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Abstract- Neural Networks augmented with back propagation learning is one the extensively used data
classification tools. In this paper, a novel classification scheme is elaborated. The method evolved has two
steps: In the first step, significant feature selection is made by using decision tree and GA-CFS (genetic
algorithm based correlation based feature selection). In the second step, the connection weights of feed
forward network (FFN) are optimized using Particle swarm optimization (PSO) and GA. To convalidate
the efficacy of the method, it was applied to four benchmark datasets namely diabetes, iris, ionosphere
and heart statlog. PSO showed best classification accuracy in the range of 86%-97% for all the datasets
considered when compared with BPN and GA based networks. The topology of the PSO optimized FFN
was also modest, with a few neuronsin the hidden layer.

Keywords-Particle Swarm Optimization, Genetic Algorithm, Bderward neural network, backpropagati
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I. INTRODUCTION

FFN is an informatiomprocessing paradigm that is inspired by the wajogioal nervous systems, such
the brain, process information. It is composed d¢drge number of highly interconnected processiements
(neurons) working in unisomtsolve specific problems. Developing a neural nétwnvolves first training th
network to carry out the desired computations.upedvised learning, the network is trained by pdng it with
input and matching output patterns (training dafa)comnonly used cost is the me-squared error (MSE),
which tries to minimize the average squared eretwben the network's output, and the expected tutgeural
networks have been criticized for their poor intetability, since it is difficult for humai to interpret the
symbolic meaning behind the learned weights. Adages of neural networks, however, include theith
tolerance to noisy data and their ability to clysgiatterns on which they have not been trai The most
common method adopted ftmining of FFN is back propagation method (BPM).BPN model each node
connected to all nodes in the adjoining layer amcheconnection has an unbounded positive or negaitdight
associated with it. Back propagation learning wdoigsmaking modiications in weight values starting at
output layer then moving backward through the hididgers of the network [14]. BPN uses the gra-based
approach, which either trains slowly or may getigitrwith local minimum [10, 23, 26, 27, 30, 36].€Fhare
several variants and extensions of BP used famitrgineural network: gradient descent with momentsecalec
conjugate gradient (SCG), resilient propagation RRP), BFGS qua-Newton, and Levenbe-MarquarJ48
(LM) algorithms [12]. In addition, one ay apply the commonly used optimization method$ sag Geneti
Algorithms (GAs), Particle swarm optimization (PS@itificial Bee Colony (ABC) Optimization Algoritim and
Ant Colony optimization algorithm for determiningpthonly the connection weightsut also for optimizing
various parameters of NN such as number of hiddgers, number of nodes in hidden layers, releveatiufe
subsets, the learning rate and the momel

This paper presents the application of two evohaiyg algorithms namely PSCnd GA for optimizing
network connection weights of FFN. Computationalrkvéas been carried out on UCI machine lear
benchmark datasets. Section 2 elaborates on GAoptighizing connection weights of FFN using GA. 1
applications of PSO for optimizingpnnection weights of FFN are explained in SecBio8ection 4 describes t
two filters: GA-Correlation based feature selection -CFS) and decision tree used for identifying
significant inputs for FFN. Computational resultsdaconclusions are fsented in Section 5 and Sectiot
respectively.

[I.  GENETICALGORITHM

GA is a stochastic general search method, capéletfectively exploring large search space, whickisually
required in case of attribute selection. Furthetike many search alrithms, which performs a local, gree
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search, GAs performs the global search. GA is dimggation technique inspired by natural selectionl natural
genetics [11]. GA is mainly composed of three ofpesa reproduction, crossover, and mutation. Aissa $tep of
GA, an initial population of individuals is generdtat random or heuristically. In each generatiompopulation
is evaluated using fitness function. In the setgctiprocess (reproduction operation), the high $isne
chromosomes are used to eliminate low fithess chsomes. But, selection alone does not produce any n
individuals into the population. Hence selectisrfdllowed by crossover and mutation operationfie iew
population generated undergoes further selectioygsover and mutation till the termination criterics not
satisfied. Convergence of the genetic algorithmedes on the various criterions like fithess valohieved or
number of generations, as specified by the user3alL

