
 International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

ISSN: 2349-6363

 130

An Experimental Investigation on Combinatorial

Testing with Proficient Constraints

M. Bharathi
Assistant Professor

Department of Computer Science

Periyar University College

Pennagaram, TamilNadu

e-mail : abinovharshiniset@gmail.com

V. Sangeetha
Assistant Professor

Department of Computer Science

Periyar University College

Pappireddipatty, TamilNadu.

e-mail: sangee759@gmail.com

Abstract- Combinatorial testing is concentrated on pinpointing errors and faults arise owing to the

interaction of altered parameters of software. On every occasion our processes have manifold variables

that may intermingle with each other, we use combinatorial analysis. The variables may derive from

diversity of sources such as dissimilar operating system, peripherals, and altered databases or from a

network. In combinatorial testing, the assignment is to attest that distinct combinations of variables are

controlled correctly by the system. Combinatorial methods aid to decrease the cost and increase the

efficiency of software testing in numerous applications. Combinatorial testing delivers an enhanced way

to shield all the thinkable combinations with improved swapping between cost and time. Pairwise testing

is a most familiar test planning technique. Due to resource constraints, it is nearly always impossible to

exhaustively test all of these combinations of parameter values. In this paper we propose an approach to

generate test cases for pairwise testing by applying and prioritizing input parameter and their

corresponding values to be selected and also providing solution for the constraint handling between

parameters and values and removing invalid test cases and evaluate the results of 100% coverage with

specified constraints.

Keywords - combinatorial testing, pairwise testing, constraint handling, test case generation

I. INTRODUCTION

A. Generation of Test cases

A test engineer uses set of variables or conditions to discover either a system under persuade the

test for functioning properly. These test cases are helpful to find the requirements in the software design. Formal

or informal tests conducted in the requirements phase are called the beginning point of generation of tests. It

plays a vital role to categorize the input domain to be developed. Formal or informal requirements are there.

There is lot of requirement technique presented in the black box strategy [1].

B. Testing methods

Test cases are developed via a variety of test techniques to accomplish more effective testing.

Software can be tested in two ways as in the figure 1. They are:

(i) White box testing and

(ii) Black box testing

White box testing is a testing strategy with the information of internal structure and coding inside

the program. It is considered as a security testing. Black box testing is a testing strategy based on output

requirements and without knowledge of internal structure and coding inside the program. Depending on how

tests are generated, a technique could be called as a black box or white box technique. Black box testing is

divided into three types

(i) Usage based

(ii) Fault based

1. Random testing

In random testing, test cases are preferred randomly from a quantity of uniform distribution

without exploiting information from the specification or previously chosen test cases.

mailto:abinovharshiniset@gmail.com
mailto:sangee759@gmail.com

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

134

2. Partition testing

The input space of the test object may be separated into subsets depend on that all points in the

identical subset result in a related behavior from test object. Equivalence partitioning, category partitioning and

domain testing are belongs to partition testing.

Figure 1. Classification of Testing

3. Equivalence Partitioning (EP)

The input domain data is separated into equivalence data classes in equivalence partitioning testing

technique. The utmost requirements are sheltered to reduce the total number of test cases in the method. For

instance, if you have to test for an input box containing numbers from 1 to 1000 then there is no need to write

1000 test cases for all 1000 valid input numbers plus other test cases for invalid data. This test case can be

divided into three sets of input data called classes. Pick a single value range from 1 to 1000 as a valid test case.

If you select other values between 1 and 1000 then result is same. If you select any value below 1 or above

1000, as an invalid input data test case. Equivalence partitioning uses smallest amount test cases to cover

maximum requirements.

4. Boundary Value Analysis (BVA)

Boundary vale analysis technique is used to discover errors at boundaries instead of finding in

centre of input domain. For example, test cases with test data accurately as the input boundaries of input domain

(values 1 and 1000).Test data with values below the edge of input domain (values 0 and 999). Test data with

values above the edge of input domain (values 2 and 1001). Boundary value analysis is called as a part of stress

and negative testing.

