Enhanced MSER Algorithm for Text Extraction

Jaswanth P
Deptment of CSE&IT
Saveetha School of Engineering
Saveetha University, Chennai, INDIA

Anusuya S
Deptment of CSE&IT
Saveetha School of Engineering
Saveetha University, Chennai, INDIA

Anil Kumar M
Deptment of CSE&IT
Saveetha School of Engineering
Saveetha University, Chennai, INDIA

Dhikhi.T
Deptment of CSE&IT
Saveetha School of Engineering
Saveetha University, Chennai, INDIA

Abstract - Text extraction from natural scene images is a challenging problem due to the variations in color, font size, text alignment, illumination etc. And it is a technique to identify and isolate the desired text from the images. In this work, we propose a novel method referred as Enhanced Maximally Stable Extremal Region (EMSER) to extract the text present in the images. The existing approaches deal with the same are lacking in accuracy. The proposed Enhanced Maximally Stable Extremal Region (EMSER) algorithm works with morphological operators such as dilation and reconstruction with different size of structuring elements to identify the shape of the text objects and to find the number of connected components accurately. The proposed method has been compared with Sobel and Canny edge detection methods and the superiority of proposed method has been shown in experimental results.

Keywords - MSER, Canny, Sobel, EMSER, Image and Text Extraction.

I. INTRODUCTION

The embedded text in images contains valuable information and is exploited in many content-based image and video applications, such as content-based web image search, video information retrieval, mobile based text analysis and recognition. Due to complex background, the variations of font, size, color and orientation, it is difficult to extract the text accurately. The natural images particularly consist of many objects of different sizes and shapes. The text extraction techniques find the image regions concentrating on the text objects of regular or irregular shapes for the given images. In some cases, text detection becomes even meaningful by itself. For example, finding the appearance of a caption in news video can help to locate the beginning.

Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the single-link clustering algorithm, where distance weights and clustering threshold are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with a character classifier; text candidates with high non-text probabilities are eliminated and texts are identified with a text classifier. Experiments on multilingual, street view, multi-orientation and even born-digital databases also demonstrate the effectiveness of the proposed method.

II. LITERATURE SURVEY

The growth of multimedia documents are increasing every day, information identification, and requirement and indexing are of mandatory requirement for the emerging domains. The method called gamma correction method has been applied on the images and its strength has been checked [1]. Morphological based thresholding has been applied to detect the text from the images [2]. Segmentation of characters from the image help to find the characters and it is compared with the standard methods [3]. Human-machine interactive software application was proposed to work with Chinese characters [4]. The connected component based approach is proposed and it is compared with recent approaches [5]. A statistical model based scheme and conditional random field (CRF) proposed for automatic extraction in born digital images [6] [7]. Text extraction applied to biomedical images [8]. An algorithm comprising the steps such as detection and localization, text enhancement
and segmentation and optical character recognition (OCR) proposed in natural scene images [9]. A novel text extraction technique is demonstrated for handwritten English or Bengali text [10]. An unsupervised feature selection is introduced for text-graphics segmentation problem [11]. Adaptive color reduction (ACR) followed by page layout analysis (PLA) approach implemented to automatically detect and extract text in mixed-type color documents [12]. A metric-based clustering is used to extract textual information from real-world images [13]. In this work we propose EMSER algorithm to work with images of different type, size and shape.

III. PROPOSED EMSER ALGORITHM

In this work, we propose a robust and accurate EMSER method to extract the text from images. This method, Enhanced MSER uses morphological operations for preprocessing. The dilation and reconstruction are used to enhance the images. The various structuring elements (strel) such as line and disk with different sizes are used. The region filling is used to fill the text to be isolated from the background. The flow of the work is mentioned in Figure 1.

The mapping of image is given as $I: D \subset \mathbb{Z}^2 \rightarrow S$. Extremal regions are well defined if S is totally ordered and n adjacency relation is to be defined as $A \subset D \times D$.

The regions are defined exclusively by the intensity function, this leads to identification of many key characteristics of the regions.

The input image is loaded and converted into gray image. MSER regions are found for the input image. All pixels inside the MSER have higher or lower intensities than in the surrounding regions and regions are selected to be stable over intensity range. The morphological operation dilation and reconstruction are used to improve the clarity of text and to find the connected components. The edges of connected regions are isolated using edge detection technique. The canny and sobel edge detection algorithms were applied on the resultant images and found that the performance of sobel is better than canny.