A. GA optimized FFN connection weights (GAFFN)

GA has been used for optimizing the NN paranseincluding, architecture, connections weighitmiscant
feature selection, activation function, trainingaithm and numbers of iterations [27]. GA has besed to
search optimal hidden-layer architectures, conwigégtiand training parameters (learning rate andnewatum
factor) of NN for predicting community-acquired mmeonia among patients with respiratory complai2).[
Jihoon et al. [16] have proposed an approach tonilig-criteria optimization problem of feature s selection
using GA with NN. GA has been used to optimize tbanection weights of NN and has been applied for
predicting stroke disease [36]. GA has been usedptimize the ANN parameters namely: learning rate,
momentum coefficient, activation function, numbé&himden layers and number of nodes for workergassent
into virtual manufacturing cells (VMC) applicati¢p6]. GAFFN model has been experimented for theystf
the heat transport characteristics of a Nano flu@mo syphon in a magnetic field where, GA is useoptimize
the number of neurons in the hidden layer, thefmierft of the learning rate and the momentum factfoNN
[35]. Application of GA for optimizing the conneacti weights of FFN for diagnosis of PIMA diabetidaket is
reported in [4]. The functioning of proposed hyb@AFFN [4] is explained as follows.

a) The original population is a set of randomly geret® chromosomes. For a FFN with single hidden
layer with m hidden nodesn inputs nodes angd output nodes, the number of connection weights is
equal to(n+1)* m+(m+1)*p. Each chromosome is made up of number of genea &mtotal number
of connection weights of FFN. Genes are represditedal number encoding method.

b) Repeat steps (c) - (f) until termination condit{®0% of the chromosomes converge to the same gitnes
value or maximum generation reached) is reached.

c) Fitness of each chromosome is computed by maximptimization method: Fitnes<{) = 1 E, for
each chromosom@i of the population, wherg is the error computed as mean square elM&E] at the
output layer.

d) The best-fit chromosomes (lowddEE) replace the worst fit chromosomes (Reproductiep)s

e) Crossover step is implemented using single poinssover, two-point crossover and multi point
crossover. In addition, a new type of crossovdedahixed crossover is used. In mixed crossovegmi
M number of generation, multipoint crossover is egapfor the first 60% of generation, followed byotw
point crossover for the next 20% generation andllfinone point crossover for the remaining
generations.

f)  Mutation is applied by changing the weights of amtly selected chromosomes by multiplying it with a
random number to generate the new population.

The weights represented by the fittest chrammes (with leasMSE) in the final population are the optimized
connection weights of the FFN. Functioning of GAFBINhown in Fig. 1.

[ll.  PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO)

PSO [7] is a population based stochastic optindpatechnique, inspired by social behavior of blatKing
or fish schooling. A basic variant of PSO algoritarks by having a population (called swarm) ofdidate
solutions (called particles). The movements ofipiag are directed by their own best-known positi@ipest in
the search-space as well as the entire swarm's position: Gbest. When improved positions are being
discovered, they in turn guide the movements ofstivarm. The process involves both social interastiand
intelligence so that the swarms learn from thein@xperience (local search) and also from the épes of
neighbor swarms (global search) [18].

The main parameters used in the PSO algorithmhergodpulation size (number of particles), number of
cycles, maximum change of a particle velogityax, inertia weight w and constantd and c2. c1 andc2 are
two positive constants usually set tor@dl() andrand2() are two random functions in the range [O\fax is
un upper limit on the maximum change of particléowity [7] and w is an inertia weight employed as an
improvement proposed by [37] to control the impafgprevious velocity on current velocity: plays the role of
balancing the global search and the local seardndanreases linearly with time [37]. User specifiadle of
Vmax (upper and lower bounds) is used to control trengh in particle velocity. The PSO process isdlitéd
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with a group ofN random particles (solutions). Each particle isr@gpnted by its position as a point i
dimensional space, wheké is the number of variables. Each partichaonitors its current positioNi, particles
best positiorPi and its velocityi. In each cycle, both particles best position amdall best position are used to
find the current velocity representing both cogmiteind social collaboration among the particle§ fy7using
equation 1. The current velocity is used to uptiaeposition of particle using equation 2.

