

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

ISSN: 2349-6363
254

Performance Analysis of Java NativeThread

and NativePthread on Win32 Platform

Bala Dhandayuthapani Veerasamy

Research Scholar

Manonmaniam Sundaranar University

Tirunelveli, Tamilnadu, India

dhanssoft@gmail.com

G M Nasira

Department of Computer Science

Chikkanna Govt Arts College

Tirupur, Tamilnadu, India

nasiragm99@ yahoo.com

Abstract- The most important motivation for using a parallel system is the reduction of the execution time of

computation-thorough application programs. To facilitate the development and analysis of parallel programs the

performance measures are often used. Performance measures can be based not only on theoretical cost models but

also on measured execution times for a specific parallel system. In this article, we selected different computer

architectures and iterations to compare the performance results of NativeThread and Hybrid NativeThread with

Thread class and Concurrent API as well to compare the performance results of NativePthread and Hybrid

NativePthread with Thread class and Concurrent API. The overall performance improvements are five times faster

than Thread class and Concurrent API.

Keywords- JVM, NativeThread, NativePthread, Speedup, Performance.

I. INTRODUCTION

The execution time of a parallel program depends on various factors [1] together with the architecture of the
execution platform, the compiler and operating system used, the parallel programming environment and the
parallel programming model on which the environment is based, as well as properties of the application program
such as locality of memory references or dependencies between the computations to be performed. In principle,
all these factors [1] have to be concerned when developing a parallel program. However, there may be complex
interactions between these factors and it is therefore difficult to consider them all. The factors [1] which decides
a program performances are complex, interrelated and oftentimes, hidden from the programmer. Some of factors
are listed below.

TABLE I. FACTORS RELATED TO PERFORMANCE ANALYSIS

Application related factors Hardware related factors Software related factors

Algorithms

Dataset sizes

Memory usage patterns

I/O communication patterns

Task granularity

Load balancing

Amdahl's law

Processor architecture

Memory hierarchy

I/O configuration

Network

Operating system

Compiler

Pre-processor

Communication protocols

Libraries

There are performance analysis tools available to optimizing an application's performance. They can support

you in understanding what our program is really doing and suggest how program performance should be
enhanced. Multicore programming is warmest part of computing world. There are so many researches going on to
improve speedup and performance of the program through parallel programs. Some of our earlier researches
concentrated on parallel programming; they are, Setting CPU Affinity in Windows Based SMP Systems Using
Java [2], Parallel: One Time Pad using Java [3], JNT - Java Native Thread for Win32 Platform [4], Java Native
Pthread for Win32 Platform [5], Java Native Intel Thread Building Blocks for Win32 Platform [6], Overall
Aspects of Java Native Threads onWin32 Platform [7]. In this article, the speedup and performance
improvements of JNT - Java Native Thread for Win32 Platform [4] and Java Native Pthread for Win32 Platform
[5,7] with Java Thread class and Concurrent API.

The performance analysis of parallel program is already available on Linux platform. Performance evaluation
and analysis of thread pinning strategies on multi-core platforms on Intel architectures investigated already in
Linux operating system [8]. It investigates various cache-aware thread pinning strategies for SPEC OpenMP
applications. It demonstrates in fixing an affinity provides statistically significant performance improvements
compared the Linux OS strategy.

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

255

The Java Virtual Machine (JVM) can carry out many threads of execution at once. These threads
independently execute code that works on values and objects exist in a shared main memory. Threads are
scheduled on a particular virtual machine. There are two basic variations of thread available [4]; they are native
threads and green threads.

The native threads [4] are scheduled by the operating system that is hosting the virtual machine. The operating
system threads are logically divided into two pieces: user level threads and system level threads. The operating
system itself that is the kernel of the operating system lies at system level threads. The kernel is accountable for
managing system calls on behalf of programs that run at user level threads. Any program running under user level
needs create and manage threads usually by the operating system kernel.

NativeThread [4] and NativePthread [5,7] are developed for Win32 platform threads through JNI, which
enables to execute NativeThread and NativePthread on Java program, as well as Java threads with NativeThread
and NativePthread to schedule and execute in hybrid mode. Java Thread class and Concurrent API are green
threads. The green threads [4] are scheduled by the JVM itself. This is the original model for JVM mostly follows
the idealized priority based scheduling. This kind of thread never uses operating system threads library.

