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Abstract- Software reliability is a probability of software system to function under operating conditions 

over period of time. Software reliability concentrates on prediction of residual faults, estimation of failure 

intensity, reliability and cost. Software faults causes due to the software failures generated through the 

developmental process of software. Software system failures have large drawbacks on time and resources 

for recovery. A software system failure is predictable and large attention is given to software system 

failure prediction.However, the probability of failure estimation remained unsolved. The research work is 

carried out to perform the fast prediction of software failures through Genetic-based Bayesian model for 

improving the true positive rate. 
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1. INTRODUCTION 

Failure analysis techniques classify the dependability actions of operational systems in industrial 

sectors like aerospace and automotive. Failure techniques  identifies the  system  failure  modes,  failure causes,  

occurrence prevention  and increases the  future  system  dependability. Failure analysis gathers the event logs 

and system-generated files during operations. Software system failures have large drawbacks on time and 

resources for recovery. An efficient forecasting for software system failure is predictable and increasing the 

attention to the software system failure prediction. The technologies are used in software systems from GUIs to 

distributed one. Network communication frameworks are highly complex whose behavior is determined by 

incoming events called as Event-Driven Software (EDS). The software errors solving in EDS is the failure 

because of the complex network structure. 

This paper is organized as follows: Section 2 discusses reviews on software fault prediction techniques, 

Section 3 describes the existing software fault prediction techniques in gene model, Section 4 identifies the 

possible comparison between them, Section 5 explains the limitations and Section 6 concludes the paper, key 

areas of research is given as to perform the fast prediction of the software failures through Genetic-based 

Bayesian model for improving the true positive rate. 

2. LITERATURE SURVEY 

A Rule Based Logging (RBL) approach (Marcello Cinque D. C., 2012) is used for analyzing the 

software failures to improve recall and precision rate. The scheme leverages artifacts created at system design 

time and designed rule set for formalizing the provision of logging instructions inside the source code. RBL 

approach improved detection capability of log and the analysis was carried out with recall and precision. But the 

approach was proved to be inefficient when service was invoked with bad parameters. Recovery from software 

failures caused by Mandel bugs and recovery process was presented (Michael Grottke, 2015). An analytical 

model fixes software failures by Mandel bugs depending on systematic mean time recovery with numerical and 

parametric sensitivity analysis. Though analysis was efficient with mean time to recovery, failure causes 

remained unaddressed.   

Linguistic values of software metrics in fuzzy inference system (Subhashis Chatterjee, 2016) was used 

for fault prediction in software through phase analysis. A fuzzy rule based algorithm identifies both the input 
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and output metrics. Characterizing Monitoring techniques depending on Fault Injection (CM-FI) method 

(Marcello Cinque, 2016)calculates the precision and recall. It also evaluated the dissimilarity of data generated 

upon failures. Empirical Bayes Software Reliability (EBSR) model (Barraza, 2015) was used to calculate the 

mean time failures in software testing. EBSR model calculated failure frequency up to a given time interval 

towards estimating the probability of failure appearance during the next time interval.  The estimate was made 

using mixed Poisson model and Probability Density Function to evaluate the reliability rate. However, the 

estimate of the probability of failure remained unsolved.  

Relative Defect Proneness (Mark D. Syer, 2015) was analyzed by survival analysis modeling effect to 

study the influence of size defects for guaranteeing the size-defect relationship. The impact of modeling effect 

with discrete time scale measured the observations at particular points in particular time interval. It also 

guarantees the size-defect relationship where defect density peaks are to be addressed. An integrated approach 

called Random Indexing (RI) and Support Vector Machines (SVMs) (Ilenia Fronza, 2013)predicted the software 

failures depending on log files that lead to classification of non-failures. The RI model symbolizes the sequences 

where every operation was classified with its context. SVMs were applied to resultant RI value for classifying 

the failures or non-failures. But, the true positive rate is not at required level. 

Event Driven Web Application Testing (EDWAT) process (Elahe Habibi, 2015) addresses the six stage 

process to overcome Event Driven Software (EDS) testing challenges. EDWAT applied Structural Division 

method to break the application into different sections. Followed by this, graphs were created in the second 

stage. From the resulting graphs, the mutated graphs were obtained. With mutated graphs, the coverage criteria 

were chosen to create the test paths for longer sequences creation by merging event sequences. 

