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Abstract- Vital areas in Bioinformatics research is one of the Protein sequence analysis. Protein sequence 

motifs are determining the structure, function, and activities of the particular protein. The main objective 

of this paper is to obtain protein sequence motifs which are universally conserved across protein family 

boundaries. In this research, the input dataset is extremely large. Hence, an efficient technique is 

demanded. A Rough Granular computing model is created to efficiently extracting protein motif data 

that transcends protein families. Before apply this model, the very first step of this research is trying to 

reduce segments. The literature suggests that the Singular Value Decomposition (SVD) computing 

technique is more suited for reducing segments. After that the reduced segments are followed by applying 

Rough Granular computing model. The effectiveness of final results effectiveness is tested by several 

measures. The experimental results suggest that the SVD with Rough Granular computing model 

generates more number of highly structured motif patterns. 

Keywords- Protein Sequence Motifs, DBI, DI, HSSP-BLOSUM62, Granular Computing, K-Means, Adaptive 

Fuzzy C-Means, Rough K-Means. 

I. INTRODUCTION 

A thick relationship between protein sequence and its structure plays a vital role in current bioinformatics 
research. The biological term ‘sequence motif’ denotes a relatively, functionally or structurally conserved 
sequence patterns that occur repeatedly in a group of related proteins [12]. These motif patterns may be able to 
predict the structural or functional area of other proteins, such as enzyme-binding sites, DNA or RNA binding 
sites, prosthetic attachment sites, or regions involved in binding other small molecules. 

PROSITE [1], PRINTS [2], BLOCKS [3], SBASE [4], and PFAM [5] are five popular databases for sequence 
motifs. There are some commonly used softwares for protein sequence motif discover including MEME [6], 
Gibbs Sampling [7, 8], Block Maker [9] and some of the latest algorithms include MITRA [10], and Gemoda 
[11].  These applications, endure a common issue of limiting the size of input dataset. Several protein sequences 
are required to be input by the user while using these tools.  

In this research, protein sequences are converted into segments using sliding window concepts and patterns are 
extracted from the selected segments. The total sliding sequence segments are trim by Singular Value 
Decomposition (SVD) [13].These sliding sequence segments are separated into different groups with granular 
computing models that utilized Fuzzy C-Means, Adaptive Fuzzy C-Means and Rough K-Means clustering 
algorithms to divide the set of segments into several smaller subsets and then apply K-Means and Rough K-
Means algorithm to each subset to discover relevant information. Finally, we merge the information generated by 
all granules and obtain the final sequence motif information. Various evaluation methods are applied in this study 
such as structural similarity, Dunn Index (DI) measure, Davis-Bouldin Index (DBI) measure, and HSSP-
BLOSUM62 evaluation method. The hybridization of the SVD with Rough Granular computing model generates 
more number of highly structured motif patterns. 

The rest of the paper is organized as follows. Section 2 presents related work in this area of research. Section 3 
introduces SVD-Entropy based segment selection process. In section 4, the description of granular computing 
techniques and clustering algorithms are explained. Experimental setup is explained in section 5. In section 6, 
experimental results are explained. Section 7 concludes the paper with directions for further enhancement. 
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II. RELATED WORKS 

K-Means clustering algorithm with random initial centroids is utilized by Han et al. [14] to find recurring 
protein sequence motifs across the boundaries of a protein family. To overcome the inherent problem of K-Means 
clustering algorithm, Wei et al. proposed an improved K-Means clustering algorithm to obtain initial centroid 
locations more wisely [15] and the results published by Wei et al. have been improved in their experiment.  

      Bernard Chen et al. proposed a granular computing model work called FIK model [16, 17] for overcome the 
high computational cost, which utilizes a Fuzzy C-Means clustering algorithm to divide the whole data space 
into several smaller subsets and then applies a standard improved K-Means algorithm to each subset to discover 
relevant information.  In FGK model [16, 17] Bernard Chen et al. develop a new greedy K-Means algorithm to 
further improve secondary structural similarity sequence motifs. In the Greedy K-Means, the best centroids are 
selected after five runs of K-Means and then K-Means algorithm is executed by considering those centroids. It 
consumes more time and complexity is also high. 