II. ADVANTAGES AND DISADVANTAGES

The advantages and disadvantages of NativeThread and NativePthreads are described here under.

A. Advantages

 The native threads are scheduled by the operating system that is hosting the virtual machine.

 If a program performs an illegal function, it can be ended without affecting other programs or kernel.

 Migrating threads among processors: It swaps between threads preempting, switching control from a
running thread to a non-running thread at any time.

 It can run on distinct CPUs.

 Hybrid Thread Model: NativeThread with Thread class and NativePthreads with Thread class

 These facilitate more than one execution methods.

B. Disadvantage

 It is platform dependent.

 Memory leaks: This is the classic situation where a component uses memory but fails to release it,
gradually reducing the amount of memory available to the system.

III. PERFORMANCE ANALYSIS

Scalability [9] is a measure describing whether a performance improvement can be reached that is
proportional to the number of processors employed. Scalability depends on several properties of an algorithm and
its parallel execution. Often, for a fixed problem size n a saturation of the speedup can be observed when the
number p of processors is increased. But increasing the problem size for a fixed number of processors usually
leads to an increase in the attained speedup. In this sense, scalability captures the property of a parallel
implementation that the efficiency can be kept constant if both the number p of processors and the problem size n
are increased. Thus, scalability is an important property of parallel programs since it expresses that larger problem
can be solved in the same time as smaller problems if a sufficiently large number of processors are employed.
The increase in the speedup for increasing problem size n cannot be captured by Amdahl’s law. Instead, a variant
of Amdahl’s law can be used which assumes that the sequential program part is not a constant fraction f of the
total amount of computations, but that it decreases with the input size. In this case, for an arbitrary number p of
processors, the intended speedup ≤ p can be obtained by setting the problem size to a large enough value.

The performance of a computer system is one of the most important aspects of its evaluation. Depending on
the point of view, different criteria are important to evaluate performance. The user of a computer system is
interested in small response times, where the response time of a program is defined as the time between the start
and the termination of the program. On the other hand, a large computing center is mainly interested in high
throughputs, where the throughput is the average number of work units that can be executed per time unit.

The evaluation of the parallel execution performance is measured with respect to speedup, performance
improvement and efficiency with reference to the time taken for both sequential and parallel processing. Speedup
measures how much a parallel algorithm is faster than a corresponding sequential algorithm. The speedup
calculation [9][10] is based on the following equation.

  

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

256

The performance improvement [9][10] depicts measurements relative improvement that the parallel system

has over the sequential process. This performance is measured based on the following equation.

   

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of a computer system becomes larger, if the response times for a given set of application
programs become smaller. The response time [9] of a program can be split into

The user CPU time of program, capturing the time that the CPU spends for executing program; the system
CPU time of program, capturing the time that the CPU spends for the execution of routines of the operating
system issued by program; the waiting time of program, caused by waiting for the completion of I/O operations
and by the execution of other programs because of time sharing.

The time needed [9] for the parallel execution of a parallel program depends on the size of the input data n,
and possibly further characteristics such as the number of iterations of an algorithm or the loop bounds; the
number of processors p; and the communication parameters, which describe the specifics of the communication
of a parallel system or a communication library.

We preferred different computer architectures to examine the performance results of to NativeThread [4] and
Hybrid NativeThread [4] with Thread class and Concurrent API, correspondingly to compare the performance
results of NativePthread[5,7] and Hybrid NativePthread [5,7]with Thread class and Concurrent API. The
computer architectures used to examine the performance results are Core 2 Duo 2.10 GHz with RAM 2 GB, Core
i5 3.30 GHz with RAM 4 GB and Core i7 3.40 GHz with RAM 4 GB. The operating system for Core 2 Duo 2.10
GHz with RAM 2 GB was Microsoft Windows Vista with 32 bit platform and for Core i5 3.30 GHz with RAM 4
GB and Core i7 3.40 GHz with RAM 4 GB was Microsoft Windows 7 with 32 bit platform. Also, we preferred
different iterations to examine the performance results of both cases. The iterations that we preferred are
multiplications of 10 such as 10, 100, 1000, 10000 and 100000. We used the following fraction of program code
similarly in NativeThread and Hybrid NativeThread with Thread class and Concurrent API, also to compare the
performance results of NativePthread and Hybrid NativePthread with Thread class and Concurrent API.