5. Category Partition Method (CPM)

Category partition method is a specification-based testing developed by Ostrand and Balcer. It

helps to produce test cases by refining the functional specification of a program into test specifications. This

method consists of the following steps:

Testing

Black Box

Testing
White Box

Testing

Equivalence Partitioning

Boundary Value Analysis

Combinatorial Testing

 Category Partition Method

API

Code Coverage

Mutation Testing

Structural Testing

Basis Path Testing

Loop Testing

Usage Based Fault Based Error Based

Random testing

Statistical testing

Fault injection

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

135

1. Decompose the functional specification into functional units that can be tested separately.

2. Identify the explicit input parameter and environment conditions.

3. Find categories (major properties or characteristics) of information that characterize each

parameter and environment condition.

4. Partition each category into choices which include all the different kind of values that are possible

for that category.

5. Determine the constraints among the choices of different categories.

6. Write the test specification which is a list of categories, choices and constraints in a predefined

format using the test specification language.

7. Use a generator to produce test frames from the test specification.

8. For each generated test frame, create a test case by selecting a single element from each choice in

that test frame.

Table I. Comparative study of random and partitioning testing

Researcher Investigation Result

Duran and Ntafos et al.,
Based on certain conditions, random testing can be as effective as

partition testing

Hamlet and Taylor et al.,
Duran and Ntfos model was unrealistic because the overall failure

probability was too high

Gutjahr et al.,
Partition testing is more effective than random testing under realistic

model.

Reid and yin, Lebne-Dengel, and

Malayia et al.,
Random testing was less effective than partition testing methods.

The paper is structured as follows: Section II describes the background of combinatorial testing.

Section III describes combinatorial testing techniques. Section IV describes our proposed approach of

generation of test cases with constraints and removes invalid test cases and executes the test cases. Finally,

Section V presents conclusion and a sketch for future work.

II. BACK GROUND

A. Combinatorial testing

Many software systems are highly configurable. It is usually infeasible to test all the possible

configurations. To overcome this problem, Combinatorial Testing (CT) Techniques (Figure 2) have been

developed specifically for such systems. Combinatorial methods aid to decrease the cost and increase the

efficiency of software testing in numerous applications as in table II. CT is more efficient and effective compare

with random testing. Also CT is an effective failure detection method for many types of software systems. CT

which generates test groups by selecting values for each individual input parameters and by combining these

parameter values. For a system with p parameters, each of which has v values, the number of all possible

combinations of values of these parameters is v
p

[2]. Pairwise testing is a most familiar test planning technique.

But investigations of actual failures in a number of software and systems show that pairwise testing may not be

sufficient so high strength CT (t-way for t>2) may be desired. Due to resource constraints, it is nearly always

impossible to exhaustively test all of these combinations of parameter values. Thus, a strategy is needed to select

a subset of these combinations. One such strategy, called t-way testing, requires every combination of any t

parameter values to be covered by at least one test, where t is referred to as the strength of coverage and usually

takes a small value. The notation of t-way testing can reduce the number of tests [2] For example, a system of 3

parameters that have 7 values each requires 7
3
 tests for exhaustive testing. But it requires 49 for 2-way in

pairwise testing. We can consider each combination of parameter values to represent one possible interaction

among these parameters. However, testing has constraints on the combination of parameter values. As a result

some combinations of parameter values are invalid. In this paper we propose an approach to generate test cases

for pairwise testing by applying and prioritizing input parameter and their corresponding values to be selected

and also providing solution for the constraint handling between parameters and values.