Motif detection from a huge amount of sequences is a challenging task and not all the segments generated 
are so important. Therefore, Bernard Chen [18] has proposed Super Granular SVM Feature Elimination. In this 
approach the original dataset is first partitioned using Fuzzy C-Means clustering and then for each partition 
Greedy K-Means clustering algorithm is been implemented. Then ranking SVM based segment selection is done 
on each cluster to collect survived sequence segments.  The survived segments are then clustered once again 
using Greedy K-Means to generate motif information. The Super Granular SVM segment selection technique 
requires more computational time for segment selection process. Here, the computational time includes time 
taken for Fuzzy Clustering plus time taken for Greedy K-Means clustering before segment selection.  

In this paper, SVD Entropy segment selection Technique is applied before clustering, which helps us to 
reduce computational time. Here, all sequence segments generated by sliding window technique may not yield 
highly structural similar clusters. Therefore, removing such noisy segments using entropy segment selection [19] 
helps us to produce clusters with good structural similarity. 

III. SEGMENT SELECTION TECHNIQUE 

A. SVD Entropy Based Segment Selection Technique  

SVD based entropy addresses the problem of selecting the significant segments in the area of protein 

sequence motif identification [13, 32]. The city block metric is used for calculating the difference between a 

sequence segment and the centroid of a given sequence cluster. The formula for calculating entropy each 

sequence segment is given here under. 

segment is given here under. 

 

𝑉𝑗=𝑆𝑗
2 ∑ 𝑆𝑤

2
𝑤⁄                                                                                                                                                                     (1) 

 

where 𝑆𝑗 denotes singular values of the segment, 𝑆𝑤
2  denotes eigen values of the segment, w denotes the 

window size.  
The resulting SVD- Entropy is as follows 
 

E= - 
1

log⁡(𝑤)
∑ 𝑉𝑗⁡⁡
𝑤
𝑗=1  log (⁡𝑉𝑗⁡⁡)                                                                                                          

 

1) E < m + n, features with high contribution.  
2) m + n  >  E  > m - n, features with average contribution. 
3) E < m - n, features with negative contribution.  

 
The segments obtained in the first group are said to relevant to our problem. The segments in the second 

group are said to be neutral and the third group segments will reduce total SVD entropy. In this work, we have 
selected only those segments which fall under the first category.  
 
 
 
 
 
 
 

(2) 
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Figure 1.  SVD Entropy Segment Selection Algorithm 

      Fig. 1 shows SVD Entropy Selection algorithm applied in Fuzzy Granular Model (FGM), Adaptive Fuzzy 
Granular Model (AFGM) and Rough Granular Model (RGM). The motif information obtained after the segment 
selection process is said to be more meaningful as well as DBI value considerably decreased after the feature 
selection process. 

IV. GRANULAR COMPUTING TECHNIQUES 

A. Fuzzy Granular Model with SVD Entropy     

This computation work consists of two phases. Phase one selects significant segments using SVD-Entropy 
method. Phase two adopts FGM computing technique. The SVD-Entropy has been combined with FGM to 
identify hidden motif patterns that are available in different protein families. As the dataset is very large, hence 
the work focuses on segment selection technique to be applied before granular computing which helps us to 
reduce computational cost. Traditional K-Means [20] and Rough K-Means Clustering algorithms are performed 
on each information granule generated by FCM. At the final stage, we combine information generated by all 
granules and obtain final sequence motif information. The Figures 2 and 3 show the structure of FGM using K-
Means and FGM using Rough K-Means respectively. 

 

 

 

 
 
 
 
 
 
 

 

Algorithm : SVD Entropy Based Segment Selection  

Input  : Sequence segments of N numbers. 

Output  : Significant protein sequence segments. 

Procedure: 

Step1: Computation of SVD - Entropy 

             For i = 1 to N  

        Calculate singular value decomposition for each sequence segment using (1) 

                   Let K is the number of non zero SVD entries along with window size 

                For j varies from 1 to K 

                   Apply SVD Entropy using (2) 

                  End For 

             End For 

Step2: Selection of Sequence segments 

             If (entropy of each sequence segment < threshold value) then 

                Select those sequence segments for clustering process 

             Else 

            Eliminate the segments from clustering process 

             End If  
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Figure 2.  Sketch of FGM using K-Means Computing Model 
with SVD Entropy 

Figure 3.  Sketch of FGM using K-Means Computing Model 
with SVD Entropy 

 

