–42.

Kamal Z.Zamil, Basem Y. Alkazemi, & Graham Kendall. (2016). A Tabu Search hyper-heuristicstrategy for t-

way test suite generation. Applied Soft Somputing, Elsevier, 44, 57-74.

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 4, March 2017

316

Le Thi My Hanh, Nguyen Thanh Binh, & Khuat Thanh Tung. (2016). A Novel Fitness Function of

Metaheuristic Algorithms for Test Data Generation for Simulink Models based on Mutation Analysis.

Journal of Systems and Software, Elsevier, 120, 17-30.

Robert M. Hierons. (2015). Generating Complete Controllable Test Suites for Distributed Testing. IEEE

Transactions on Software Engineering, 41 (3), 279-293.

Rong-Zhi Qi, CCF, Zhi-Jian Wang, & Shui-Yan Li. (2016). A Parallel Genetic Algorithm Based on Spark for

Pairwise Test Suite Generation. Journal of Computer Science and Technology, 31 (2), 417–427.

Sami Beydeda, & Volker Gruhn. (2003). Test Case Generation According to the Binary Search Strategy.

Computer and Information Sciences (ISCIS), Springer, 2869, 1000-1007.

Shunkun Yang, Tianlong Man, Jiaqi Xu, Fuping Zeng, & Ke Li. (2016). RGA: A lightweight and effective

regeneration genetic algorithm for coverage-oriented software test data generation. Information and

Software Technology, Elsevier, 76.

Xiangjuan Yao, & Dunwei Gong. (2014). Genetic Algorithm-Based Test Data Generation for Multiple Paths via

Individual Sharing. Computational Intelligence and Neuroscience, Hindawi Publishing Corporation, 2014,

1-12.