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

136

Figure 2. Combinatorial Testing Approaches

1. Configuration Testing

The process of testing a system beneath development on machines which have various

combinations of hardware and software is Configuration testing. For instance, telecommunications software

may be configured to function with dissimilar types of call (local, STD, ISD), billing (caller, phone card, 800),

access (ISDN, VOIP, PBX), and hubs for billing (Windows Server, Linux/MySQL, Oracle). With all

combinations of these, the software must work properly, so a distinct test suite could be functional to all

pairwise combinations of these four major configuration items. Configuration coverage is the most developed

form of combinatorial testing.

2. Input parameter testing

Some type of input will be processed even though an application has no configuration options. For

an instance, there are 10 ways to alter some text to be highlighted in a word processing application: subscript,

superscript, underline, bold, italic, emboss, shadow, strikethrough, small caps, or all caps. These modification

settings receive as an input by the Font-processing function within the application must process the input and

alter the text on the screen suitably. Some of the options are combined like bold and small caps, but some are

unable to coexist like subscript and superscript. For the font-processing function work properly for all valid

combinations of these input settings requires a systematic testing. There are 2
10

 = 1,024 possible combinations

with 10 binary inputs. Base on the empirical analysis reported above shows that failures appear to involve a little

number of parameters, and that testing all 3-way combinations may detect 90% or more of bugs. Testing that

detects better than 90% of bugs may be a cost-effective choice for a word processing application but we require

making sure that all 3way combinations of values are tested. So the test suite is created to cover all 3-way

combinations known as a covering array [1].

B. Test Generation using combinatorial designs

 There are three steps to generate test case using combinatorial designs as in the figure 3.

1. Build a model,

2. Generate a combinatorial design and

3. Generate tests.

If test cases are to be generated then the process starts with a model of the input space. The

application environment is modeled when test configurations are to be generated. The modeling of input space

or environment is not rip-off.

 Factors & c Combinatorial

 Levels object

Figure 3. Generation of Test Cases using Combinatorial Designs

In the second step, the modeling of input to a combinatorial design generates combinatorial object

which is an array of factors and levels.

C. Generation of combinatorial object

There are several procedures used to generate combinatorial object.

Combinatorial

Testing

Configuration Testing Input Parameter Testing

Model the input

space/test

environment

Generate

combinatorial

design

Generate

test set

Generate test

configuration

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

137

1. Fault Model : In fault model, test inputs and configurations issued certain type of faults when

certain combination of t>1 input values which causes the program entered into invalid state. A t-

way interaction fault occurs due to the interaction of two factors.

2. Fault Vectors : A vector consisting of specific values or levels of each factor is known as a run. A

run is considered a fault vector if a test derived from fault triggers.

Table II . Applications of combinatorial testing

3. Latin squares : Latin squares are used to generate less factor combinations. A Latin square of order

t is t X t matrix of t-symbols. no symbols appears more than once in a row or a column.

4. Mutually Orthogonal Latin Squares : Two Latin squares are considered mutually orthogonal if the

matrix obtained by juxtaposing the two has unique elements.

5. Binary factors : A factor is considered binary if it can assume one of the two possible values. Each

factor combination selected will generate at least one test input or test configuration. The process of

selecting a subset of combinations from the complete set, suppose a program to be tested requires

three inputs, one parallel to each input variable. Each variable can take only one of two distinct

values.

6. Multi-Valued Factors : Test configurations are constructed from one or more factors where each

factor assumes a value from a set containing more than two values.

7. Orthogonal Arrays : If each parameter value appears the identical number of times in the test suite

then the property of orthogonal array is that they are balanced.

8. Covering Arrays : If each parameter value appears at least once but not essentially the identical

number of times in the test suite then the property of orthogonal array is that they are not balanced.