B. Fuzzy C-Means 

Fuzzy C-Means (FCM) is a clustering algorithm which allows one segment of data is belongs to one or more 
clusters. This algorithm is to minimize the following objective function [16]: 

𝐽𝑚 = ∑∑𝑢𝑖𝑗
𝑚

𝐶

𝑗=1

𝑁

𝑖=1

⁡‖𝑥𝑖 −⁡𝑐𝑗‖
2
⁡, 1 ≤ 𝑚⁡⁡∞⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 

where m, the fuzzification factor, is any real number greater than 1, uij is the degree of membership of xi in 
the cluster j, x is the i th of d-dimensional measured data, c is the d dimension center of the cluster, and ‖*‖ is any 
norm expressing the similarity between any measured data and the center.  Fuzzy partitioning is carried out 
through an iterative optimization of the objective function shown above, with the update of membership uij   and 
the cluster centers cj by: 

 

⁡𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚⁡. 𝑥𝑖
𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

where 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−⁡𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2

𝑚−1𝑐
𝑘=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

 

 This iteration will stop when maxij {|𝑈(𝑘+1) − 𝑈(𝑘)|} < ⁡𝛿 where δ is a termination criterion between 0 

and 1, whereas k is the iteration step. This procedure converges to a local minimum or a saddle point of Jm. 
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The Fuzzy C-Means Clustering algorithm is described as following: 

----------------------------------------------------------------------------- 

i. Initialize membership function matrix U = [uij], and U (0). 

ii. at k step: Calculate the centroid point by the equation (4) 

iii. Update 𝑈(𝑘)and 𝑈(𝑘+1)by using equation (5). 

iv. if |𝑈(𝑘+1) − 𝑈𝑘| < Ɛ then stop; otherwise return to step 2. 

----------------------------------------------------------------------------------------------- 

C. Adaptive Fuzzy Granular Model with SVD Entropy 

The SVD-Entropy has been combined with AFGM to identify more hidden motif patterns. Traditional K-
Means and Rough K-Means Clustering algorithms are performed on each information granule generated by 
AFCM. At the final stage, we combine information generated by all granules and obtain final sequence motif 
information. The Figures 4 and 5 show the structure of AFGM with SVD Entropy [21, 22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Sketch of AFGM using K-Means Computing Model 

with SVD Entropy 

Figure 5.  Sketch of AFGM using K-Means Computing Model 

with SVD Entropy 

 

       Many of the behavioural problems with standard Fuzzy C-Means algorithm are eliminated when we relax 
probabilistic constraint imposed on membership function. Further Krishnapuram R and Keller JM [21, 33] have 
modified the approach for calculating membership values. Equation (6) shows membership calculation. 

∑∑𝜇𝑗⁡(𝑥𝑖)=𝑛

𝑛

𝑖=1

𝑘

𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Here,  

 𝜇j (xi)  is the membership of xi in jth  cluster 

 k is the specified number of clusters 

 n is the number of data points 

In Adaptive Fuzzy C-Means (AFCM), the total membership quantifiers for all sample points are equal to n. 
This flexible approach leads to clustering optimization problem, provides a way to improve cluster robustness. 
Here the algorithm is adaptive; that is membership is based on sample size rather than fixed to upper limit as 
one in Fuzzy C-Means clustering. The membership values in this method are calculated using Equation (7) 
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𝜇𝑗(𝑥𝑖) =
𝑛(

1

𝑑𝑗𝑖
)

1
𝑚−1

∑ ∑ (
1

𝑑𝓀𝑧
)

1
𝑚−1𝑛

𝑧=1
𝑝
𝓀=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

 The Adaptive fuzzy clustering algorithm is efficient in handling data with outlier points. It gives very 
low membership values for outliers since the sum of distances of points in all the clusters involves in 
membership calculation. 

D. Rough Granular Model with SVD Entropy 

 A set of information granules is built using the Rough Granular Model (RGM) with SVD entropy and 
then applying K-Means and Rough K-Means Clustering algorithms to obtain the final information. The RGM 
process is given below in Fig. 6 and Fig. 7 [21, 22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Sketch of RGM using K-Means Computing Model 

with SVD Entropy 

Figure 7.  Sketch of RGM using K-Means Computing Model 

with SVD Entropy

E. Rough Clustering 

  In rough clustering each cluster has two approximations, a lower and an upper approximation. The lower 
approximation is a subset of the upper approximation. The members of the lower approximation belong 
certainly to the cluster; therefore they cannot belong to any other cluster. The data objects in an upper 
approximation may belong to the cluster. Since their membership is uncertain they must be a member of an 
upper approximation of at least another cluster. 