Vcurrent = w * Vprevious + c1 * rand1() * Pbest — XPrevious + c2 * rand2() * (Gbest — Xprevious) eq(1)

Xcurrent = Xprevious + Vcurrent eq(2)
whereVprevious andVcurrent are the previous and current velocities of theiglarrespectivelyXprevious and
Xcurrrent are previous and current position of the particleand c2 are the acceleration constanis,js an
inertial weight,rand1l andrand2 are the random variables with values between 0Olafidhe process is repeated
until specified number of iterations is exceededher desired fithess score is achieved. Shih keasladopted
PSO based feature selection to enhance the atadisifi accuracy of Linear discriminate analysis @RBA)
[38]. Some of major differences between PSO anda@fas follows [9, 10, 23, 28].

a) The chromosomes under goes the process of repraductossover and mutation to generate the newfset
high fitness chromosomes in next iteration. As @goloto GA, the evolutionary process in the PSO doés
create the new particles from parent particlesebts the particles in PSO move towards the bediles
solution by updating the particles using the Ideedt Pbest) and global besQbest) solution.

b) One of the major downsides of the GA is their laEknemory (i.e. GA's crossover and mutation openrati
may at times loose the best solution achieved 3pvidich limits the search and convergence cajpluif
the algorithms. PSO algorithm emerges as a powst@ahastic optimization technique, in which pdesc
have memory (stores the previous iterations loeat lf°Pbest) and global bestGbest) solution) and work
collectively using local best anéPlfest) and global best@best) solution to move towards a solution region
containing the global or a near-optimal solution.

A. PSO optimized FFN connection weights(PSOFFN)

PSO has been used to optimize the neural nlefparameters: number of hidden layers, numberdens in
hidden layer, the input neurons and connection leid® SOFFN has been used to optimize the weightsfer
function and topology of FFN constructed for reaetpower control [30]. Comparison of hybrid GAFFNda
PSOFFN has been carried out for Tennessee EasirErciiemical process reactor by optimizing the oekw
weights [23]. The hybrid PSOFFN has been modeledrdmm perceptrons in predicting the outcome of
construction claims in Hong Kong [6]. PSO based Ahd$ been used distinguish between normal subjedts a
those with tremor (Parkinson's disease) [9]. Comipar study of variants of PSO such as multi-sR80,
Guaranteed convergence PSO, conventional BPN methddGA-based techniques have been carried out for
medical datasets: breast, diabetes and HepafjsPBEOFFN has been used has been used for mdaigabsis
problem of breast cancer, heart disease and d&@afiZi¢ PSO has been used to optimize both archite@and
connection weights of neural network [21] for clésation of diabetes and heart dataset. It imfbthat PSO
algorithm promises global optimum with a large @bitity and high convergence rate [6, 8, 10, 19,38. The
significant step of the PSO is the representatiofi the particles. For a FFN with single hiddenelayith m
nodes in hidden layen, inputs nodes angl output nodes, the number of connection weightgvisn by(n+1)*

m +(m+1)* p. The total number of connection weights of the Feldides the number of dimensions of the PSO
particle. The proposed PSOFFN algorithm is expthimelow.

a) Initialize the original population as set of N pelds (each particle representing connection WeighiNN),
which is generated randomly.

b) Train the NN using particle (set connection weiglgigg each particle).

c) Compute the learning error at output layer of NNMnéss of each particle is computed by maximum
optimization method. Compute the fitness is givgri-tiness Pi) = 1/ E for each particle of the population,
whereE is the error computed &4SE at the output layer of NN as the difference betwerpected and
estimated output.

d) Compare the particles current fitness value witltigas Pbest. If the current fitness value of particle is
better than the previod®est then sePbest as current fitness value. IF the current besedisnvalue is better
than the previou&best then seGbest as best current fitness value.

e) Compute the velocity and update position of eactigha based orsbest value (lowest learning error found
in entire learning process so far) dplokst value (each particles lowest learning error spdamng equations
1and 2.

f) Repeat steps (b) - (e) until terminating conditismeached (user defined maximum iterations or mmimn
error criterion).