Year Name of the tester Applications Methodology

2016
Rick Kuhn, Raghu Kacker, Larry

Feldman, Greg Witte [3]

Testing for cybersecurity and

reliability
combinatorial testing

2016 Rick Kuhn, Raghu Kacker [4]
To build navigation graphs for

dynamic web applications
combinatorial testing

2015
Hagar, J. D., Wissink, T. L., Kuhn,

D. R., & Kacker, R. N. [5]
Testing with large organizations combinatorial testing

2013 Hopcroft et al.,
To find maximum matching in

bipartitie graph
combinatorial testing

2011 Alizadeh et al.,
Interior point methods in semi-

definite programming
combinatorial testing

2010 S Oster et al., Software product lines combinatorial testing

2008 Zhzng et al., Intelligent information Processing combinatorial testing

2007 Lei et al., [6] Concurrent Programs combinatorial testing

2003 Xu et al.,
Configuration testing and browser

testing
combinatorial testing

2002 Burr and Young et al., Testing the email system with AETG combinatorial testing

2000 White and Almezen et al., Testing GUI objects. combinatorial testing

1996 Williams and Probert Testing network interface combinatorial testing

1994 Borroughs and Jain et al.,
Quality and efficiency of internet

protocol testing
combinatorial testing

1993 Huller et al.,
Ground system of satellite

communication.
combinatorial testing

1992 Brownlie et al., test case generation
Orthogonal Array

Testing Strategy

1992 Brownlie et al.,
Weather Forecast

Generator (PELMOREX)

pairwise combinatorial

coverage

1985 R.Mandl et al., ADA compiler combinatorial coverage

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

138

9. Arrays of Strength > 2 : The strength of the array is t=2 in all the preceding techniques. Due to

pairwise interactions, these tests are targeted at discovering errors. Sometimes higher strength is

required to accomplish superior assurance to ensure accuracy of software [1].

III. COMBINATORIAL TESTING TECHNIQUES

A. Pairwise Testing

Pairwise testing is a combinatorial testing technique which tests all possible combinations of set of

input parameters. All pairs of combinations have been combined together at least once during the testing

process. Instead of testing each and every combination, all individual pairs of interactions are tested.

Investigations show that software defects are triggered by a single input parameters or a combination of two

input parameters [8]. To demonstrate the concept of pairwise testing, consider a system with four parameters A,

B, C and D. Each of the first three parameters consist two values {SINGLE, DOUBLE}, {B1, B2}, {C1, C2}

and the fourth parameter consist of three values {D1, D2, D3} respectively. In order to test all combinations

would require 2 X 2 X 2 X 3 = 24 test cases. But a generated pairwise test case set includes 6 test cases covered

in all parameter interactions for this circumstance.

B. Constraint handling

In testing, some combination of parameters and values are frequently invalid and untestable

because they do not exist for the system under test. The pairwise testing technique does not handle the

constraints between input parameters and values. We must review the results obtained from pairwise testing and

manually delete bad pair test cases themselves [7]. Most existing test generation methods cannot deal with any

constraints and finally ignore them. Ignoring constraints generate invalid test sets. When the generated test set

contains many invalid test cases, this will cause a loss of combination coverage. Hence, proper constraint

handling is a key issue for test set generation. We must specify the constraints before test set generation [5], [8],

[9] [10].

IV. PROPOSED APPROACH

The proposed technique focuses on generation of test sets without and with constraints and

compares the results. The entire process consists of four steps:

A. Select parameters and values

B. Define constraints

C. Generate test cases and

D. Evaluate test cases

A. Select parameters and values

The parameters and values are collected from the database or environments. To illustrate the

concept of pairwise testing, consider a real life application system with four parameters and their respective

values and their symbolic representations are shown in Table 3.

Table III . Parameters and Value representation

Parameters Values

Vehicle 2wheel , 4wheel

Fuel petrol , diesel , gas

Accommodation single , double, suite

Specialization ac , non-ac

There are two vehicle types, three fuel types, three accommodation options and two specialization

options. Different end users may use different combinations of these parameter values.

B. Define parameters and constraint values

Some combination of parameter value is unacceptable from Table III which will generate valueless

test cases and must be removed from the result of the test set. Table III shows the possible input parameters and

their respective values. ACTS tool is used for defining parameters and their values. Generation of test set

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

139

without constraints will cover valueless test cases. Invalid pair test cases combine 2wheel with ac, or 2wheel

with diesel or 2wheel with gas. In Table IV, we give a formal syntax that can be used to specify the constraints

for parameters in Table 3.