F. Properties for the Rough Clustering Algorithm 

Property 1: a data object can be a member of one lower approximation at most. 

Property 2: a data object that is a member of the lower approximation of a cluster is also member of the upper 
approximation of the same cluster. 

Property 3: a data object that does not belong to any lower approximation is member of at least two upper 
approximations [23]. 

 The Rough K-Means algorithm provides a rough set theoretic flavour to the conventional K-Means 
algorithm to deal with uncertainty involved in cluster analysis. The Rough K-Means algorithm [24, 25] 
described as follows: 

--------------------------------------------------------------------------------------------------------------------- ------------------ 

1. Select initial clusters of n objects into K clusters. 

2. Assign each object to the Lower bound (L(x)) or upper bound (U(x)) of cluster/ clusters respectively as: For 
each object v, let d (v,xi) be the distance  between itself and the centroid of  cluster xi. The difference 
between d (v,xi) / d(v,xj), 1≤ i, j ≤ k is used to determine the membership of v as follows:  

• If d (v,xi) / d(v,xj) ≤ thershold, then v ∈U(xi) & v ∈ U(xj). Furthermore, v will not be a part of any 
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lower bound. 

• Otherwise, v∈L(xi),such that d(v,xi) is the minimum for 1≤ i ≤ k. In addition, v∈U(xi). 

3. For each cluster xi re-compute center according to the following equations the weighted combination of the 
data points in its lower_bound and upper_bound. 

 

 where 1≤ j ≤ k. The parameters wlower and wupper correspond to the relative importance of lower and 
upper bounds. If convergence criterion is met, i.e. cluster centers are same to those in previous iteration, then 
stop; else go to step2. 

---------------------------------------------------------------------------------------------------------------- 

G. K-Means Clustering Algorithm 

Among all clustering algorithms, K-Means clustering algorithm has the advantages of easy interpretation 
and implementation, high scalability, and low computation complexity.  The K-Means clustering take the user 
input parameter K, and partitions a set of n objects into K clusters then iteratively updates the centers until no 
reassignment of patterns to new cluster centers occurs. In every step, each sample is allocated to its closest 
cluster center and cluster centers are reevaluated based on current cluster memberships [26]. 

V. EXPERIMENTAL SETUP 

A. Data Set 

The dataset obtained from Protein Sequence Culling Server (PISCES) includes 4946 protein sequences [27]. 
In this work, we have considered 3000 protein sequences to extract sequence motifs that transcend in protein 
sequences. The threshold for percentage identity cut-off is set as less than or equal to 25%, resolution cut-off is 
0.0 to 2.2, R-factor cut-off is 1.0 and length of each sequence varies from 40 to 10,000. Homology Derived 
Secondary Structure of Proteins (HSSP) frequency profiles is used to represent each segment [4, 5]. The sliding 
windows with ten successive residues are generated from protein sequences. Each window represents one 
sequence segment of ten continuous positions. Around 6, 60,364 sequence segments are generated by sliding 
window method, from 3000 protein sequences. Each sequence segment is represented by 10 X 20 matrix, where 
ten rows represent each position of sliding window and 20 columns represent 20 amino acids. Fig. 8 shows 
sliding window technique. In this sliding window technique we can generate n number of sequence segments 
(10 X 20 matrices). 

Dictionary of Secondary Structure of Proteins (DSSP) assigns secondary structure to eight different classes 

[28]. These eight structural classes can be reduced to three using reduction method as follows: H, G and I to H 

(Helices); B and E to E (Sheets); all others to C (Coils) [29]. 

Figure 8.  Sliding Window techniques with a window size of 10 applied on 3CA8 HSSP file 
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B. Structural Similarity Measures 

A cluster’s average structure is calculated using the following formula:      

∑ max(𝑃𝑖,𝐻,𝑃𝑖,𝐸,𝑃𝑖,𝐶)
𝑊𝑆
𝑖=1

𝑊𝑆
 

where 𝑊𝑆 is the window size and (𝑃𝑖,𝐻)shows the frequency of occurrence of helix among the segments for 

the cluster in position i.  (𝑃𝑖,𝐸)⁡and ⁡(𝑃𝑖,𝐶)  are defined in a similar way.  If the structural homology for a cluster 

exceeds 70%, the cluster can be considered structurally identical [16]. If the structural homology for the cluster 
exceeds 60% and is below 70%, the cluster can be considered weakly structurally homologous. 