Model Based Mutation Testing (MBMT) (Fevzi Belli, 2015) fixed the single events issues and operated 

on sequences of events through changing the morphology. K-Sequent Right Regular Grammar was introduced 

for efficient representation of relation between events sequences and single events. Though the cost 

effectiveness of model was proved, cost factor with software failure prediction was not addressed. A new 

failure prediction method is introduced (Roberto Baldoni, 2012) for mission critical distributed systems with 

distinctive features. Complex Event Processing (CEP) and Hidden Markov Models (HMM) are joined to 

examine the failures symptoms in form of anomalous conditions. But, the prediction accuracy is not at required 

level. A fracture principle is designed (Dae-Young Kim, 2016) with micro-mechanics void model to ductile 

fracture model of AZ31B magnesium alloy sheet. McClintock fracture model is a fracture principle for 

magnesium alloy sheet with shear deformation effects to original model. But, the reliability rate is not 

enhanced. 

Least squares support vector machines (LSSVM) are mainly used (Changxing Zhu, 2015) for solving 

the complex nonlinear issues. A LSSVM-based rock failure principle mainly examines the deformation of 

circular tunnel lacking function form. However, the true positive rate is not higher. The fracture mechanics 

approach and intrinsic defect concept are combined (Ben Hassine, 2014) to increase the failure prediction rate. 

By Ethylene–Propylene–Diene Monomer (EPDM), the average molar mass of active chains is employed as the 

indicator of macromolecular network degradation. But the reliability is not improved. 

A multi-step fuzzy bridged refinement domain adaptation algorithm (Vahid Behbood, 2015) uses the 

similarity ideas for changing the labels of target cases predicted by shift-unaware model. It improves the labels 

by the instances same as the target instance. The designed algorithm functions on data and reprocess the labels 

in shift-unaware prediction mode. The practical applicability of predictive models is used (Manjula Gandhi 

Selvaraj, 2015) and demonstrated the models in project to predict the system testing defects. The model helps to 

minimize the occurrence of residual defects. However, the software prediction time is not reduced. 

Evidence relating to probability of failure is identified with evidence relating to the probability of fault-

freeness in Bayesian framework (Lorenzo Strigini, 2013). The probability is used for increasing the reliability 

predictions in spite of the complexity of stating prior probability distributions. The machine learning techniques 

are used (Arunima Jaiswal, 2016) for software reliability prediction and compute the software reliability 

prediction depending on selected performance principle. The match distribution curve method (Ping Jiang, 
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2014) was introduced to calculate the failure probability in Weibull distribution. A method is introduced to 

calculate the failure probability for Weibull distribution through the concavity or convexity. The failure 

probability was computed using Bayesian approach. A new methodology (Houssany. S, 2012) designed 

calculates the real cache sensitivity and finds the exact failure rate. The methodology is used for observing the 

cache accesses and needs the microprocessor simulator. But, the precision is not increased. 

Three improved weighted-combinations are weighted arithmetic, weighted geometric and weighted 

harmonic combinations. For addressing the proper weights for model combinations, enhanced genetic 

algorithms (EGAs) are designed (Chao-Jung Hsu, 2014) with many operators into weighted assignments. A 

software reliability model (Hellmich, 2016) includes the operational profile of software. An instantaneous 

software failure rate is based on number of remaining faults and state of software system in Markov process. 

Statistical inference is carried out through linear filtering by innovative method and martingale theory. 

However, the failure prediction is not carried out in efficient manner. 

A technique (Julio Fernandez-Ceniceros, 2014) is designed for increasing the performance of soft 

computing meta models and predicts the failure of steel bolted links. The parameters of meta models are 

adjusted using optimization depending on genetic algorithms in training process. The method comprises the 

selection of relevant input features and minimizes the complexity. T-stub bolted connection authenticates the 

meta models with better prediction accuracy. A method predicts software failures in subsequent agile sprints and 

attained the analytical and statistical methods. Analytics-driven testing (Feras A. Batarseh, 2015) predicts errors 

and their locations. It is carried out by calculating MTBF for software components. Forecasting regression 

model is designed for calculating the software system failures. But, the probability of the software prediction is 

not enhanced. 

3. SOFTWARE FAILURE PREDICTION TECHNIQUES 

Software bug analysis has common theme in many IT project implementations. The key objective is to 

minimize the impact and costs of bugs in software development projects through avoiding the introduction of 

bugs, and by improving the bug removal in development stage. The bug analysis leads to the guidelines and 

practices ranging from test case for designing the root cause analysis, checklists, programming and debugging 

performances. 