longstartTime, stopTime, elapsedTime;

startTime = System.currentTimeMillis();

for(int i=0;i<N;i++){

stopTime = System.currentTimeMillis();

elapsedTime = (stopTime - startTime);

System.out.println("Java Thread\t" +t.getId()+ "\tValue " + i + " used ms " + elapsedTime);

// getCurrentThreadId() in NativeThread and NativePthread

//getId() in Thread class }

The System.currentTimeMillis() method allows to find the time during execution. This method helped us to
fix the starting time of the iterations and as well as stopping time of the iterations. The elapsed time could be
obtained from the subtractions of stopping time with starting time. The variable N denotes the number of
iterations in the loop. The getId() method will return current thread ID in Thread class likewise the
getCurrentThreadId() method will return current thread ID in NativeThread and NativePthread.

Thread affinity has quickly appeared to be one of the most important factors to accelerate program execution
times on multi-core processors. Still now, it is not clear how to decide for the best thread placement that considers
all the possible performance factors (data locality, memory bus bandwidth, OS synchronization overhead, NUMA
effects, etc.). This article makes an exhaustive empirical study of four and eight thread placement strategies on
three distinct machines. Thread class and Concurrent API have no processors core affinities; this can be executed
independently on core processors. The JVM will manage thread placement on core processors. On the other side,
NativeThread, Hybrid NativeThread, NativePthread and HybirdNativePthread have processor core affinities.

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

257

TABLE II. PERFORMANCE ANALYSIS ON NATIVETHREAD AND HYBRID NATIVETHREAD AMONG FOUR THREADS EXECUTIONS IN MS

TABLE III. PERFORMANCE ANALYSIS ON NATIVETHREAD AND HYBRID NATIVETHREAD AMONG EIGHT THREADS EXECUTIONS IN MS

P
ro

ce
ss

o
rs

It
er

a
ti

o
n

s

T
h

re
a

d
 c

la
ss

C
o

n
cu

rr
en

t
A

P
I

N
a

ti
v
eT

h
re

a
d

(N
T

)

H
y

b
ri

d

N
a

ti
v
eT

h
re

a
d

(H
N

T
)

Speedup Performance Improvements

Thread class Con. API Thread class Con. API

NT HNT NT HNT NT HNT NT HNT

C
o

re
 2

 D
u

o
 2

.1
0

 G
H

z

W
it

h
 R

A
M

 2
 G

B
 10 2 8 6 7 0.33 0.29 1.33 1.14 -2 -2.5 0.25 0.13

100 222 826 345 167 0.64 1.33 2.39 4.95 -0.55 0.25 0.58 0.8

1000 3554 9584 1235 3072 2.88 1.16 7.76 3.12 0.65 0.14 0.87 0.68

10000 43642 98899 25434 29663 1.72 1.47 3.89 3.33 0.42 0.32 0.74 0.7

100000 612702 1151704 650667 579780 0.94 1.06 1.77 1.99 -0.06 0.05 0.44 0.5

C
o

re
 i

5
 3

.3
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 2 3 2 2 1 1 1.5 1.5 0 0 0.33 0.33

100 597 183 204 100 2.93 5.97 0.9 1.83 0.66 0.83 -0.11 0.45

1000 5413 2108 1327 1334 4.08 4.06 1.59 1.58 0.75 0.75 0.37 0.37

10000 11865 22989 13283 13395 0.89 0.89 1.73 1.72 -0.12 -0.13 0.42 0.42

100000 103403 216567 124898 121406 0.83 0.85 1.73 1.78 -0.21 -0.17 0.42 0.44

C
o

re
 i

7
 3

.4
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 3 5 16 16 0.19 0.19 0.31 0.31 -4.33 -4.33 -2.2 -2.2

100 189 207 141 141 1.34 1.34 1.47 1.47 0.25 0.25 0.32 0.32

1000 1155 1730 1544 1326 0.75 0.87 1.12 1.3 -0.34 -0.15 0.11 0.23

10000 9987 17657 16504 15928 0.61 0.63 1.07 1.11 -0.65 -0.59 0.07 0.1

100000 125980 171886 97410 95782 1.29 1.32 1.76 1.79 0.23 0.24 0.43 0.44

Maximum Values on Speedup and Performance Improvements 4.08 5.97 7.76 4.95 0.75 0.83 0.87 0.8

Minimum Values on Speedup and Performance Improvements 0.19 0.19 0.31 0.31 -4.33 -4.33 -2.2 -2.2