C. Distance Measure 

The city block metric is more suitable for this field of study since it will consider every position of the 
frequency profile equally. The city block metric is used for calculating the difference between a sequence 
segment and the centroid of a given sequence cluster. Han and Baker also chose the city block metric because of 
complications associated with the use of Euclidean metric for clustering algorithms [14]. The following formula 
is used to calculate the distance between two sequence segments: 

Distance =∑∑|𝐹𝑘(𝑖, 𝑗) − 𝐹𝑐(𝑖, 𝑗)|

𝑁

𝑗=1

𝑊𝑆

𝑖=1

 

where 𝑊𝑆 is the window size and N is 20 which represent 20 different amino acids. Fk (i, j) is the value of 
the matrix at row i and column j used to represent the sequence segment. Fc (i, j) is the value of the matrix at 
row i and column j used to represent the centroid of a give sequence cluster. 

D. Dunn  Index  Measure 

The Dunn Index (DI) also favours clustering with low intra-cluster and high inter-cluster distances, 
although the compactness of the clusters is assessed in a different way [42]. This index is originally proposed to 
use at the identification of "compact and well separated clusters". So the result of the clustering has to be 
recalculated as it was a hard partition algorithm. Dunn Index was proposed by J. C. Dunn in 1974. Similar to the 
DBI index, the DI index measures the quality of clustering result. The goal of DI index is the same with other 
cluster validity indexes which tries to find a good intra cluster and inter cluster relationships. It is used to 
measure the goodness of a clustering structure without respect to external information. The Dunn Index has a 
value between zero and ∞, it should be maximized.  

The DI index is defined as follows [43]: 

𝐷𝑛𝑐 = min
𝑖=1,…,𝑛𝑐

{ min
𝑗=𝑖+1,…,𝑛𝑐

(
𝑑(𝑐𝑖,𝑐𝑗)

max
𝑘=1,…,𝑛𝑐

𝑑𝑖𝑎𝑚(𝑐𝑘)
)} 

      where 𝑑(𝑐𝑖,𝑐𝑗)⁡the dissimilarity function between two clusters is 𝑐𝑖,𝑎𝑛𝑑⁡𝑐𝑗  defined as  

𝑑(𝑐𝑖 , 𝑐𝑗) = ⁡ min
𝑥∈𝑐𝑖⁡,𝑦∈𝑐𝑗

𝑑(𝑥, 𝑦) 

       𝑑𝑖𝑎𝑚(𝑐) is the diameter of a cluster, which may be considered as a measure of dispersion of the clusters. 
The diameter of a cluster 𝑐 can be defined as follows: 

𝑑𝑖𝑎𝑚⁡(𝑐) = ⁡ max
𝑥,𝑦∈𝐶

𝑑(𝑥, 𝑦) 

       It is clear that if the dataset contains compact and well-separated clusters, the distance between the clusters 
is expected to be large and the diameter of the cluster is expected to be small. Thus, based on the Dunn's index 
definition, we may conclude that large values of the index indicate the presence of compact and well-separated 
clusters. 

      The index 𝐷𝑛𝑐 does not exhibit any trend with respect to number of clusters. Thus, the maximum in the plot 
of 𝐷𝑛𝑐 versus the number of clusters can be an indication of the number of clusters that fits the data. 

The implications of the Dunn index are: 

 The considerable amount of time required for its computation. 
 The sensitive to the presence of noise in datasets. 