The Gbest positioned particle, represents the optimized eotion weights for FFN. The performance of

PSOFFN is measured using correctly classifieddatst. Functioning of PSOFFN is shown in Figure. 2.
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IV. FEATURE SELECTION FILTER APPROACH

The high dimension data makes testing and traimhgeneral classification methods difficult. Featur
selection is an essential pre-processing methoenove irrelevant and redundant data. Featuressgbgection
not only improves classification accuracy but alsduces the computational time of classifier [29]. 3 this
work, two filter methods namely: GA-CFS and deaisiee has been used.

A. Decision tree

The decision tree C4.5 (Weka j48) [15] hasnbiegestigated for exploring the significant attribs [2, 3, 4]
for benchmark data sets. A decision tree [31]d81@le tree like structure where non-terminal naggsesent
tests on one or more attributes and terminal noefeect decision outcomes. The non-terminal noddebé
decision tree represents the significant attribatesgiven as input to feed forward neural network.

B. GA-CFSfilter

Weka's [15] GA is used as random search methothdottie significant attribute set [5]. The chromoss
are binary encoded where in, each chromosome isgepted as string of zeroes (attribute is notifsignt) and
ones (attribute is significant). The randomly gemed population undergoes the selection, crossewer
mutation process until the termination conditiomat met. The fithess of the chromosome is estichateng

correlation based feature selection (CFS). EqudtioiCFS is given by equatia, = ﬁ , where
U u
r is the correlation between the summed feature sulzs®l the class variabli,is the number of subset
features™, is the average of the correlations between theesubatures an the class variable, ang is the
average inter-correlation between subset featu?8% [The process of selection, crossover and nautait

repeated for quantified number of generations. fittest chromosome represents the set of signififeatures.

V. RESULTS AND DISCUSSIONS

The model development involved two stagesi@hificant feature set determination assisted By GFS
and decision tree (ii) optimization of connectiogights of FFN using PSO and GA. The performandgRif,
GAFFN and PSOFFN is evaluated using classificatioouracy computed as (Total number of correctly
classified test samples) / (Total number of testfdas). Experiments are conducted on four datasatsely
Heart-statlog, diabetes, iris and lonosphere fradh Machine Learning Repository.

In the first stage, the GA-CFS filter and idem tree C4.5 are applied to the datasets fdufeaselection.
The number of features selected by GA-CFS and idectsee for the four datasets is depicted in Tdbl&or
feature extraction using GA-CFS, the GA parametpofulation size, number of generations, crossoser
and mutation is set to 20, 20, 0.6 and 0.033 reiyedye K-fold cross-validation wittk = 10 is used for both
decision tree and GA-CFS feature selection process.

In the second stage, 60% and 40% of datagets used for training and testing respectivelyrthar,
investigations were done by varying the numbermafols and the topology of BPN, GAFFN and PSOFFM wit
(i) all input features and (ii) with significantdeures as shown in Table 1. For GAFFN, the chromesoare
encoded using real numbers. Four types of crossoperations were experimented: single point, twmntpo
multiple point and mixture cross over with diffetgropulation size and number of generations. Thaitetion
condition used is that almost eighty percent of dheomosomes represent the same connection weights.
GAFFN was experimented by varying the size of papoh size with 20-60, 2-20 numbers of nodes in the
hidden layer and with 50-200 numbers of generatiéimsong the various topologies experimented, the best
performance of GAFFN with all inputs, GA-CFS andcB@n tree identified inputs is shown in TabléAlith
the inputs identified by decision tree, the singlEnt and mixture cross over resulted in slight ioyed
accuracy compared to two points and multiple cressoGA-CFS identified features resulted in almeesine
classification accuracy for all the four types odss overs operations.