P
ro

ce
ss

o
rs

It
er

a
ti

o
n

s

T
h

re
a

d
 c

la
ss

C
o

n
cu

rr
en

t
A

P
I

N
a

ti
v
eT

h
re

a
d

 (
N

T
)

H
y

b
ri

d

N
a

ti
v
eT

h
re

a
d

(H
N

T
)

Speedup Performance Improvements

Thread class Con. API Thread class Con. API

NT HNT NT HNT NT HNT NT HNT

C
o

re
 2

 D
u

o
 2

.1
0

 G
H

z

W
it

h
 R

A
M

 2
 G

B
 10 2 2 4 4 0.5 0.5 0.5 0.5 -1 -1 -1 -1

100 125 226 165 65 0.76 1.92 1.37 3.48 -0.32 0.48 0.27 0.71

1000 1520 4809 1466 1328 1.04 1.14 3.28 3.62 0.04 0.13 0.7 0.72

10000 21098 47608 14325 13270 1.47 1.59 3.32 3.59 0.32 0.37 0.7 0.72

100000 192980 431716 263052 299301 0.73 0.64 1.64 1.44 -0.36 -0.55 0.39 0.31

C
o

re
 i

5
 3

.3
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 1 5 1 1 1 1 5 5 0 0 0.8 0.8

100 274 203 43 100 6.37 2.74 4.72 2.03 0.84 0.64 0.79 0.51

1000 2802 1051 673 678 4.16 4.13 1.56 1.55 0.76 0.76 0.36 0.35

10000 5842 10719 7097 6620 0.82 0.88 1.51 1.62 -0.21 -0.13 0.34 0.38

100000 52585 104524 63667 62853 0.83 0.84 1.64 1.66 -0.21 -0.2 0.39 0.4

C
o

re
 i

7
 3

.4
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 1 2 1 16 1 0.06 2 0.13 0 -15 0.5 -7

100 144 79 76 62 1.89 2.32 1.04 1.27 0.47 0.57 0.04 0.22

1000 456 936 824 717 0.55 0.64 1.14 1.31 -0.81 -0.57 0.12 0.23

10000 4717 9297 7472 8159 0.63 0.58 1.24 1.14 -0.58 -0.73 0.2 0.12

100000 47197 92266 51058 47438 0.92 0.99 1.81 1.94 -0.08 -0.01 0.45 0.49

Maximum Values on Speedup and Performance Improvements 6.37 4.13 5 5 0.84 0.76 0.8 0.8

Minimum Values on Speedup and Performance Improvements 0.5 0.06 0.5 0.13 -1 -15 -1 -7

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

258

When faced to variations of observed execution times, we must use rigorous statistics to study the validity of
our empirical conclusions. Empirical conclusions must not rely on sample metrics such as sample means or
averages; we must rely on statistical tests. We calculated the actual speedup of the program base on the formula
(1) and we calculated the performance improvements base on the formula (2). We consider Thread class program
and Concurrent API program according to the need for formula (1) (2) sequential execution time. The speedup
and performances examined and arranged in the following tables.

TABLE IV. PERFORMANCE ANALYSIS ON NATIVEPTHREAD AND HYBRID NATIVEPTHREAD AMONG FOUR THREADS EXECUTIONS IN MS

P
ro

ce
ss

o
rs

It
er

a
ti

o
n

s

T
h

re
a

d
 c

la
ss

C
o

n
cu

rr
en

t
A

P
I

N
a

ti
v
eT

h
re

a
d

 (
N

T
)

H
y

b
ri

d

N
a

ti
v
eT

h
re

a
d

(H
N

T
)

Speedup Performance Improvements

Thread class Con. API Thread class Con. API

NT HNT NT HNT NT HNT NT HNT

C
o

re
 2

 D
u

o
 2

.1
0

 G
H

z

W
it

h
 R

A
M

 2
 G

B
 10 2 2 2 2 1 1 1 1 0 0 0 0

100 125 226 27 38 4.63 3.29 8.37 5.95 0.78 0.7 0.88 0.83

1000 1520 4809 1005 829 1.51 1.83 4.79 5.8 0.34 0.45 0.79 0.83

10000 21098 47608 8595 10325 2.45 2.04 5.54 4.61 0.59 0.51 0.82 0.78

100000 192980 431716 263052 299301 0.73 0.64 1.64 1.44 -0.36 -0.55 0.39 0.31

C
o

re
 i

5
 3

.3
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 1 5 1 1 1 1 5 5 0 0 0.8 0.8