Since these are likely to increase the values of 𝑑𝑖𝑎𝑚⁡(𝑐). 
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E. Davis-Bouldin Index (DBI) Measure 

The DBI measure [17] is a function of the inter-cluster and intra-cluster distance. A good cluster result 
should reflect a relatively large inter-cluster distance and a relatively small intra-cluster distance. The DBI 
measure combines both distance information into one function, which is defined as follows: 

𝐷𝐵𝐼 =
1

𝑘
⁡∑max

𝑝≠𝑞
{
𝑑𝑖𝑛𝑡𝑟𝑎⁡(𝐶𝑝) + 𝑑𝑖𝑛𝑡𝑟𝑎⁡(𝐶𝑞)

𝑑𝑖𝑛𝑡𝑒𝑟(𝐶𝑝, 𝐶𝑞)
}

𝑘

𝑝=1

⁡ , 𝑤ℎ𝑒𝑟𝑒 

𝑑𝑖𝑛𝑡𝑟𝑎⁡(𝐶𝑝) =
∑ ‖𝑔𝑖 − 𝑔𝑝𝑐‖
𝑛𝑝
𝑖=1

𝑛𝑝
⁡⁡𝑎𝑛𝑑 

⁡⁡𝑑𝑖𝑛𝑡𝑒𝑟(𝐶𝑝, 𝐶𝑞) = ‖𝑔𝑝𝑐 − 𝑔𝑞𝑐‖ 

 K is the total number of clusters, 𝑑𝑖𝑛𝑡𝑟𝑎⁡and 𝑑𝑖𝑛𝑡𝑒𝑟 ⁡denote the intra- cluster and inter-cluster distances 
respectively. np is the number of members in the cluster Cp. The intra-cluster distance defined as the average of 
all pair wise distances between the members in cluster P and cluster P’s centroid gpc. The inter-cluster distance 
of two clusters is computed by the distance between two clusters’ centroids. The lower DBI value indicates the 
high quality of the cluster result. 

F. HSSP-BLOSUM62 Measure 

BLOSUM62 [30] (Fig. 9.) is a scoring matrix based on known alignments of diverse Sequences. 

 

Figure 9.  BLOSUM62 Matrix  

       By using this matrix, we may access the consistency of the amino acids appearing in the same position of 

the motif information generated by our method. Because different amino acids appearing in the same position 

should be close to each other, the corresponding value in the BLOSUM62 matrix will give a positive value. 

Hence, the measure is defined as the following [31]: 
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G. Parameter Setup 

In this work, SVD - Entropy based segment selection is applied and selected around 85% of sequence 
segments from original data set. Number of clusters has been set to 900. For FCM granular with SVD – Entropy 
technique, the fuzzification factor is set to 1.15 and number of clusters is equal to ten. This setting produced 
better results in our specific dataset. In order to separate information granules from FGM results, the 
membership threshold is set to 18% [32]. The function that decides how many numbers of clusters should be in 
each information granule is given below: 

Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

×𝑚 

        where Ck denotes the number of clusters assigned to information granule k, nk is the number of members 
belonging to information granule k, m is the number of clusters in Fuzzy C-Means. In this technique we are able 
to indentify 900 clusters. 

        For Adaptive Fuzzy C-Means, the fuzzification factor is considered as 1.15 and membership threshold is 
set to 13% [32]. The number of clusters in each granule is decided by the function given below: 

Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

×𝑚 

     where Ck denotes the number of clusters assigned to information granule k, nk is the number of members 
belonging to information granule k, m is the number of clusters in Adaptive Fuzzy C-Means. In this technique 
we are able to indentify 901 clusters. 

      For Rough K-Means, the epsilon value is considered as 1.001 and the number of clusters in each granule is 
been decided by the function given below: 

Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

×𝑚 

      where Ck denotes the number of clusters assigned to information granule k, nk is the number of members 
belonging to information granule k, m is the number of clusters in Rough K-Means. In this technique we are 
able to indentify 900 clusters. 

VI. EXPERIMENTAL RESULTS 

TABLE I.  SUMMARY OF THE RESULTS OBTAINED BY THE FCM  

 

 

 

 

 

 

 

 

 

 

 

 

 

     The summary of the results obtained from FCM granular method is shown in Table I. Although the total 
segment increased from 660364 to 805869, we achieved the goal of reduced data size is to deal with one 
information granule at a time [22]. 

     The summary of the results obtained from FCM granular method with SVD entropy is shown in Table II. The 
total number of segments are slight increased, but we achieved the goal of reduced data size is to deal with one 
information granule at a time. 