In addition to optimizing the connection weigbf FFN using GA, similar work was endeavoreagg$?SO.
Experiments were piloted to find the most promistogfiguration of PSOFFN by varying valuesodfandc2,
number of hidden neurons, number of PSO particdelsraimber of iterations. It was found that the seredion
constantscl and c2 for Gbest and Pbest, number of particles, number of hidden neurons aunchber of
iterations for PSOFFN are interrelated. The outcmE each of this parameter of PSOFFN are presented
below.

a) Acceleration constantsl andc2: The acceleration constacit andc2 affect the influence of the global best
and local best solution of the particle. The perfance of PSOFFN was evaluated withandc2 ranging
from 1.2 to 2.2. The PSOFFN performance is foundedetter focl andc2 in the range of 1.8 to 2.0 with
all inputs as well as with reduced significantibtites. The number of nodes in hidden layer wagedar
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from 2 to 20. Other parameters were kept constatit the 30 particles, maximum number of 200
iterations. The PSOFFN took longer processing tiandower values otl andc2 while, the processing
time of PSOFFN gradually declines with the increimsealues oftl andc2, since higher values a@fl. and

c2 produce large variation in the position of thetiokes.

b) Number of particles: Number of particles in the A8Pulation symbolizes the number of possible smhut
that is covered in the problem. Number of partickes varied from 5 to 40. The PSOFFN performance
gradually improved with the increase in the numifeparticles. The performance was best with 15Go0 3
particles with PSOFFN using all inputs as well athilter identified significant inputs. The cldfisation
accuracy of PSOFNN, with number of particles lart@n 30, remained almost same and in some case got
deteriorated. Furthermore, as the number of pegiid increased, PSOFNN took longer processing time

c) Maximum number of iterations: The performance oOFEN was also investigated by varying the number
of maximum iterations (terminating criterion) rangi from 50 to 250. The PSOFFN performance
progressively enhanced with the increase in the bmunof iterations but did not show markable
improvement beyond 200 iterations.

d) Number of nodes in hidden layer: Experiments wareducted by ranging the number of nodes in the
hidden layer from 2 to 20. As the number of hiddesdes is increased, the PSOFFN takes longer
processing time; since number of nodes decidedithension of each particle.

For iris dataset the BPN accuracy with allutgpresulted in same accuracy. Similar resultoheerved for
GAFFN with all and reduced inputs. However PSOFRNv&ed slight improved classification with reduced s
when compared to all inputs. For the remaining skita diabetes, heart and ionosphere, the perfeenah
BPN, GAFFN and PSOFFN with reduced set of inputsrgld a markable improvement when compared to with
all inputs. Input features selected by both denisiee and GA-CFS resulted in almost identicassifecation
precision for PSOFFN. Input features selected by@7S stemmed in enhanced classification accuragnwh
compared with features identified by decision timeGAFFN as well as for BPN. Figure 3 clearly pesvthat
significant inputs identified by GA-CFS and decisitree with BPN leads to improvised categorization
accuracy, compared to results produced by BPN alitthe inputs. Relative performance of FFN trainesthg
BPN, GA and PSO with all inputs and significantutgidentified by decision tree and GA-CFS for toer
benchmark datasets is compared with the performamoearious classifiers as presented in Table 2 Th
GAFFN and PSOFFN showed improved classificationganad to the earlier reported work.

VI. CONCLUSIONS

This paper discussed the applications of fgmit feature detection algorithms and conseqagptitization
of FFN weights using two evolutionary algorithmg.yiGA and PSO. The two schemes were used in adedc
fashion for the classification task. Results hatews that, PSO can classify the data with remagkabl
classification accuracy when compared to GA.aretieécearlier reported work.
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Table 1: Comparison of BPN, GAFFN and PSOFFN performance various datasetswith different topologies