Software reliability models are stochastic processes that establish the metrics on the failure detection 

process like MTBF and MTTF or number of remaining failures at any time. The metrics estimate the software 

development and testing processes for allocating the testing resources or for forecasting the release time. The 

feature of failure detection process describes the decreasing rate as testing time progresses. Many software 

reliability models were discussed for increasing the software the reliability growth models. 

3.1. Direct Monitoring Techniques in Software Systems 

The target software system use monitoring techniques to assess. The System under Test (SUT) is used 

with fault load and workload. The fault load includes the software fault that denotes the common programming 

mistakes in real software systems. The workload is distinctive operational profile for SUT. The execution of 

SUT based on the fault load and workload enables the failures into SUT. It is essential to measure level of direct 

monitoring methods by SUT to report failure existence through the fault load. With this idea, Monitoring 

technique under test (MUT) is carried out. The precision and recall of MUT is calculated. MUT has ability for 

monitoring the data on failure existence and the dissimilarity of data are created across many failures.  

Fault load has collection of software faults established in the source code of software systems. The 

faults belong to the well-consolidated orthogonal defect classification(ODC). Fault types are used and extended 

ODC classes for practical injection purposes. Every fault of fault load is inserted into SUT. SUT is implemented 

to trigger the fault and to increase the failure occurrence. The workload is SUT dependent and failed to vary 

across the faults emulate. A general classification classifies the failures induced in SUT. It is classified as crash, 

silent, erratic and no failure. In crash failure, unexpected termination reviews the software that is deal located by 
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operating system. In silent failure, SUT is awake and the output/functionality is not presented in expected 

timeout. The expected timeout is presented through fault-free runs of system. For Erratic failure, exceptional 

conditions and errors failed to result in crash or silent failures. No failure manifestation is monitored during the 

experiment where the injected fault is failed to activate. An experiment model is used to gather the data 

generated by MUTs. In every experiment, one fault belong to the fault load is inserted into SUT. SUT with 

workload and monitoring data by MUTs are gathered.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Assessment Approach 

Figure 1 explains the step process used for all experiment. The execution of experiments is 

computerized and managed by controller program. The controller inserts the faults, stops SUT and reboots to 

guarantee the similar initial conditions for all experiments. In Experiment setup, one fault from the fault load is 

introduced in SUT. The patch file created by SAFE tool is controlled by controller to source code of SUT. The 

SUT gets compiled and initiated. During the workload activation, SUT is executed with workload. The 

workload uses SUT for fault triggering and activating the MUTs for many error conditions.  

In data collection and experiment finalization, monitoring data created by MUT are saved in file in case 

of workload completion or predefined timeout expiration. After saving the files with generated data by MUTs 

for subsequent analysis, the SUT is returned, files are cleaned and the machines are rebooted before the next 

experiment. The controller finds occurrence of failure upon experiment completion. Controller examines the 

operating system-level data execution and workload-level data to establish failure type in adopted failure model. 

The output of experiment includes fault type induced in SUT, failure type and files with monitoring data created 

by every MUT.  

3.2. Fuzzy Rule based Algorithm for estimation 

Software metrics computes properties and requirement of software and software development process 

for attaining higher productivity and software quality. When the failure data is not present in software 

development, software metrics is an essential one in fault prediction. The linguistic values of software metrics 

are used as an input of fuzzy rule based fault prediction model. The software metrics are called as an input 

metrics. There are two kinds of metrics, namely process metrics and product metrics. Process metrics increases 
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the software development process and preservation. Product metrics increase the quality of different system 

component. The software metrics used in requirement phase are called as requirement metric. 