100 274 203 127 35 2.16 7.83 1.6 5.8 0.54 0.87 0.37 0.83

1000 2802 1051 519 563 5.4 4.98 2.03 1.87 0.81 0.8 0.51 0.46

10000 5842 10719 5760 5773 1.01 1.01 1.86 1.86 0.01 0.01 0.46 0.46

100000 52585 104524 61949 68293 0.85 0.77 1.69 1.53 -0.18 -0.3 0.41 0.35

C
o

re
 i

7
 3

.4
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 1 2 1 1 1 1 2 2 0 0 0.5 0.5

100 144 79 38 19 3.79 7.58 2.08 4.16 0.74 0.87 0.52 0.76

1000 456 936 392 506 1.16 0.9 2.39 1.85 0.14 -0.11 0.58 0.46

10000 4717 9297 4989 5087 0.95 0.93 1.86 1.83 -0.06 -0.08 0.46 0.45

100000 47197 92266 49862 49641 0.95 0.95 1.85 1.86 -0.06 -0.05 0.46 0.46

Maximum Values on Speedup and Performance Improvements 5.4 7.83 8.37 5.95 0.81 0.87 0.88 0.83

Minimum Values on Speedup and Performance Improvements 0.73 0.64 1 1 -0.36 -0.55 0 0

TABLE V. PERFORMANCE ANALYSIS ON NATIVEPTHREAD AND HYBRID NATIVEPTHREAD AMONG EIGHT THREADS EXECUTIONS IN MS

P
ro

ce
ss

o
rs

It
er

a
ti

o
n

s

T
h

re
a

d
 c

la
ss

C
o

n
cu

rr
en

t
A

P
I

N
a

ti
v
eP

th
r
ea

d

(N
T

)

H
y

b
ri

d

N
a

ti
v
eP

th
r
ea

d

(H
N

T
)

Speedup Performance Improvements

Thread class Con. API Thread class Con. API

NT HNT NT HNT NT HNT NT HNT

C
o

re
 2

 D
u

o
 2

.1
0

 G
H

z

W
it

h
 R

A
M

 2
 G

B
 10 2 8 2 2 1 1 4 4 0 0 0.75 0.75

100 222 826 27 35 8.22 6.34 30.59 23.6 0.88 0.84 0.97 0.96

1000 3554 9584 953 2335 3.73 1.52 10.06 4.1 0.73 0.34 0.9 0.76

10000 43642 98899 16009 22336 2.73 1.95 6.18 4.43 0.63 0.49 0.84 0.77

100000 612702 1151704 650667 579780 0.94 1.06 1.77 1.99 -0.06 0.05 0.44 0.5

C
o

re
 i

5
 3

.3
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 2 3 1 1 2 2 3 3 0.5 0.5 0.67 0.67

100 597 183 39 42 15.31 14.21 4.69 4.36 0.93 0.93 0.79 0.77

1000 5413 2108 999 1021 5.42 5.3 2.11 2.06 0.82 0.81 0.53 0.52

10000 11865 22989 10227 11525 1.16 1.03 2.25 1.99 0.14 0.03 0.56 0.5

100000 103403 216567 130318 125050 0.79 0.83 1.66 1.73 -0.26 -0.21 0.4 0.42

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

259

C
o

re
 i

7
 3

.4
0

 G
H

z

W
it

h
 R

A
M

 4
 G

B
 10 3 5 1 1 3 3 5 5 0.67 0.67 0.8 0.8

100 189 207 96 102 1.97 1.85 2.16 2.03 0.49 0.46 0.54 0.51

1000 1155 1730 969 883 1.19 1.31 1.79 1.96 0.16 0.24 0.44 0.49

10000 9987 17657 9000 10000 1.11 1 1.96 1.77 0.1 0 0.49 0.43

100000 125980 171886 98852 98751 1.27 1.28 1.74 1.74 0.22 0.22 0.42 0.43

Maximum Values on Speedup and Performance Improvements 15.31 14.21 30.59 23.6 0.93 0.93 0.97 0.96

Minimum Values on Speedup and Performance Improvements 0.79 0.83 1.66 1.73 -0.26 -0.21 0.4 0.42

V. RESULTS AND DISCUSSIONS

We point out the minimum and maximum execution speedup and improvements in the above tables to
recognize where the overall speedup and improvements are occurred.