Table IV: Defined Constraints

Constraint Description

If(Vehicle=‘2wheel’)

 then (Fuel=‘Petrol’)
If Vehicle is 2wheeler, then fuel must be Petrol

If(Vehicle=‘2wheel’&&Fuel=‘Petrol’)then

(Specialization=‘non-ac’)

If Vehicle is 2wheeler and fuel is Petrol then

Specialization must be non-ac

If(Vehicle=‘2wheel’)

 then (Specialization=‘non-ac’)

If Vehicle is 2wheeler, then Specialization must be

non-ac

C. Generate Test cases

1. Generate Exhaustive test cases:

First we generate a pairwise test case for first two parameters until cover all values and then extend

it to another parameter. Repeat the same process until all the parameters and values are covered from Table. In

order to test all combinations required 2 x 3 x 3 x 2 = 36 test cases. In this example, exhaustive testing requires

36 test cases. Table V shows all possible combinations 36 exhaustive test cases.

2. Generate pair-wise test cases :

 But pair-wise combinatorial testing requires only 9 test cases without constraints and 11 test cases

with constraints. The entire test suite covers all possible pairwise combinations between system parameters.

In this situation, we must perform validity check with replace method of constraint handling used

to determine whether all the constraints are satisfied by a test case with the specified constraints or not. If

invalid test cases are detected, invalid parameter values of that test case should be changed by another valid

parameter value and removes the invalid test case. The resulting final test set satisfies all combinations with

specified constraints. The ACTS tool implements the IPOG algorithm [2] to generate combinatorial test sets.

When we add parameter and their corresponding values and acts tool then automatically generates a t-way test

set, where t is the strength of coverage. The generated test cases can be saved in multiple formats for testing

purposes. Figure 4 shows 2- way test case generation using ACTS tool.

Table V. All possible combinations

Test case vehicle fuel accommodation specialization

1 2wheel petrol single Ac

2 2wheel petrol single non-ac

3 2wheel petrol double Ac

4 2wheel petrol double non-ac

5 2wheel petrol suite Ac

6 2wheel petrol suite non-ac

7 2wheel diesel single Ac

8 2wheel diesel single non-ac

9 2wheel diesel double Ac

10 2wheel diesel double non-ac

11 2wheel diesel suite Ac

12 2wheel diesel suite non-ac

13 2wheel gas single Ac

14 2wheel gas single non-ac

15 2wheel gas double Ac

16 2wheel gas double non-ac

17 2wheel gas suite Ac

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

140

18 2wheel gas suite non-ac

19 4wheel petrol single Ac

20 4wheel petrol single non-ac

21 4wheel petrol double Ac

22 4wheel petrol double non-ac

23 4wheel petrol suite Ac

24 4wheel petrol suite non-ac

25 4wheel diesel single Ac

26 4wheel diesel single non-ac

27 4wheel diesel double Ac

28 4wheel diesel double non-ac

29 4wheel diesel suite Ac

30 4wheel diesel suite non-ac

31 4wheel gas single Ac

32 4wheel gas single non-ac

33 4wheel gas double Ac

34 4wheel gas double non-ac

35 4wheel gas suite Ac

36 4wheel gas suite non-ac

As the size of the parameter and their value increase, the size of corresponding test sets increase.

Managing this combinatorial growth with regard to both accuracy and execution time is still an open research

issue. Greedy algorithm is recently used for t-way combinatorial testing [11] [12]. However, the efficient

generation of t-way combinatorial test suites remains an ongoing research topic.