Fuzzy inference system connects an input space to output space by fuzzy logic. Fuzzy inference engine 

includes the membership function, fuzzy Max–Min operator and ‘if–then’ rules. The output variable requires the 

defuzzification after processing the inference engine to attain the crisp set from fuzzy set. ‘if–then’ rule based 

model is used for fault prediction in early phase of software life cycle. The linguistic values of top ranked 

reliability related software metrics, metrics and target reliability are taken as input to predict total number of 

faults. The designed model comprises five parts, namely software metrics selection, fuzzy profile and 

membership function, inclusion of target reliability, fuzzy rule base development algorithm, fuzzy inference 

system process and total number of faults prediction in the software. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fuzzy Rule Based Algorithm for Software Faults Estimation 

Figure 2 explained the fuzzy rule based algorithm for software fault estimation. Software failure during 

the operation results in loss of economy or human lives. It is essential to fix target reliability for software in 

development process. The reliability is not same for software like real time control systems with high reliability 

than simple application software. The development cost is higher for attaining high target reliability. The 

complete set of input variables generates many fuzzy rules. Fuzzy inference process connects all fuzzy input sets 

to fuzzy output set as fuzzy ‘Max–Min’ operator. Fuzzy ‘if–then’ rule is used for the fuzzy inference process. 

Many faults in software are occurred in development phase. The faults are based on software metric condition at 

software development process. The condition of metrics is represented by linguistic value on ordinal scale. 

3.3. Morphology Model for Event-Based Testing 

Testing is a user-centric quality assurance method depending on test cases with test inputs and 

predictable test behaviors. A test uses the training of system under consideration (SUC) by test case. SUC 

exceeds the test value on test input and expected behavior is created. A set of test cases is termed as test 

set/suite. It is created and performed in target environment of SUC or an environment similar to the target 

environment. SUC is preferred to system under test (SUT) with both model and implementation. The model 

morphology is classified by length and contextual relation of event sequences. Through changing the sequence 

length, scalability of approach gets changed by generating equivalent model series from original one. The model 

utilization differs principally from the existing ones that create many kinds of models for many views. 
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4. PERFORMANCE ANALYSIS OF SOFTWARE FAILURE PREDICTION 

TECHNIQUES 

In order to compare the software failure prediction using different techniques, number of test cases is 

taken to perform the experiment. Various parameters are used for software failure prediction. 

4.1. Software Failure Identification Time 

Software failure identification time is defined as time taken to identify the software failure. It is also 

defined as the difference of ending time and starting time for software failure identification. It is measured in 

terms of milliseconds. The software failure identification time is calculated by using equation 1. When the 

software failure identification time is lesser, the method is said to be efficient. 

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐼𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐸𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑓𝑎𝑢𝑙𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛     (1) 

 

Table : 1 Tabulation of Software Failure Identification Time 

Number of 

Test cases 

(Number) 

Software Failure Identification Time (ms) 

Direct Monitoring 

Techniques 

Fuzzy Rule 

based Algorithm 

Morphology 

Model 

5 19 15 21 

10 22 18 24 

15 25 21 26 

20 28 23 29 

25 31 24 32 

30 34 27 35 

35 37 31 38 

 

 Table 1 explains the software failure identification time comparison for different number of test cases 

in the range of 5 to 35. The software failure identification time comparison takes place on existing Direct 

Monitoring techniques, Fuzzy Rule based Algorithm and Morphology Model. Figure 3 describes the software 

failure identification time comparison of existing techniques.  As the number of test cases increases, software 

failure identification time gets increased automatically. The experiment shows that Fuzzy Rule based Algorithm 

consumes less software failure identification time than Direct Monitoring Techniques and Morphology Model. 

Research in Fuzzy Rule based Algorithm consumes 23.44% lesser software failure identification time when 

compared to Direct Monitoring Techniques and consumes 29.8% lesser software failure identification time 

when compared with Morphology Model. 

4.1. True Positive Rate 

True positive rate is defined as the ratio of number of test cases where the software faults are correctly 

predicted to the total number of test cases. It is measured in terms of percentage (%).The true positive rate is 

calculated by using equation 2. When the true positive rate is higher, the method is more efficient to be. 

 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒𝑠  𝑤𝑕𝑒𝑟𝑒  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒𝑠  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑒𝑠𝑡  𝑐𝑎𝑠𝑒𝑠
           (2) 

 

Table 2 explains the true positive rate comparison for different number of test cases in the range of 5 to 

35. The true positive rate comparison takes place on existing Direct Monitoring techniques, Fuzzy Rule based 

Algorithm and Morphology Model. 
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Figure 3. Measurement of Software Failure Identification Time 

Table : 2 Tabulation of True Positive Rate 

Number of 

Test cases 

(Number) 

True Positive Rate (%) 