![Figure 1. Architecture of proposed method.](image)

The step by step procedure of the proposed method is given below:

1) **Loading the input image**

Load the image I with size $M \times N \times P$ where $x_{i,j,k}$ refers the color intensity $I = \sum \sum \sum x_{(i,j,k)}$ where $i \rightarrow I$ to M, $j \rightarrow I$ to N, $k \rightarrow I$ to P.
ii) **Converting to gray color Image**
Convert image I into gray scale image I_1 where $x_{i,j}$ is the gray scale intensity $I_1 = \sum x(i, j)$ where $i \rightarrow 1$ to M, $j \rightarrow 1$ to N.

iii) **Image Enhancement**
Apply morphological operations image dilation and reconstruction with structuring element size 3×3 on the regions obtained in step 2.

iv) **Edge Detection**
Detect the edges present in the text region.

v) **Text Region Detection**
Detect regions R which is subset of I_1, $Q \subset I_1$.

vi) **MSER Detection**
Detect extremal regions $Q \subset R \subset I_1$ for all $p \in Q$, $q \in \partial Q$ and ∂Q is the outer region boundary.

Steps for Canny Edge detection
a) Smooth the image with Gaussian filter
b) Find intensity gradient of the image
c) Remove low intensity pixels
d) Apply threshold to find the edges
e) Remove weak edges and highlight the strong edges

Sobel algorithm finds discrete differentiation by computing an approximation of the gradient of the image. The operation of Sobel operator is based on convolving the image with a small, separable, and integer valued filter in horizontal and vertical direction. The implementation results of Canny, Sobel and proposed algorithm are tabulated Table I.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method has been tested on different images and the accuracy was observed over other methods.

<table>
<thead>
<tr>
<th>Image</th>
<th>Results using canny</th>
<th>Results using sobel</th>
<th>Results using EMSER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE I. DIFFERENCE BETWEEN EXISTING AND EMSER METHODS FOR TEXT EXTRACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image</th>
<th>Results using canny</th>
<th>Results using sobel</th>
<th>Results using EMSER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connected components= 37</td>
</tr>
</tbody>
</table>
Connected components= 320

Permit to work system in operation

Estates Management Section

Connected components= 188

Proceed with caution. Height when raised

115mm (4’2”) 1

Connected components= 27

Connected components= 88

Connected components= 213
The above table results show the differences between the canny, sobel and EMSER algorithms for text extraction. The connected components of EMSER represents the number of components with closed boundaries and have been mentioned in the Table I. Text extraction using EMSER is more effective, simple and user friendly.
TABLE II. THE PROCESS OF TEXT EXTRACTION USING THE PROPOSED EMSER

<table>
<thead>
<tr>
<th>MSER regions filling</th>
<th>Edge detection using Sobel</th>
<th>Image enhancement using dilation</th>
<th>Text region extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text region extraction from background</td>
<td>Connected components</td>
<td>Highlighting boundary of text</td>
<td>The output(extracted text)</td>
</tr>
</tbody>
</table>

Text region extraction from background

<table>
<thead>
<tr>
<th>TABLE III. COMPARISON OF PROPOSED METHOD WITH EXISTING METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Sobel</td>
</tr>
<tr>
<td>Canny</td>
</tr>
<tr>
<td>Proposed</td>
</tr>
</tbody>
</table>

Precision P is defined as the ratio between areas of detected intersecting text regions, recall R is obtained from the ratio between area of intersection regions and that of ground truth regions.

\[\text{f-Measure} = \frac{(2 \times \text{Precision} (P) \times \text{Recall} (R))}{\text{Precision} (P) + \text{Recall} (R)} \]

V. CONCLUSION

In this work, we have proposed a novel text extraction method referred as EMSER (Enhanced Maximally Stable Extremal Region) and it has been demonstrated on the images embedded with text and the accuracy obtained is 0.49 as shown in Table III. The proposed method works with the images of different sizes and different shapes with less computation cost. In future, this work can be extended to detect the text from video and can be automatically documented in Word Pad for further use.

REFERENCES