The table 1 with NativeThread and Hybrid NativeThread among four threads, the maximum speedup 6.37
shows at the Core i5 3.30 GHz processor with 100 iteration execution on Thread class comparison with
NativeThread and the minimum speedup 0.06 shows at the Core i7 3.40 GHz with 10 iteration execution on
Thread class comparison with NativeThread. Likewise, the maximum performance improvements 0.84 shows at
the Core i5 3.30 GHz with 100 iteration execution on Thread class comparison with NativeThread and the
minimum performance improvements -15 shows at the Core i7 3.40 GHz with 10 iteration execution on Thread
class comparison with NativeThread.

The table 2 with NativeThread and Hybrid NativeThread among eight threads, the maximum speedup 7.76
shows at the Core 2 Duo 2.10 GHz processor with 1000 iteration execution on Concurrent API comparison with
NativeThread and the minimum speedup 0.19 shows at the Core i7 3.40 GHz with 10 iteration execution on
Thread class comparison with NativeThread. Likewise, the maximum performance improvements 0.87 shows at
the Core 2 Duo 2.10 GHz with 1000 iteration execution on Concurrent API comparison with NativeThread and
the minimum performance improvements -4.33 shows at the Core i7 3.40 GHz with 10 iteration execution on
Thread class comparison with NativeThread.

The table 3 with NativePthread and Hybrid NativePthread among four threads, the maximum speedup 8.37
shows at the Core 2 Duo 2.10 GHz processor with 100 iteration execution on Concurrent API comparison with
NativePthread and the minimum speedup 0.64 shows at the core 2 Duo with 100000 iteration execution on
Thread class comparison with NativePthread. Likewise, the maximum performance improvements 0.88 shows at
the Core 2 Duo 2.10 GHz with 100 iteration execution on Concurrent API comparison with NativePthread and
the minimum performance improvements -0.55 shows at the Core 2 Duo 2.10 GHz with 100000 iteration
execution on Thread class comparison with NativePthread.

The table 4 with NativePthread and Hybrid NativePthread among eight threads, the maximum speedup 30.59
shows at the Core 2 Duo 2.10 GHz processor with 100 iteration execution on Concurrent API comparison with
NativePthread and the minimum speedup 0.79 shows at the core i5 with 100000 iteration execution on Thread
class comparison with NativePthread. Likewise, the maximum performance improvements 0.97 shows at the
Core 2 Duo 2.10 GHz with 100 iteration execution on Concurrent API comparison with NativePthread and the
minimum performance improvements -0.26 shows at the Core i5 3.30 GHz with 100000 iteration execution on
Thread class comparison with NativePthread.

According to all four tables the maximum and minimum speedup and performance improvement values are
recognized with the overall maximum and minimum speedup and performance improvements. The overall
maximum speedup 30.59 obtained at the Core 2 Duo 2.10 GHz processor with 100 iteration and eight thread
executions on Concurrent API comparison with NativePthread and the maximum performance improvements
0.97 obtained at the Core 2 Duo 2.10 GHz with 100 iteration and eight thread executions on Concurrent API
comparison with NativePthread. Likewise the minimum speedup 0.06 obtained at the Core i7 3.40 GHz with 10
iteration and four thread executions on Thread class comparison with NativeThread and the minimum
performance improvements -15 obtained at the Core i7 3.40 GHz with 10 iteration and four executions on Thread
class comparison with NativeThread.

In the above table 1-4 all positive values are improved performances and negative values are degraded
performances. We have 2 columns of performance improvements with each processor cores have 5 rows.
Therefore each table 1-4 of comparisons has 60 comparisons and totally on table 1-4 have 240 comparisons.
Among these 240 comparisons, only 48 comparisons proceeded negative points and 192 comparisons positive.
Along with negative 48 points of comparisons, 36 comparisons are Thread class based and remaining 12
comparisons belongs to Concurrent API based. As on average performance improvements obtained one times
faster than Concurrent API and four times faster than Thread class and overall five times faster than Thread class
and Concurrent API.