Direct 

Monitorin

g 

Technique

s 

Fuzzy Rule 

based 

Algorithm 

Morphology 

Model 

5 79 65 74 

10 81 68 76 

15 84 71 78 

20 87 74 82 

25 89 77 85 

30 91 80 87 

35 93 82 90 

 

Figure 4 describes the true positive rate comparison of existing techniques. As the number of test cases 

increases, true positive rate gets increased automatically. The experiment shows that Direct Monitoring 

Techniques increases the true positive rate when compared with Fuzzy Rule based Algorithm and Morphology 

Model. Research in Direct Monitoring Techniques has 14.5% higher true positive rate when compared to Fuzzy 

Rule based Algorithm and has 5.35% higher true positive rate when compared with Morphology Model. 
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Figure 4. Measurement of True Positive Rate 
 

4.2. Reliability Rate 

Reliability rate of a software system is a measurement about how well it provides the services with the 

user’s expectation. It is measured in terms of percentage (%). When many software failures occurred, the system 

is said to be less reliable. 

 
Table : 3 Tabulation of Reliability Rate 

Number of 

Test cases 

(Number) 

Reliability rate (%) 

Direct 

Monitorin

g 

Technique

s 

Fuzzy Rule 

based 

Algorithm 

Morphology 

Model 

5 65 71 84 

10 67 74 86 

15 69 77 89 

20 72 79 91 

25 75 82 93 

30 78 85 95 

35 81 88 96 

 

Table 3 explains the reliability rate comparison for different number of test cases in the range of 5 to 

35. The reliability rate comparison takes place on existing Fuzzy Rule based Algorithm, Direct Monitoring 

techniques and Morphology Model. 
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Figure 5. Measurement of Reliability Rate 

Figure 5 describes the reliability rate comparison of existing techniques. As the number of test cases 

increases, reliability rate gets increased automatically. The experiment shows that Morphology Model increases 

the reliability rate when compared with Fuzzy Rule based Algorithm and Direct Monitoring Techniques. 

Research in Morphology Model has 20.1% higher reliability rate when compared to Fuzzy Rule based 

Algorithm and has 12.3% higher reliability rate when compared with Direct Monitoring Techniques. 

5. DISCUSSION ON LIMITATION OF SOFTWARE FAILURE PREDICTION 

TECHNIQUES 

Monitoring technique is used in software system based on fault injection approach through measuring 

accuracy and recall. The method aimed the failure analysis with reporting capability and many techniques by 

test. Monitoring techniques in two software systems comprises communication middleware and arrival manager. 

Direct monitoring techniques is used by event logging, assertion checking and source code instrumentation 

techniques. Though, indirect monitoring techniques failed to explore monitoring software system and increase 

software failure.  

The fuzzy rule based inference system is designed with linguistic values of software metrics to forecast 

the total amount of faults in development phase. The value of metrics and target reliability is taken as input for 

fuzzy rule base model for the fault prediction. For optimizing the testing effort, cost and schedule required 

software development process. The value of software metrics is not taken for the reliability of fixed faults. 

Fuzzy inference system is complex to define the prediction of software faults. An event- based and model-based 

mutation testing approach changes the grammar model to morphologically create many models. Morphology 

model performs the mutants and multiple mutants. The different morphology models allow systematic 

generation of mutants and increases the set of fault models. The different hierarchy and communication 

modeling features of particular systems are not considered. Morphology model failed to use with higher 

semantic using generalization of grammar transformation. 

5.1. Future Direction 

The future direction of the software failure prediction is to perform the fast prediction of software 

failures through gene model with better true positive rate. Hybrid gene model can be used to further increase the 

performance of the failure prediction and reduce the software failure identification time. In addition, Bayesian 
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model can also be used for calculating the probability of failure occurrence in the software in effective manner. 

In order to increase the prediction rate, the support vector machine (SVM) classifier is to be used which 

increases the failure prediction rate reliability rate in the software. 

6. CONCLUSION 

In this paper, survival study is taken for software failure prediction through gene model. Indirect 

monitoring techniques failed to explore monitoring software system and increase software failure. The 

conventional software defect prediction models predicted the occurrence but not when the occurrence appeared. 

The wide range of experiments on existing techniques calculates the comparative results of the various software 

failure prediction and its limitations. Finally from the limitation identified from the existing works, further 

research work can be carried out with higher true positive rate while predicting the software faults with help of 

gene model. In addition, software reliability is enhanced when the fault in software system is predicted at earlier 

stage. 
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