Granules Number of Members Number of Clusters Data Size (in MB) 

Granule 1 76090 85 5.06 

Granule 2 39915 45 2.48 

Granule 3 60151 45 3.58 

Granule 4 265960 297 11.10 

Granule 5 120024 134 7.44 

Granule 6 23348 26 1.36 

Granule 7 9612 11 0.49 

Granule 8 151631 169 8.39 

Granule 9 45472 51 3.03 

Granule 10 13666 15 0.64 

Total  

 

Original Data Set 

805869 

 

660364 

900 

 

900 

43.57 

 

19.20 
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TABLE II.  SUMMARY OF THE RESULTS OBTAINED BY THE SVD-FCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III.  SUMMARY OF THE RESULTS OBTAINED BY THE AFCM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The summary of the results obtained from AFCM granular method is shown in Table III.  Although the total 
number of members increased from 562745 to 721390, we only deal with one information granule at a time. 
Therefore, we achieved the goal of reduced space-complexity [22]. 

 

 

 

 

 

 

 

Granules Number of Members Number of Clusters Data Size (in MB) 

Granule 1 24412 32 1.68 

Granule 2 100385 131 6.27 

Granule 3 44428 58 3.30 

Granule 4 98815 130 6.52 

Granule 5 41557 54 2.58 

Granule 6 33376 44 2.32 

Granule 7 67448 88 4.45 

Granule 8 133945 176 7.47 

Granule 9 42674 56 3.00 

Granule 10 99339 130 6.24 

Total 

 

Original Data Set 

686379 

 

565314 

899 

900 

43.83 

17.70 

Granules Number of Members Number of Clusters Data Size (in MB) 

Granule 1 20675 28 1.74 

Granule 2 35324 48 2.65 

Granule 3 215674 292 8.98 

Granule 4 62388 85 3.78 

Granule 5 4376 6 0.38 

Granule 6 125769 170 6.34 

Granule 7 2409 3 0.23 

Granule 8 65409 89 4.14 

Granule 9 2824 4 0.22 

Granule 10 129761 176 6.47 

Total 

 

Original Data Set 

664609 

 

660364 

901 

900 

34.93 

19.20 
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TABLE IV.  SUMMARY OF THE RESULTS OBTAINED BY THE SVD-AFCM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The summary of the results obtained from AFCM granular method with SVD entropy is shown in Table 
IV.  Although the total number of members increased at 686552, we only deal with one information granule at a 
time. Hence, we achieved the goal of reduced space-complexity with more number of highly structure motif 
patterns. 

 The summary of the results obtained from RKM granular method is shown in Table V. The total 
number of members is exactly same as original data set but identifies more number of hidden highly structure 
motif patterns. 

TABLE V.  SUMMARY OF THE RESULTS OBTAINED BY THE RKM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Granules Number of Members 
Number of 

Clusters 
Data Size (in MB) 

Granule 1 221515 290 9.40 

Granule 2 3478 5 0.28 

Granule 3 42792 56 3.11 

Granule 4 129507 170 6.85 

Granule 5 97204 127 5.81 

Granule 6 25899 34 2.15 

Granule 7 49103 64 3.44 

Granule 8 102852 135 5.95 

Granule 9 4615 6 0.37 

Granule 10 9587 13 0.82 

Total 

 

Original Data Set 

686552 

 

660364 

900 

900 

38.18 

17.70 

Granules Number of Members 
Number of 

Clusters 
Data Size (in MB) 

Granule 1 122260 167 7.37 

Granule 2 11112 15 0.967 

Granule 3 6794 9 0.591 

Granule 4 7552 10 0.675 

Granule 5 167789 229 9.00 

Granule 6 3369 5 0.319 

Granule 7 44961 61 2.56 

Granule 8 143504 196 7.95 

Granule 9 37645 51 2.19 

Granule 10 115378 157 6.77 

Total 

 

Original Data Set 

660364 

 

660364 

900 

900 

38.392 

19.20 



International Journal of Computational Intelligence and Informatics, Vol. 5: No. 2, September 2015 

166 
 

 

Figure. 9. Comparison of Structural Similarity Values 

 

 

 

 

 

 

 

Figure. 9. Comparison of percentage of Structural Similarity Values 

 

TABLE VI.  SUMMARY OF THE RESULTS OBTAINED BY THE SVD-RKM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The summary of the results obtained from RKM granular method with SVD entropy is shown in Table VI. 
The total number of members is smaller than original data set but identifies more number of hidden highly 
structure motif patterns. 