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

260

We demonstrate that fixing an affinity provides statistically significant performance improvements compared.
The following figure 1-4 show the speedup and performance improvements based on the above tables. In the
figures X axis shows statistics values for different core processors, the X axis values from 1 to 5 values Core 2
Duo 2.10 GHz, the X axis values from 6 to 10 shows Core i5 3.30 GHz and the X axis values from 11 to 15
shows Core i7 3.40 GHz. In the figures Y axis values shows the actual speedup and the performance
improvements on different core processor with different iterations of executions.

Speedup Performance Improvements

Figure 1. Graph on NativeThread and Hybrid NativeThread among four threads

 Speedup Performance Improvements

Figure 2. Graph on NativeThread and Hybrid NativeThread among eight threads

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

261

 Speedup Performance Improvements

Figure 3. Graph on NativePthread and Hybrid NativePthread among four threads

 Speedup Performance Improvements

Figure 4. Graph on NativePthread and Hybrid NativePthread among eight threads

VI. CONCLUSION

The performance of a computer system is one of the most important aspects of its evaluation. Always,
computer users interested in small computer response times or execution time. On the other hand, a large
computing center is mainly interested in high throughputs and scalability. The execution time of a parallel
program depends on many factors including the architecture, compiler, operating system, parallel programming
model as well as properties of the application program such as locality of memory references or dependencies
between the computations to be performed. The evaluation of the parallel execution performance is measured
with respect to speedup, performance improvement and efficiency with reference to the time taken for both
sequential and parallel processing. Speedup measures how much a parallel algorithm is faster than a
corresponding sequential algorithm. In this article, we preferred different computer architectures, program
iterations and different numbers of threads compared the speedup and performance improvements results of
NativeThread and Hybrid NativeThread with Thread class and Concurrent API as well as compared the speedup
performance improvements results of NativePthread and Hybrid NativePthread with Thread class and Concurrent
API. As an average performance improvement, we obtained one times faster than Concurrent API and four times
faster than Thread class and the overall performance improvements are five times faster than Thread class and
Concurrent API.

International Journal of Computational Intelligence and Informatics, Vol. 4: No. 4, March 2015

262

REFERENCES

[1] Bala Dhandayuthapani Veerasamy, An Introduction to Parallel and Distributed Computing through java, Number of Pages 824, First
Edition, Penram International Publishing (India) Pvt, Mumbai, India, ISBN-10: 81-87972-84-X, ISBN-13: 978-81-87972-84-6.

[2] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira,Setting CPU Affinity in Windows Based SMP Systems Using Java,
International Journal of Scientific & Engineering Research, USA, vol-3, no-4, pp-893-900, 2012, ISSN 2229-5518 11

[3] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira,Parallel: One Time Pad using Java, International Journal of Scientific &
Engineering Research, USA, vol-3, no-11, pp.1109-1117, 2012, ISSN 2229-5518 11

[4] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira,JNT-Java Native Thread for Win32 Platform, International Journal of
Computer Applications, USA, vol-71, no- 1, 2013, ISSN 0975-8887. DOI: 10.5120/12212-8249

[5] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira, Java Native Pthreads for Win32 Platform, “World Congress on Computing
and Communication Technologies (WCCCT’14), vol., no., pp.195-199, 2014, IEEE Xplore, ISBN: 978-1-4799-2876-7, DOI:
10.1109/WCCCT.2014.13

[6] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira, Java Native Intel Thread Building Blocks for Win32 Platform, Asian Journal
of Information Technology, Accepted on for publication on March 03, 2014. Medwell Publishing, ISSN: 1682-3915.

[7] Bala Dhandayuthapani Veerasamy and Dr. G.M. Nasira, Overall Aspects of Java Native Threads on Win32 Platform, Second
International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA-2014), vol.
II, pp.667-675, 2014, Bangalore, published in ELSEVIER in India. ISBN: 9789351072621.

[8] Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, Denis Barthou, Performance evaluation and analysis of thread pinning strategies on multi-
core platforms: Case study of SPEC OMP appli cations on intel architectures, High Performance Computing and Simulation (HPCS),
pp.273 -279, 2011.

[9] Thomas Rauber, Gudula Runger, Parallel Programming For Multicore and Cluster Systems,Springer-Verlag Berlin Heidelberg, ISBN
978-3-642-04817-3, 2010, DOI 10.1007/978-3-642-04818-0

[10] Shameem Akhter,Jason Roberts,Multi-Core Programming Increasing Performance through Software Multi-threading,Intel
Corporation, 2006