Figure 4. Generated 2 way test suites

D. Evaluate test cases

To evaluate the future approach, we consider the number of parameters and each has different

parameter values and evaluates the test cases and compares the results generated with existing algorithms using

existing combinatorial testing tools. A main issue of combinatorial testing is to identify the constraints that exist

between certain parameters. But pair-wise combinatorial testing requires only 9 test cases without constraints

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

141

and 11 test cases with constraints. The entire test suite covers all possible pairwise combinations between

system parameters. Due to handling the right constraints between parameters will reduce the number of invalid

test cases generated by pair-wise combinatorial testing. Figure 4 shows comparison chart of test case generation

with constraints and without constraints. In this chart , 4-way test case generation generates 36 test cases without

constraints. But 21 test cases are generated with constraints. we conclude that to handling the right constraints

between parameters can reduce fewer number of invalid test cases generated by pair-wise combinatorial testing.

 Figure 4. Comparison chart of test case generation with constraints and without constraints

V. CONCLUSION AND FUTURE WORK

Due to handling the right constraints between parameters will reduce the number of invalid test

cases generated by pair-wise combinatorial testing. The wide use of combinatorial testing will help to

significantly reduce the cost of software testing while increasing software quality. It will also improve the

productivity of software developers by reducing the time and effort they spend on testing. In this paper we have

presented the proposed approach to generate test set for t-way testing and to handle constraints for avoiding

invalid test cases. There are numerous directions to persist our work. First we execute a tool for higher level t-

way strength coverage and carry out similar studies for real world applications to evaluate effectiveness of our

approach. Researchers have anticipated and still are proposing new, valuable and well-organized techniques to

get rid of impurities the existing methods of testing and to find feasible ways of civilizing the testing activity.

REFERENCES

[1] B. Vani, R. Deepa Lakshmi, A Chronological Survey on Combinatorial Testing Strategies, Advances in

Natural and Applied Sciences, pp.25-32, 2014.

[2] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, IPOG: A General Strategy for T-Way Software

Testing, 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, pp.549-556, 2007.

[3] Rick Kuhn, Raghu Kacker, Yu Lei and Justin Hunter, Combinatorial Software Testing, Vol.42, No.8,

pp.94-96, 2009.

[4] D.Richard Kuhn, Raghu N.Kacker, Yu Lei, Practical Combinatorial Testing, National Institute of Standards

and Technology, 2010

[5] L. Yu, F. Duan, Y. Lei, R. N. Kacker and D. R. Kuhn, Constraint handling in combinatorial test generation

using forbidden tuples, IEEE Eighth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pp.1-9, 2015.

[6] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, IPOG: A General Strategy for T-Way Software

Testing, 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, pp.549-556, 2007.

[7] Sangeeta Sabharwal, P. B. (2016). Construction of covering arrays for Pair-wise Testing Using Probabilistic

Approach in Genetic Algorithm. Arabian Journal for Science and Engineering , 2821-2835

International Journal of Computational Intelligence and Informatics, Vol. 6: No. 2, September 2016

142

[8] Mats Grindal, Jeff Offutt and Jonas Mellin, Handling Constraints in the Input Space when Using

Combination Strategies for Software Testing, pp.1-39, 2006.

[9] Sompong Nakornburi and Taratip Suwannasart, Constrained Pairwise Test Case Generation Approach

Based on Statistical User Profile, Proceedings of the International Multiconference of Engineers and

Computer Scientists, Vol.1, pp.16-18, 2016.

[10] Q. Feng-an and J. Jian-hui, An Improved Test Case Generation Method of Pair-Wise Testing, 16th Asian

Test Symposium, pp.149-154, 2007

[11] Renée C. Bryce , Yu Lei , D. Richard Kuhn and Raghu Kacker, Combinatorial Testing, pp.1-13, 2010.

[12] Linbin Yu, Yu Lei, Mehra Nourozborazjany, Raghu N. Kacker, and D. Richard Kuhn, An Efficient

Algorithm for Constraint Handling in Combinatorial Test Generation, IEEE Sixth International Conference

on Software Testing, Verification and Validation(ICSTW), pp.242-251, 2013.