 

Figure 10.  BLOSUM62 Matrix  

        Fig. 10 has been interpreted from table VII. From the Fig. 9 we state that the number of strong and weak 

clusters have been increased in Granular RKM with Rough K-Means technique as well as percentage of 

sequence segments have also been increased considerably. 

 

 

 

 

 

 

Granules Number of Members 
Number of 

Clusters 
Data Size (in MB) 

Granule 1 80341 128 5.55 

Granule 2 21425 34 1.48 

Granule 3 77671 124 5.28 

Granule 4 54727 87 3.89 

Granule 5 43451 69 2.60 

Granule 6 53482 85 3.77 

Granule 7 60673 97 4.13 

Granule 8 45012 72 2.96 

Granule 9 66865 107 4.72 

Granule 10 61623 98 4.17 

Total 

 

Original Data 
Set 

565270 

 

660364 

901 

900 

38.55 

17.70 
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TABLE VII.  COMPARISON RESULTS OF DIFFERENT ALGORITHMS  

 

Table VII shows the comparative results obtained from different algorithms and granularization methods. 
From the table VII, we can infer that RGM with Rough K-Means method able to identify more number of 
hidden motif patterns. 

 
 

Figure 11.   Comparison of DBI, DI and BLOSUM62 measure values   
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Fig. 11 shows DBI, DI and HSSP-BLOSUM62 measure values obtained from different methods and different 
granular computing techniques. 

 

Figure 12.  Comparison of Structural Similarity Values    

Fig. 12 shows percentage of structural similarity belonging to clusters obtained from different methods and 

different granular computing techniques. Fig. 11 has been interpreted from table VIII. From the Fig. 11, we state 

that the number of strong and weak clusters have been increased in RGM with SVD entropy along with Rough 

K-Means. 

 

Figure 13.  Comparison of DBI, DI and BLOSUM62 measure values     

Fig. 13 shows DBI and HSSP-BLOSUM62 measure values obtained from different methods and different 

granular computing techniques. The low DBI measure and high HSSP-BLOSUM62 values indicate the 

improvement of the quality of clusters achieved by RGM with SVD entropy along with Rough K-Means 

technique.  
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TABLE VIII.  COMPARISON RESULTS OF DIFFERENT ALGORITHMS  

 

 

A. Sequence Motifs 

 Four different motif patterns obtained from RGM with SVD entropy along with Rough K-Means 
process are shown in tables IX to XII. The following format is used for representation of each sequence motif 
table. Instead of using the traditional format, in this paper protein logo representation has been used [18]. 

TABLE IX.  SHEETS-COILS MOTIF  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Sequence Segments:171 

Structural Similarity: 73.1 
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TABLE X.  COILS MOTIF  

Number of Sequence Segments:34 

Structural Similarity: 72.65 

 

 

 

TABLE XI.  HELICES MOTIF  

 

 

 

 

 

 

 

 

 

 

TABLE XII.  HELICES MOTIF  

Number of Sequence Segments:125 

Structural Similarity: 70.96 

 

 

 

 

 

 

 

 

Number of Sequence Segments:120 

Structural Similarity: 73 
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 The above tables IX-XII show the number of sequence segments belonging to this motif, percentage of 
structural similarity. The graph demonstrates the type of amino acid frequently appearing in the given 
position by amino acid logo.  It only shows the amino acid appearing with a frequency higher than 8%.  The 
height of symbols within the stack indicates the relative frequency of each amino or nucleic acid at that 
position. 

 The x-axis label indicates the representative secondary structure (S), the hydrophobicity value (Hyd.) of the 
position.  The hydrophobicity value is calculated from the summation of the frequencies of occurrence of 
Leu, Pro, Met, Trp, Ala, Val, Phe, and Ile. The variability indicates the number of amino acids with the 
frequency greater than 5%. 

VII. CONCLUSION 

 In this study, the granular computing models such as FGM, AFGM, RGM and combined these methods 
with SVD entropy have studied and implemented. The SVD with Rough Granular computing model generates 
more number of highly structured motif patterns in each granule. Further, the granules obtained in each of the 
above methods are clustered using K-Means and Rough K-Means. The highly structured clusters are used to 
construct the motif patterns. The main objective of generating more motif patterns has been achieved with the 
proposed SVD with rough granular approach and Rough K-Means clustering.  It is believed that this SVD 
entropy with granular strategy make innovative ideas in bioinformatics research. 
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