Feature Number
Data Set selection of BPN GAFFN PSOFFN
method Features
Topology | Accuracy| Topology] Accurac Topolog Acacy
Diabetic All 8 8-24-1 72.88 8-20-1 77.707 8-4-1 £
GA-CFS 4 4-8-1 79.5 4-10-1 84.713 4-8-1 86.383
DT 5 5-15-1 78.21 5-15-1 84.076 5-2-1 86.809
Iris All 4 4-5-3 95.00 4-10-3 96.66 4-10-3 96.667
GA-CFS 2 2-4-3 95.00 2-10-3 96.66 2-8-3 97.778
DT 2 2-4-3 95.00 2-10-3 96.66 2-8-3 97.778
lonosphere All 34 34-19-2 83.57 34-12 -p 85.802 -184Q 90.00
GA-CFS 14 14-9-2 85.71 14-10-2 86.42 14-6-2 33.8
DT 14 14-9-2 85.00 14-12-2 87.037 14-8-2 94.313
Heart Statlog | Al 13 13-8-2 75.9259 13-10-3 83.57 3-712 85.802
GA-CFS 7 7-5-2 77.778 7-15-2 85.802 7-8-2 88.27R
DT 10 10-7-2 82.407 10-10-2 85.802 10-5-2 87.037

Table 2. Classification accuracy of the proposed model compared with different machine lear ning methods

Classifier Algorithm Classification Accuracy Reference
Diabetic Iris lonosphere Heart Statlog
Decision tree 74.32+1.18 92.80+0.93 89.74+1.03 8280
Ja8 73.74 £0.79 94.67+0.7/ 89.74+0.74 78.67+1.49
- Alaxander et

Kernel Density 71.41+0.51 95.20+0.58 89.00+0.81 5860.94 al.(2001) [1]
Kstar 70.29+.43 94.67+0.00 84.02+0.70 76.81+0.7[7
Multilayer Regression 76.97+0.46 84.27+0.18 86.5880 83.78+0.89
Naive Bayes 75.31+0.28 95.93+0.38 91.77+0.48 8 mHt
Naive Bayes 75.75%5.32 95.53+5.02 82.17+6.14 839Rt5
Cc4.5 74.4945.27 94.73+5.3( 89.74+4.38 78.15+7.42
3NN 73.86+4.55 95.2045.11]  86.02+4.31 79.1146.7]7 Kotsiontis et al.
RIPPER 75.22+4.86 93.93+6.5Y  89.90+4.63 78.7¢6.6p 2006 [20]
BP 77.04+4.85 84.80+7.1 87.0745.5p 83.3046.2
SMO 77.07+4.14 84.87+7.63 87.93+4.69 83.81+5.59
PSO-PSO 75.6354+3.7 80.113+2.147
PSO-PSO-WD 76.4583+3.159 81.902+3.057 .
Evolutionary Prog. 77.621+.014 83.235+2.029 alr\?;cl;g%[eztl]
GA (Conn. Matrix) 75.44+1.65 76.78+7.87
GA(Neural Cross) 78.58+2.19 85.1+2.78
UCS with GA 74.8+4.4 94.9+4.2 72.915.1 84.8+11.6 Hai et al
NLCS with GA 76.5+4.2 94.9+6.7 87.446.5 61.1+7.1 (2008)[13]
HCFLNN 79.82 98.74 Satchidananda e
FLNN 78.12 98.66 al. (2009)[33]
ISO-FLANN 79.63 99.03 90.38
FLANN 78.82 97.33 80.94 )
MLP 77.19 94.00 73.28 S:rc?zlgigigi? e
SVM 75.37 91.70 83.74
FSN 76.39 96.00 87.50
LDA - all features 76.4 98.0 86.5
LDA- forward feature selection 74.8 96.3 85.3
LDA- backward feature selection 76.5 93.7 90.0 Shih-Wei et
LDA- PCA based feature selection 75.9 90.0 86.90, al.2009[38]
LDA- exhaustive feature selection 76.7 97.0
PSOLDA 76.7 97.0 92.2
BPN 72.88 95.00 83.57 75.9259
BPN-GACFS 79.5 95.00 85.71 77.778
BPN-DT 78.21 95.00 85.00 82.407
GAFFN 77.707 96.66 85.802 83.57 .
GAFFN-GACFS 84.713 96.66 86.42 85802 | S Ppaper
GAFFN-DT 84.076 96.66 87.037 85.802
PSOFFN 85.957 96.667 90.00 85.802
PSOFFN-GACFS 86.383 97.778 93.839 88.272
PSOFFN-DT 86.809 97.778 94.313 87.037
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